Measuring and Analyzing the Welfare Effects of Energy Poverty in Rural China Based on a Multi-Dimensional Energy Poverty Index
Abstract
:1. Introduction
2. Literature Review
2.1. Measurement of Energy Poverty
2.2. Factors Affecting Energy Poverty
2.3. Economic Effects of Energy Poverty
- (1)
- Based on micro-individual data, this paper conducts a multi-dimensional assessment of energy poverty. This study takes into account the variations in energy service demand among households from different regions and income levels. Five dimensions related to energy aspects are chosen for evaluation. As a result, a comprehensive multi-dimensional energy poverty index is formulated to reflect the extent of energy deprivation among Chinese households.
- (2)
- This study uses panel data and a two-stage least squares approach combined with a multilayer logit model to examine how energy poverty affects household well-being. By addressing endogeneity concerns, the paper provides precise estimates of how electricity accessibility impacts household expenditure and income. It also explores how electricity accessibility and cooking fuel types affect individual education and health, while testing the validity of instrumental variables.
- (3)
- This paper focuses on a comprehensive analysis of energy poverty at both regional and expenditure quantile levels. The analysis includes distinct regression studies for the eastern, central, and western regions, revealing disparities in energy poverty among these areas. Additionally, the study utilizes quantile regression methods to investigate the impact of electricity accessibility on household expenditure across different expenditure tiers.
3. Data and Methods
3.1. Empirical Strategies
3.2. Quantile Regression
3.3. Multi-Dimensional Energy Poverty Index (MEPI)
3.4. Determinants of Multi-Dimensional Energy Poverty
4. Empirical Analysis
4.1. Electricity Accessibility, and Income and Expenditure
4.2. Energy Poverty, and Education and Health
4.3. Heterogeneity Analysis
4.4. Robustness Analysis
5. Conclusions and Policy Implications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sen, A. Poverty: An Ordinal Approach to Measurement. Econometrica 1976, 44, 219–231. [Google Scholar] [CrossRef]
- Teller-Elsberg, J.; Sovacool, B.; Smith, T.; Laine, E. Fuel poverty, excess winter deaths, and energy costs in Vermont: Burdensome for whom? Energy Pol. 2016, 90, 81–91. [Google Scholar] [CrossRef]
- Bonatz, N.; Guo, R.; Wu, W.; Liu, L. A comparative study of the interlinkages between energy poverty and low carbon development in China and Germany by developing an energy poverty index. Energy Build. 2019, 183, 817–831. [Google Scholar] [CrossRef]
- Mendoza, C.B., Jr.; Cayonte, D.D.D.; Leabres, M.S.; Manaligod, L.R.A. Understanding multidimensional energy poverty in the Philippines. Energy Pol. 2019, 133, 110886. [Google Scholar] [CrossRef]
- Oum, S. Energy poverty in the Lao PDR and its impacts on education and health. Energy Pol. 2019, 132, 247–253. [Google Scholar] [CrossRef]
- Che, X.; Zhu, B.; Wang, P. Assessing global energy poverty: An integrated approach. Energy Pol. 2021, 149, 112099. [Google Scholar] [CrossRef]
- Hills, J. Getting the Measure of Fuel Poverty: Final Report of the Fuel Poverty Review; Centre for Analysis of Social Exclusion: London, UK, 2012. [Google Scholar]
- Sadath, A.C.; Acharya, R.H. Assessing the extent and intensity of energy poverty using Multidimensional Energy Poverty Index: Empirical evidence from households in India. Energy Pol. 2017, 102, 540–550. [Google Scholar] [CrossRef]
- International Energy Agency (IEA). Energy for All: Financing Access for the Poor; International Energy Agency (IEA): Paris, France, 2011. [Google Scholar]
- Nussbaumer, P.; Bazilian, M.; Modi, V. Measuring energy poverty: Focusing on what matters. Renew. Sustain. Energy Rev. 2012, 16, 231–243. [Google Scholar] [CrossRef]
- Iddrisu, I.; Bhattacharyya, S.C. Sustainable Energy Development Index: A multi-dimensional indicator for measuring sustainable energy development. Renew. Sustain. Energy Rev. 2015, 50, 513–530. [Google Scholar] [CrossRef]
- Lin, B.; Wang, Y. Does energy poverty really exist in China? From the perspective of residential electricity consumption. Energy Pol. 2020, 143, 111557. [Google Scholar] [CrossRef]
- Zhang, Q.; Appau, S.; Kodom, P.L. Energy poverty, children’s wellbeing and the mediating role of academic performance: Evidence from China. Energy Econ. 2021, 97, 105206. [Google Scholar] [CrossRef]
- Jiang, L.; Yu, L.; Xue, B.; Chen, X.; Mi, Z. Who is energy poor? Evidence from the least developed regions in China. Energy Pol. 2020, 137, 111122. [Google Scholar] [CrossRef]
- Zhang, D.; Li, J.; Han, P. A multidimensional measure of energy poverty in China and its impacts on health: An empirical study based on the China family panel studies. Energy Pol. 2019, 131, 72–81. [Google Scholar] [CrossRef]
- Nie, P.; Li, Q.; Sousa-Poza, A. Energy poverty and subjective well-being in China: New evidence from the China family panel studies. Energy Econ. 2021, 103, 105548. [Google Scholar] [CrossRef]
- Wang, Y.; Lin, B. Can energy poverty be alleviated by targeting the low income? Constructing a multidimensional energy poverty index in China. Appl. Energy 2022, 321, 119374. [Google Scholar] [CrossRef]
- Scarpellini, S.; Rivera-Torres, P.; Suárez-Perales, I.; Aranda-Uson, A. Analysis of energy poverty intensity from the perspective of the regional administration: Empirical evidence from households in southern Europe. Energy Pol. 2015, 86, 729–738. [Google Scholar] [CrossRef]
- Belaïd, F. Exposure and risk to fuel poverty in France: Examining the extent of the fuel precariousness and its salient determinants. Energy Pol. 2018, 114, 189–200. [Google Scholar] [CrossRef]
- Karpinska, L.; Smiech, S. Breaking the cycle of energy poverty. Will Poland make it? Energy Econ. 2021, 94, 105063. [Google Scholar] [CrossRef]
- Reyes, R.; Schueftan, A.; Ruiz, C.; González, A.D. Controlling air pollution in a context of high energy poverty levels in southern Chile: Clean air but colder houses? Energy Pol. 2019, 124, 301–311. [Google Scholar] [CrossRef]
- Crentsil, A.O.; Asuman, D.; Fenny, A.P. Assessing the determinants and drivers of multidimensional energy poverty in Ghana. Energy Pol. 2019, 133, 110884. [Google Scholar] [CrossRef]
- Alem, Y.; Demeke, E. The persistence of energy poverty: A dynamic probit analysis. Energy Econ. 2020, 90, 104789. [Google Scholar] [CrossRef]
- Awan, A.; Bilgili, F. Energy poverty trends and determinants in Pakistan: Empirical evidence from eight waves of HIES 1998–2019. Renew. Sustain. Energy Rev. 2022, 158, 112157. [Google Scholar] [CrossRef]
- Drescher, K.; Janzen, B. Determinants, persistence, and dynamics of energy poverty: An empirical assessment using German household survey data. Energy Econ. 2021, 102, 105433. [Google Scholar] [CrossRef]
- Mensah, J.T.; Adu, G. An empirical analysis of household energy choice in Ghana. Renew. Sustain. Energy Rev. 2015, 51, 1402–1411. [Google Scholar] [CrossRef]
- Tabata, T.; Tsai, P. Fuel poverty in Summer: An empirical analysis using microdata for Japan. Sci. Total Environ. 2020, 703, 135038. [Google Scholar] [CrossRef] [PubMed]
- Nduka, E. How to get rural households out of energy poverty in Nigeria: A contingent valuation. Energy Pol. 2021, 149, 112072. [Google Scholar] [CrossRef]
- Gafa, D.W.; Egbendewe, A.Y. Energy poverty in rural west Africa and its determinants: Evidence from Senegal and Togo. Energy Pol. 2021, 156, 112476. [Google Scholar] [CrossRef]
- Ozughalu, U.M.; Ogwumike, F.O. Extreme energy poverty incidence and determinants in Nigeria: A multidimensional approach. Soc. Indic. Res. 2019, 142, 997–1014. [Google Scholar] [CrossRef]
- Abbas, K.; Butt, K.M.; Xu, D.; Ali, M.; Baz, K.; Kharl, S.H.; Ahmed, M. Measurements and determinants of extreme multidimensional energy poverty using machine learning. Energy 2022, 251, 123977. [Google Scholar] [CrossRef]
- Sharma, S.V.; Han, P.; Sharma, V.K. Socio-economic determinants of energy poverty amongst Indian households: A case study of Mumbai. Energy Pol. 2019, 132, 1184–1190. [Google Scholar] [CrossRef]
- Moniruzzaman, M.; Day, R. Gendered energy poverty and energy justice in rural Bangladesh. Energy Pol. 2020, 144, 111554. [Google Scholar] [CrossRef]
- Lin, B.; Zhao, H. Does off-farm work reduce energy poverty? Evidence from rural China. Sustain. Prod. Consum. 2021, 27, 1822–1829. [Google Scholar] [CrossRef]
- Wang, K.; Wang, Y.X.; Li, K.; Wei, Y.M. Energy poverty in China: An index based comprehensive evaluation. Renew. Sustain. Energy Rev. 2015, 47, 308–323. [Google Scholar] [CrossRef]
- Klasen, S.; Lahoti, R. How serious is the neglect of Intra-household inequality in multidimensional poverty and inequality analyses? Evidence from India. Rev. Income Wealth 2021, 67, 705–731. [Google Scholar] [CrossRef]
- Marchand, R.; Genovese, A.; Koh, S.C.L.; Brennan, A. Examining the relationship between energy poverty and measures of deprivation. Energy Pol. 2019, 130, 206–217. [Google Scholar] [CrossRef]
- Igawa, M.; Managi, S. Energy poverty and income inequality: An economic analysis of 37 countries. Appl. Energy 2022, 306, 118076. [Google Scholar] [CrossRef]
- Robinson, C.; Bouzarovski, S.; Lindley, S. Underrepresenting neighborhood vulnerabilities? The measurement of fuel poverty in England. Environ. Plan A 2018, 50, 1109–1127. [Google Scholar] [CrossRef]
- Charlier, D.; Kahouli, S. From residential energy demand to fuel poverty: Income induced non-linearities in the reactions of households to energy price fluctuations. Energy J. 2019, 40, 101–137. [Google Scholar] [CrossRef]
- Okushima, S. Gauging energy poverty: A multidimensional approach. Energy 2017, 137, 1159–1166. [Google Scholar] [CrossRef]
- Singh, I.; Squire, L.; Strauss, J. A Survey of Agricultural Household Models: Recent Findings and Policy Implications. World Bank Econ. Rev. 1986, 1, 149–179. [Google Scholar] [CrossRef]
- Bridge, B. Individual and Household-Level Effects of Energy Poverty on Human Development. 2017. Available online: https://digitalrepository.unm.edu/econ_etds/76 (accessed on 31 May 2017).
- Bersisa, M. Multidimensional Measure of Household Energy Poverty and its Determinants in Ethiopia. In Economic Transformation for Poverty Reduction in Africa; Routledge: London, UK, 2017. [Google Scholar]
- Sánchez-Guevara, C.; Sanz Fernández, A.; Núñez-Peiró, M. Feminisation of energy poverty in the city of Madrid. Energy Build. 2020, 223, 110131. [Google Scholar] [CrossRef]
- Kanagawa, M.; Nakata, T. Assessment of Access to Electricity and the Socio-Economic Impacts in Rural Areas of Developing Countries. Energy Pol. 2008, 36, 2016–2029. [Google Scholar] [CrossRef]
- Cardak, B.A.; Wilkins, R. The Determinants of Household Risky Asset Holdings: Australian Evidence on Background Risk and other Factors. J. Bank. Financ. 2009, 33, 850–860. [Google Scholar] [CrossRef]
Dimension | Indicator | Variable | Deprivation Threshold (i.e., If Poverty) |
---|---|---|---|
Home cooking fuel | Modern cooking fuels | Fuel type | Using any fuel other than electricity, liquefied petroleum gas, natural gas, or biogas |
Lighting | Electricity accessibility | Electricity supply | Not using electricity as the main energy source for lighting |
Household electric appliance services | Household appliances | Refrigerator | Not having a refrigerator |
Entertainment/ education | Educational/recreational equipment | TV or computer | Not having a TV or computer |
Telecommunication | Telecommunication facilities | Mobile phone or landline | Not having a mobile phone or landline |
1989 | 1991 | 1993 | 1997 | 2000 | 2004 | 2006 | 2009 | 2011 | 2015 | ||
---|---|---|---|---|---|---|---|---|---|---|---|
Fuel poverty | All | 87 | 85 | 81 | 64 | 60 | 59 | 49 | 33 | 22 | 14 |
Urban | 74 | 67 | 56 | 38 | 33 | 31 | 23 | 13 | 6 | 5 | |
Rural | 95 | 93 | 92 | 78 | 72 | 72 | 61 | 42 | 33 | 21 | |
East | 77 | 78 | 74 | 56 | 47 | 47 | 37 | 24 | 16 | 11 | |
Central | 86 | 84 | 83 | 67 | 66 | 64 | 55 | 38 | 33 | 21 | |
West | 98 | 95 | 87 | 68 | 65 | 64 | 53 | 33 | 18 | 12 | |
Lighting poverty | All | 10 | 4 | 2 | 3 | 2 | 0.6 | 0.9 | 0.9 | 1 | 3.8 |
Urban | 5 | 0.3 | 0.5 | 2 | 2 | 0.7 | 0.5 | 0.5 | 0.5 | 2 | |
Rural | 12 | 5.8 | 2.7 | 3 | 2 | 0.5 | 1 | 1 | 1 | 4.9 | |
East | 8 | 2 | 1 | 3 | 1 | 0.4 | 0.6 | 0.2 | 0.5 | 4 | |
Central | 13 | 7 | 3 | 2.8 | 2 | 0.6 | 1 | 1 | 1 | 5 | |
West | 7 | 1 | 1 | 4 | 3 | 0.6 | 0.5 | 1 | 1 | 2 | |
TV poverty | All | 87 | 83 | 79 | 67 | 60 | 56 | 51 | 36 | 20 | 9 |
Urban | 69 | 61 | 55 | 43 | 35 | 33 | 29 | 18 | 9 | 3 | |
Rural | 96 | 93 | 89 | 79 | 73 | 68 | 61 | 44 | 27 | 12 | |
East | 82 | 76 | 72 | 55 | 52 | 47 | 40 | 25 | 12 | 5 | |
Central | 88 | 83 | 79 | 68 | 60 | 56 | 52 | 36 | 24 | 9 | |
West | 94 | 91 | 87 | 77 | 73 | 68 | 63 | 51 | 24 | 12 | |
Entertainment poverty | All | 50 | 47 | 45 | 53 | 64 | 71 | 76 | 76 | 61 | 55 |
Urban | 41 | 45 | 55 | 66 | 74 | 73 | 70 | 59 | 43 | 44 | |
Rural | 54 | 48 | 41 | 46 | 58 | 71 | 79 | 84 | 72 | 63 | |
East | 45 | 44 | 47 | 53 | 67 | 69 | 72 | 68 | 51 | 49 | |
Central | 49 | 46 | 40 | 51 | 59 | 69 | 77 | 79 | 71 | 60 | |
West | 56 | 52 | 51 | 56 | 67 | 78 | 82 | 80 | 60 | 56 | |
Telecommunication poverty | All | / | / | / | 72 | 52 | 25 | 20 | 10 | 6 | 24 |
Urban | / | / | / | 55 | 32 | 14 | 11 | 4 | 3 | 24 | |
Rural | / | / | / | 80 | 62 | 30 | 24 | 13 | 8 | 25 | |
East | / | / | / | 63 | 39 | 13 | 10 | 5 | 3 | 19 | |
Central | / | / | / | 70 | 53 | 27 | 20 | 10 | 8 | 31 | |
West | / | / | / | 83 | 69 | 38 | 35 | 18 | 6 | 23 |
Odds Ratio | Elasticity | p > z | |
---|---|---|---|
Family size | −0.081 | −0.2093 | 0.001 |
Families headed by women | −0.437 | −0.424 | 0 |
Householder ages | −0.012 | −0.5619 | 0 |
Marriage | −0.611 | −0.4396 | 0 |
Junior school | −0.539 | −0.1655 | 0 |
High school | −1.092 | −0.2402 | 0 |
College school | −1.888 | −0.2232 | 0 |
Rural areas | 0.6494 | 0.81955 | 0 |
Central areas | 0.7334 | 0.18682 | 0 |
Western areas | 0.5683 | 0.1512 | 0 |
Variable | Variable Meaning | Mean | Standard Deviation | Minimum Value | Maximum Value |
---|---|---|---|---|---|
consumper | Per capita household expenditure | 11,241 | 14,669 | 0 | 302,400 |
incomeper | Per capita household income | 12,590 | 24,179 | 0.25 | 1,340,613 |
healthnot | Individuals who rated their health as unhealthy | 0.1683 | 0.3742 | 0 | 1 |
eduind | Individuals above 16 years old who has completed junior school education | 0.1102 | 0.3131 | 0 | 1 |
electr | Electricity accessibility | 0.9672 | 0.1781 | 0 | 1 |
firewood | Firewood as cooking fuel | 0.4129 | 0.4924 | 0 | 1 |
hhsize | Family size | 3.906 | 1.9173 | 1 | 17 |
agehead | Householder’s age | 49.865 | 14.096 | 16 | 95 |
eduhead2 | Education level of householder is junior school | 0.2615 | 0.4395 | 0 | 1 |
eduhead3 | Education level of householder is high school | 0.0857 | 0.28 | 0 | 1 |
eduhead4 | Education level of householder is college school | 0.0441 | 0.2054 | 0 | 1 |
area2 | Living in the central region | 0.2742 | 0.4461 | 0 | 1 |
area3 | Living in western region | 0.3567 | 0.4791 | 0 | 1 |
ageind | Individual’s age | 45.012 | 17.465 | 16 | 104 |
genderind | Male | 0.5059 | 0.5 | 0 | 1 |
altitude | Community altitude difference | 206.42 | 335.4 | 1 | 2400 |
Consumper(ln) | Electr | Incomeper(ln) | Electr | |||||
---|---|---|---|---|---|---|---|---|
Coef. | Std. Err. | Coef. | Std. Err. | Coef. | Std. Err. | Coef. | Std. Err. | |
electr | 3.9787 *** | 0.9909 | 9.5871 *** | 1.873 | ||||
hhsize | −0.077 *** | 0.01 | −0.006 *** | 0.0013 | 0.0056 | 0.0185 | −0.006 *** | 0.0013 |
eduhead2 | 0.0977 *** | 0.0377 | 0.0164 *** | 0.0056 | 0.1181 | 0.0736 | 0.0178 *** | 0.0056 |
eduhead3 | 0.2464 *** | 0.0531 | 0.0137 | 0.0087 | 0.3453 *** | 0.1023 | 0.0133 *** | 0.0087 |
eduhead4 | 0.5273 *** | 0.1186 | 0.0195 | 0.0198 | 0.6574 *** | 0.2292 | 0.0188 | 0.0198 |
agehead | −0.003 | 0.007 | 0.0028 ** | 0.0011 | 0.0211 | 0.0133 | 0.0027 ** | 0.0011 |
age2head | −9 × 10−5 | 7 × 10−5 | −3 × 10−5 *** | 1 × 10−5 | −3 × 10−4 ** | 0.0001 | −3 × 10−5 *** | 1 × 10−5 |
area2 | −0.094 *** | 0.0351 | 0.0017 | 0.006 | −0.08 | 0.0666 | −0.002 | 0.0059 |
area3 | 0.0133 | 0.0353 | −0.005 | 0.0058 | −0.07 | 0.0683 | −0.007 | 0.0057 |
altitude(ln) | −0.006 *** | 0.001 | −0.006 *** | 0.001 | ||||
_cons | 5.6961 *** | 0.9258 | 0.9434 *** | 0.0283 | −0.79 | 1.754 | 0.9452 *** | 0.028 |
Cragg–Donald Wald F-statistic | 34.837 | 36.622 | ||||||
Anderson canon (p-value) | 0 | 0 |
10% | 25% | 50% | 75% | 95% | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Consumper(ln) | Coef. | Std. Err. | Coef. | Std. Err. | Coef. | Std. Err. | Coef. | Std. Err. | Coef. | Std. Err. |
electr | 0.024 | 0.0899 | 0.0346 | 0.0541 | −0.033 | 0.035 | −0.027 | 0.0681 | 0.2244 *** | 0.0789 |
hhsize | −0.096 *** | 0.0084 | −0.102 *** | 0.0059 | −0.121 *** | 0.0057 | −0.125 *** | 0.0065 | −0.134 *** | 0.0137 |
eduhead2 | 0.1409 *** | 0.0336 | 0.1753 *** | 0.0188 | 0.199 *** | 0.0275 | 0.1843 *** | 0.0197 | 0.2367 *** | 0.056 |
eduhead3 | 0.2864 *** | 0.0287 | 0.3144 *** | 0.0345 | 0.3138 *** | 0.0282 | 0.3522 *** | 0.0411 | 0.2379 ** | 0.109 |
eduhead4 | 0.4456 *** | 0.1584 | 0.5414 *** | 0.0866 | 0.6024 *** | 0.0667 | 0.6013 *** | 0.057 | 0.5847 *** | 0.1098 |
agehead | 0.0008 | 0.007 | −0.002 | 0.004 | −0.001 | 0.0041 | −0.008 | 0.0051 | −0.012 | 0.011 |
age2head | −2 × 10−4 *** | 7 × 10−5 | −1 × 10−4 *** | 4 × 10−5 | −1 × 10−4 *** | 4 × 10−5 | −4 × 10−5 | 5 × 10−5 | 4 × 10−5 | 0.0001 |
area2 | −0.004 | 0.0325 | −0.095 *** | 0.0303 | −0.131 *** | 0.0256 | −0.14 *** | 0.0294 | −0.077 | 0.0585 |
area3 | −0.118 *** | 0.0325 | −0.145 *** | 0.028 | −0.061 ** | 0.0253 | −0.029 | 0.0195 | 0.0011 | 0.0394 |
_cons | 8.7382 *** | 0.1844 | 9.216 *** | 0.1032 | 9.7872 *** | 0.1072 | 10.409 *** | 0.1257 | 10.983 *** | 0.2735 |
Logarithm of Wage Income Per Capita | Logarithm of Per Capita Operating Income | |||
---|---|---|---|---|
Coef. | Std. Err. | Coef. | Std. Err. | |
electr | 7.7993 *** | 2.3735 | 5.9255 ** | 2.3751 |
hhsize | −0.062 *** | 0.0204 | −0.1534 *** | 0.0193 |
eduhead2 | 0.035 | 0.067 | 0.1428 * | 0.0795 |
eduhead3 | 0.197 ** | 0.0924 | 0.3214 *** | 0.1019 |
eduhead4 | 0.6922 *** | 0.1927 | −0.1496 | 0.2970 |
agehead | −0.024 * | 0.0123 | 0.0244 | 0.0192 |
age2head | 0.0002 | 0.0001 | −0.0004 ** | 0.0002 |
area2 | −0.159 ** | 0.0649 | 0.0767 | 0.0683 |
area3 | −0.202 *** | 0.0601 | −0.0143 | 0.0782 |
_cons | 2.2037 | 2.3253 | 1.8676 | 2.0878 |
Cragg–Donald Wald F-statistic | 17.15 | 16.507 | ||
Anderson canon (p-value) | 0 | 0 |
Individual above 16 Years Old Has Completed Junior School Education | Individuals Rated Their Health as Unhealthy | |||||||
---|---|---|---|---|---|---|---|---|
Coef. | Std. Err. | Coef. | Std. Err. | Coef. | Std. Err. | Coef. | Std. Err. | |
electr | 0.0699 | 0.1314 | 0.0875 | 0.1447 | −0.302 *** | 0.0915 | −0.281 *** | 0.0998 |
firewood | −0.641 *** | 0.0501 | −0.252 *** | 0.0545 | 0.5796 *** | 0.0383 | 0.3772 *** | 0.0421 |
genderind | 0.5994 *** | 0.0455 | −0.566 *** | 0.0359 | ||||
ageind | 0.0168 ** | 0.0081 | 0.1538 *** | 0.007 | ||||
age2ind | −6 × 10−4 *** | 9 × 10−5 | −9 × 10−4 *** | 6 × 10−5 | ||||
eduhead2 | 0.3058 *** | 0.0573 | −0.347 *** | 0.045 | ||||
eduhead3 | 2.8145 *** | 0.0596 | −0.531 *** | 0.0734 | ||||
eduhead4 | 2.3108 *** | 0.0913 | −0.618 *** | 0.1341 | ||||
area2 | −0.031 | 0.0752 | 0.0247 | 0.0748 | ||||
area3 | −0.286 *** | 0.0721 | 0.1669 ** | 0.069 | ||||
_cons | −2.007 *** | 0.1331 | −2.604 *** | 0.2192 | −1.6637 *** | 0.0941 | −6.381 *** | 0.216 |
comm | 0.3072 *** | 0.0388 | 0.1937 *** | 0.0293 | 0.1854 *** | 0.0222 | 0.2396 *** | 0.0278 |
Consumper(ln) | ||||||
---|---|---|---|---|---|---|
Eastern Region | Central Region | Western Region | ||||
Coef. | Std. Err. | Coef. | Std. Err. | Coef. | Std. Err. | |
electr | −0.576 | 1.2928 | −12.57 | 10.764 | 10.642 *** | 2.6801 |
_cons | 10.374 *** | 1.3786 | 20.759 ** | 9.813 | 0.288 | 2.2903 |
Cragg–Donald Wald F-statistic | 12.345 | 1.538 | 18.082 | |||
Anderson canon (p-value) | 0.000 | 0.214 | 0.000 |
Eastern Region | ||||||||||
10% | 25% | 50% | 75% | 95% | ||||||
Consumper(ln) | Coef. | Std. Err. | Coef. | Std. Err. | Coef. | Std. Err. | Coef. | Std. Err. | Coef. | Std. Err. |
electr | 0.03 | 0.2392 | −0.14 | 0.1155 | −0.159 * | 0.0868 | −0.043 | 0.0954 | 0.2124 | 0.1914 |
_cons | 9.057 *** | 0.3853 | 9.4508 *** | 0.1945 | 10.17 *** | 0.2458 | 10.617 *** | 0.2152 | 11.636 *** | 0.4342 |
Central Region | ||||||||||
10% | 25% | 50% | 75% | 95% | ||||||
Consumper(ln) | Coef. | Std. Err. | Coef. | Std. Err. | Coef. | Std. Err. | Coef. | Std. Err. | Coef. | Std. Err. |
electr | −0.005 | 0.2143 | 0.0744 | 0.0565 | −0.022 | 0.1147 | −0.028 | 0.0816 | 0.2507 | 0.2366 |
_cons | 8.356 *** | 0.3374 | 8.8821 *** | 0.2885 | 9.5327 *** | 0.1523 | 10.091 *** | 0.3157 | 10.934 *** | 0.5018 |
Western Region | ||||||||||
10% | 25% | 50% | 75% | 95% | ||||||
Consumper(ln) | Coef. | Std. Err. | Coef. | Std. Err. | Coef. | Std. Err. | Coef. | Std. Err. | Coef. | Std. Err. |
electr | −0.026 | 0.099 | 0.0396 | 0.1096 | −0.049 | 0.0887 | −0.019 | 0.1064 | 0.1843 ** | 0.0854 |
_cons | 8.7404 *** | 0.2972 | 9.2874 *** | 0.2441 | 9.6428 *** | 0.2229 | 10.294 *** | 0.2073 | 10.51 *** | 0.4415 |
Eastern Region | ||||
Logarithm of Wage Income Per Capita | Logarithm of Per Capita Operating Income | |||
Coef. | Std. Err. | Coef. | Std. Err. | |
electr | 1.7084 | 2.0601 | 9.187 * | 4.866 |
_cons | −0.072 *** | 0.0185 | −0.177 *** | 0.0438 |
Cragg–Donald Wald F-statistic | 9.215 | 6.967 | ||
Anderson canon (p-value) | 0 | 0 | ||
Central Region | ||||
Logarithm of Wage Income Per Capita | Logarithm of Per Capita Operating Income | |||
Coef. | Std. Err. | Coef. | Std. Err. | |
electr | −1.099 | 11.014 | 7.8064 | 6.5878 |
_cons | 10.513 | 10.614 | −0.737 | 6.1331 |
Cragg–Donald Wald F-statistic | 0.426 | 2.653 | ||
Anderson canon (p-value) | 0.513 | 0.102 | ||
Western Region | ||||
Logarithm of Wage Income Per Capita | Logarithm of Per Capita Operating Income | |||
Coef. | Std. Err. | Coef. | Std. Err. | |
electr | 15.424 ** | 6.2489 | 1.9986 | 3.2587 |
_cons | −4.371 | 5.7605 | 4.7192 ** | 2.1811 |
Cragg–Donald Wald F-statistic | 6.857 | 4.622 | ||
Anderson canon (p-value) | 0.008 | 0.031 |
Eastern Region | ||||||||
Individual above 16 Years Old Has Completed Junior School Education | Individuals Rated Their Health as Unhealthy | |||||||
Coef. | Std. Err. | Coef. | Std. Err. | Coef. | Std. Err. | Coef. | Std. Err. | |
electr | −0.293 | 0.218 | −0.15 | 0.2454 | −0.4770 *** | 0.1702 | −0.437 ** | 0.1853 |
_cons | −1.484 *** | 0.2203 | −2.188 *** | 0.3581 | −1.576 *** | 0.1745 | −6.058 *** | 0.3768 |
Central Region | ||||||||
Individual above 16 Years Old Has Completed Junior School Education | Individuals Rated Their Health as Unhealthy | |||||||
Coef. | Std. Err. | Coef. | Std. Err. | Coef. | Std. Err. | Coef. | Std. Err. | |
electr | 0.2257 | 0.31 | 0.1156 | 0.252 | −0.439 *** | 0.1673 | −0.383 ** | 0.1835 |
_cons | 0.2297 *** | −8.52 | −2.561 *** | 0.3874 | −1.564 *** | 0.1722 | −7.309 *** | 0.4437 |
Western Region | ||||||||
Individual above 16 Years Old Has Completed Junior School Education | Individuals Rated Their Health as Unhealthy | |||||||
Coef. | Std. Err. | Coef. | Std. Err. | Coef. | Std. Err. | Coef. | Std. Err. | |
electr | 0.3612 | 0.2449 | 0.231 | 0.2607 | −0.089 | 0.1427 | −0.114 | 0.1557 |
_cons | −2.536 *** | 0.2465 | −3.336 *** | 0.3837 | −1.74 *** | 0.1476 | −5.962 | 0.3179 |
Individual above 16 Years Old Has Completed Junior School Education | Individuals Rated Their Health as Unhealthy | |||||||
---|---|---|---|---|---|---|---|---|
Coef. | Std. Err. | Coef. | Std. Err. | Coef. | Std. Err. | Coef. | Std. Err. | |
electr | 0.0005 *** | 0.0001 | 0.0002 | 0.0002 | −0.002 *** | 0.0002 | −7 × 10−4 *** | 0.0002 |
firewood | −0.6 *** | 0.051 | −0.244 *** | 0.0555 | 0.5078 *** | 0.0394 | 0.3551 *** | 0.043 |
genderind | 0.608 *** | 0.0461 | −0.569 *** | 0.0362 | ||||
ageind | 0.0188 ** | 0.0082 | 0.1533 *** | 0.0071 | ||||
age2ind | −6 × 10−4 *** | 1 × 10−4 | −9 × 10−4 *** | 6 × 10−5 | ||||
eduhead2 | 0.328 *** | 0.058 | −0.336 *** | 0.0454 | ||||
eduhead3 | 2.7997 *** | 0.0605 | −0.501 *** | 0.0738 | ||||
eduhead4 | 2.294 *** | 0.0934 | −0.605 *** | 0.1352 | ||||
area2 | −0.037 | 0.0764 | 0.0145 | 0.0748 | ||||
area3 | −0.296 *** | 0.0733 | 0.1581 ** | 0.0691 | ||||
_cons | −2.0147 *** | 0.0399 | −2.591 *** | 0.1712 | −1.786 *** | 0.0399 | −6.564 *** | 0.1971 |
comm | 0.2965 *** | 0.0382 | 0.1956 *** | 0.0298 | 0.1797 *** | 0.0219 | 0.2346 *** | 0.0275 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, Y.; Xie, E. Measuring and Analyzing the Welfare Effects of Energy Poverty in Rural China Based on a Multi-Dimensional Energy Poverty Index. Sustainability 2023, 15, 13603. https://doi.org/10.3390/su151813603
Xie Y, Xie E. Measuring and Analyzing the Welfare Effects of Energy Poverty in Rural China Based on a Multi-Dimensional Energy Poverty Index. Sustainability. 2023; 15(18):13603. https://doi.org/10.3390/su151813603
Chicago/Turabian StyleXie, Yuxiang, and E. Xie. 2023. "Measuring and Analyzing the Welfare Effects of Energy Poverty in Rural China Based on a Multi-Dimensional Energy Poverty Index" Sustainability 15, no. 18: 13603. https://doi.org/10.3390/su151813603
APA StyleXie, Y., & Xie, E. (2023). Measuring and Analyzing the Welfare Effects of Energy Poverty in Rural China Based on a Multi-Dimensional Energy Poverty Index. Sustainability, 15(18), 13603. https://doi.org/10.3390/su151813603