Towards a Domain-Neutral Platform for Sustainable Digital Twin Development
Abstract
:1. Introduction
2. Materials and Methods
2.1. Related Work
2.2. Methodology
3. Results
3.1. The CDT-Enabling Platform Architecture
- Observation/actuation layer
- Data layer
- Inference layer
- Simulation layer
3.2. Example Domains Model
4. Platform Validation
4.1. Platform Prototype Implementation
- Device connectivity: supporting various IoT devices, protocols, and standards to facilitate easy device connection and management.
- Data management: providing powerful tools for handling and processing IoT data, including data visualization, analytics, and storage.
- Application development: offering a robust application development framework for rapid deployment of custom IoT applications.
- Security and reliability: ensuring the safety and integrity of IoT data through robust security features like device authentication, data encryption, and access control.
- Scalability: designed to handle large volumes of IoT data from thousands of devices efficiently.
- OWL parsing and serialization: the library supports reading and writing OWL ontologies in various formats, such as RDF/XML, Turtle, and OWL/XML.
- Utilizing models through imperative programming code: the library provides Java classes and interfaces for modeling OWL ontologies, including those representing OWL classes, properties, individuals, and axioms.
- Ontology reasoning: the library includes an inference engine capable of reasoning about OWL ontologies and deducing new knowledge based on ontological axioms.
- SPARQL querying: the library supports SPARQL queries, enabling the querying of OWL ontologies to retrieve specific information.
4.2. Validation Scenarios
4.2.1. Simple Sustainable Energy Management on the University Campus
4.2.2. Managing Learning Process and Learner’s Knowledge
4.3. Discussion
5. Conclusions and Future Work
- A separate domain model of the DT, enabling domain neutrality.
- Separate layers of modeling and simulation, enabling the use of various models and the study of the behavior of physical artifacts in different conditions.
- The main functionalities are organized in layers, allowing for easy extension and maintenance.
- Using the platform requires specific knowledge in the domain of semantic modeling and semantic technologies.
- The life cycle is not explicitly modeled.
- The composition of layered DTs is not explicitly modeled.
- The storage and retrieval of “layered” DTs is not modeled with sufficient detail.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- University of Alberta. What Is Sustainability? Available online: https://www.mcgill.ca/sustainability/files/sustainability/what-is-sustainability.pdf (accessed on 14 December 2022).
- Fuller, A.; Fan, Z.; Day, C.; Barlow, C. Digital Twin: Enabling Technologies, Challenges and Open Research. IEEE Access 2020, 8, 108952–108971. [Google Scholar] [CrossRef]
- Tzachor, A.; Sabri, S.; Richards, C.E.; Rajabifard, A.; Acuto, M. Potential and limitations of digital twins to achieve the Sustainable Development Goals. Nat. Sustain. 2022, 5, 822–829. [Google Scholar] [CrossRef]
- Budiardjo, A.; Migliori, D. Digital Twin System Interoperability Framework; Digital Twin Consortium: Chicago, IL, USA, 2021. [Google Scholar]
- Goetz, C.S.; Karlsson, P.; Yitmen, I. Exploring applicability, interoperability and integrability of Blockchain-based digital twins for asset life cycle management. Smart Sustain. Built Environ. 2022, 11, 532–558. [Google Scholar] [CrossRef]
- Cano-Benito, J.; Cimmino, A.; Garcia-Castro, R. Toward the Ontological Modeling of Smart Contracts: A Solidity Use Case. IEEE Access 2021, 9, 140156–140172. [Google Scholar] [CrossRef]
- Alam, K.M.; El Saddik, A. C2PS: A digital twin architecture reference model for the cloud-based cyber-physical systems. IEEE Access 2017, 5, 2050–2062. [Google Scholar] [CrossRef]
- Zheng, X.; Lu, J.; Kiritsis, D. The emergence of cognitive digital twin: Vision, challenges and opportunities. Int. J. Prod. Res. 2022, 60, 7610–7632. [Google Scholar] [CrossRef]
- Tao, F.; Sun, X.; Cheng, J.; Zhu, Y.; Liu, W.; Wang, Y.; Xu, H.; Hu, T.; Liu, X.; Liu, T.; et al. makeTwin: A reference architecture for digital twin software platform. Chin. J. Aeronaut. 2023. [Google Scholar] [CrossRef]
- Hernandez-Ibañez, L.A.; Hernandez, S. Application of digital 3D models on urban planning and highway design. Trans. Built Environ. 1997, 30, 391–402. [Google Scholar]
- Tao, F.; Zhang, H.; Liu, A.; Nee, A.Y.C. Digital Twin in Industry: State-of-the-Art. IEEE Trans. Ind. Inform. 2019, 15, 2405–2415. [Google Scholar] [CrossRef]
- Liu, M.; Fang, S.; Dong, H.; Xu, C. Review of digital twin about concepts, technologies, and industrial applications. J. Manuf. Syst. 2021, 58, 346–361. [Google Scholar] [CrossRef]
- Semeraro, C.; Lezoche, M.; Panetto, H.; Dassisti, M. Digital twin paradigm: A systematic literature review. Comput. Ind. 2021, 130, 103469. [Google Scholar] [CrossRef]
- He, B.; Bai, K.-J. Digital twin-based sustainable intelligent manufacturing: A review. Adv. Manuf. 2021, 9, 1–21. [Google Scholar] [CrossRef]
- Zaballos, A.; Briones, A.; Massa, A.; Centelles, P.; Cabalero, V. A Smart Campus’ Digital Twin for Sustainable Comfort Monitoring. Sustainability 2020, 12, 9196. [Google Scholar] [CrossRef]
- Lu, Q.; Parlikad, A.K.; Woodall, P.; Ranasinghe, G.D.; Xie, X.; Liang, Z.; Konstantinou, E.; Heaton, J.; Schooling, J. Developing a Digital Twin at Building and City Levels: Case Study of West Cambridge Campus. J. Manag. Eng. 2020, 36, 05020004. [Google Scholar] [CrossRef]
- Seo, H.; Yun, W.-S. Digital Twin-Based Assessment Framework for Energy Savings in University Classroom Lighting. Buildings 2022, 12, 544. [Google Scholar] [CrossRef]
- Furini, M.; Gaggi, O.; Mirri, S.; Montangero, M.; Pelle, E.; Poggi, F.; Prandi, C. Digital Twins and Artificial Intelligence as Pillars of Personalized Learning Models. Commun. ACM 2022, 65, 98–104. [Google Scholar] [CrossRef]
- Zacher, S. Digital Twins for Education and Study of Engineering Sciences. Int. J. Eng. Sci. Technol. 2020, 2, 34–42. [Google Scholar] [CrossRef]
- Adl, A.E. The Emergence of Cognitive Digital Physical Twins (CDPT) as the 21st Century Icons and Beacons–An In-Progress Vision, Key Categories, Applications. 2016. Available online: https://www.linkedin.com/posts/ahmedeladl_the-emergence-of-cognitive-digital-physical-activity-7016945691470004224-Thxr?utm_source=share&utm_medium=member_desktop (accessed on 28 October 2022).
- Saracevic, F. Cognitive Digital Twin. 2017. Available online: https://www.slideshare.net/BosniaAgile/cognitive-digital-twin-by-fariz-saraevi (accessed on 15 September 2022).
- Kharlamov, E.; Martin-Recuerda, F.; Perry, B.; Cameron, D.; Fjellheim, R.; Waaler, A. Towards Semantically Enhanced Digital Twins. In Proceedings of the 2018 IEEE International Conference on Big Data (Big Data), Seattle, WA, USA, 10–13 December 2018. [Google Scholar] [CrossRef]
- Boschert, S.; Heinrich, C.; Rosen, R. Next Generation Digital Twin. In Proceedings of the TMCE 2018, Las Palmas de Gran Canaria, Spain, 7–11 May 2018. [Google Scholar]
- Fernández, F.; Sánchez, Á.; Vélez, J.F.; Moreno, A.B. Symbiotic Autonomous Systems with Consciousness Using Digital Twins. Lect. Notes Comput. Sci. 2019, 11487, 23–32. [Google Scholar] [CrossRef]
- Jinzhi, L.; Zhaorui, Y.; Xiaochen, Z.; Jian, W.; Dimitris, K. Exploring the concept of Cognitive Digital Twin from model based systems engineering perspective. Adv. Manuf. Technol. 2022, 121, 5835–5854. [Google Scholar] [CrossRef]
- Jia, W.; Wang, W.; Zhang, Z. From simple digital twin to complex digital twin Part I: A novel modeling method for multi-scale and multi-scenario digital twin. Adv. Eng. Inform. 2022, 53, 101706. [Google Scholar] [CrossRef]
- Pavlos, E.; Stavros, L.; Stathis, P.; George, A.; Kostas, K.; Klemen, K.; Jinzhi, L.; Rožanec, J.M.; Stojanovic, N. Cognitive Digital Twins for Resilience in Production: A Conceptual Framework. Information 2022, 13, 33. [Google Scholar] [CrossRef]
- Abburu, S.; Berre, A.J.; Jacoby, M.; Dumitru, R.; Stojanovic, L.; Stojanovic, N. COGNITWIN-Hybrid and Cognitive Digital Twins for the Process Industry. In Proceedings of the 2020 IEEE International Conference on Engineering, Technology and Innovation (ICE/ITMC), Cardiff, UK, 15–17 June 2020. [Google Scholar] [CrossRef]
- Faruque, M.A.A.; Muthirayan, D.; Yu, S.-Y.; Khargonekar, P.P. Cognitive Digital Twin for Manufacturing Systems. In Proceedings of the 2021 Design, Automation & Test in Europe Conference & Exhibition (DATE), Grenoble, France, 1–5 February 2021. [Google Scholar] [CrossRef]
- Warke, V.; Satish, K.; Arunkumar, B.; Ketan, K. Sustainable Development of Smart Manufacturing Driven by the Digital Twin Framework: A Statistical Analysis. Sustainability 2021, 13, 10139. [Google Scholar] [CrossRef]
- Riedelsheimer, T.; Dorfhuber, L.; Stark, R. User centered development of a Digital Twin concept with focus on sustainability in the clothing industry. Procedia CIRP 2022, 90, 660–665. [Google Scholar] [CrossRef]
- D’Amico, R.D.; Erkoyuncu, J.A.; Addepalli, S.; Penver, S. Cognitive digital twin: An approach to improve the maintenance management. CIRP J. Manuf. Sci. Technol. 2022, 38, 613–630. [Google Scholar] [CrossRef]
- Yitmen, I.; Alizadehsalehi, S.; Akıner, İ.; Akıner, M.E. An Adapted Model of Cognitive Digital Twins for Building Lifecycle Management. Appl. Sci. 2021, 11, 4276. [Google Scholar] [CrossRef]
- Ghansah, F.A.; Lu, W. Major opportunities of digital twins for smart buildings: A scientometric and content analysis. Smart Sustain. Built Environ. 2023. [Google Scholar] [CrossRef]
- Talla, A.; McIlwaine, S. Industry 4.0 and the circular economy: Using design-stage digital technology to reduce construction waste. Smart Sustain. Built Environ. 2022. [Google Scholar] [CrossRef]
- Alshboul, O.; Almasabha, G.; Shehadeh, A.; Mamlook, R.E.A.; Almuflih, A.S.; Almakayeel, N. Machine Learning-Based Model for Predicting the Shear Strength of Slender Reinforced Concrete Beams without Stirrups. Buildings 2022, 12, 1166. [Google Scholar] [CrossRef]
- Alshboul, O.; Shehadeh, A.; Mamlook, R.E.A.; Almasabha, G.; Almuflih, A.S.; Alghamdi, S.Y. Prediction Liquidated Damages via Ensemble Machine Learning Model: Towards Sustainable Highway Construction Projects. Sustainability 2022, 14, 9303. [Google Scholar] [CrossRef]
- Ogunseiju, O.R.; Olayiwola, J.; Akanmu, A.A.; Nnaji, C. Digital twin-driven framework for improving self-management of ergonomic risks. Smart Sustain. Built Environ. 2021, 10, 403–419. [Google Scholar] [CrossRef]
- Sierra, C.; Paul, S.; Rahman, A.; Kulkarni, A. Development of a Cognitive Digital Twin for Pavement Infrastructure Health Monitoring. Infrastructures 2022, 7, 113. [Google Scholar] [CrossRef]
- Wagner, N.; Sundhararajan; Son, L.H.; Joo, M. Special Section: Complex Evolutionary Artificial Intelligence in Cognitive Digital Twinning (Guest Editors: Neal Wagner, Sundhararajan, Le Hoang Son, Meng Joo’). J. Intell. Fuzzy Syst. 2021, 40, 2011. [Google Scholar] [CrossRef]
- Saracco, R.; Madhavan, R.; Dambrot, S.M.; de Kerchove, D.; Coughlin, T. Symbiotic Autonomous Systems. In An FDC Initiative White Paper; IEEE: Piscataway, NJ, USA, 2017. [Google Scholar]
- Dambrot, S.M.; de Kerchove, D.; Flammini, F.; Kinsner, W.; MacDonald Glenn, L.; Saracco, R. Symbiotic Autonomous Systems. In An FDC Initiative White Paper II; IEEE: Piscataway, NJ, USA, 2018. [Google Scholar]
- Boschert, S.; Coughlin, T.; Ferraris, M.; Flammini, F.; Florido, J.G.; Gonzalez, A.C.; Henz, P.; de Kerchove, D.; Rosen, R.; Saracco, R.; et al. Symbiotic Autonomous Systems White Paper III; IEEE: Piscataway, NJ, USA, 2019. [Google Scholar]
- de Kerckhove, D. The personal digital twin, ethical considerations. Phil. Trans. R. Soc. 2021, 379, 20200367. [Google Scholar] [CrossRef]
- Wang, Y.; Karray, F.; Kwong, S.; Plataniotis, K.N.; Leung, H.; Hou, M.; Tunstel, E.; Rudas, I.J.; Trajkovic, L.; Kaynak, O.; et al. On the philosophical, cognitive and mathematical foundations of symbiotic autonomous systems. Phil. Trans. R. Soc. 2021, 379, 20200362. [Google Scholar] [CrossRef] [PubMed]
- Abbass, H.; Petraki, E.; Hussein, A.; McCall, F.; Elsawah, S. A model of symbiomemesis: Machine education and communication as pillars for human-autonomy symbiosis. Phil. Trans. R. Soc. 2021, 379, 20200364. [Google Scholar] [CrossRef] [PubMed]
- Vogel-Heuser, B.; Ocker, F.; Weiß, I.; Mieth, R.; Mann, F. Potential for combining semantics and data analysis in the context of digital twins. Phil. Trans. R. Soc. 2021, 379, 20200362. [Google Scholar] [CrossRef]
- Colombo, A.W.; Karnouskos, S.; Hanisch, C. Engineering human-focused Industrial Cyber-Physical Systems in Industry 4.0 context. Phil. Trans. R. Soc. 2021, 379, 20200366. [Google Scholar] [CrossRef]
- Liu, Z.; Tang, J.; Zhijia, Z.; Zhang, S. Adaptive neural network control for nonlinear cyber-physical systems subject to false data injection attacks with prescribed performance. Phil. Trans. R. Soc. 2021, 379, 20200372. [Google Scholar] [CrossRef]
- Yablochnikov, E.I.; Chukichev, A.V.; Timofeeva, O.S.; Abyshev, O.A.; Abaev, G.E.; Colombo, A.W. Development of an industrial cyber-physical platform for small series production using digital twins. Phil. Trans. R. Soc. 2021, 379, 20200370. [Google Scholar] [CrossRef]
- Petrova-Antonova, D.; Spassov, I.; Krasteva, I.; Manova, I.; Ilieva, S. A Digital Twin Platform for Diagnostics and Rehabilitation of Multiple Sclerosis. In Proceedings of the Computational Science and Its Applications—ICCSA 2020, Lecture Notes in Computer Science 2020, Cagliari, Italy, 1–4 July 2020; Volume 12249. [Google Scholar] [CrossRef]
- Kinsner, W. Towards Evolving Engineering Education based on Symbiotic Cognitive Digital Twins. In Proceedings of the Canadian Engineering Education Association (CEEA), Toronto, Canada, 18–22 June 2021. [Google Scholar] [CrossRef]
- Kinsner, W.; Saracco, R. Towards Evolving Symbiotic Cognitive Education Based on Digital Twins. In Proceedings of the IEEE 18th International Conference on Cognitive Informatics & Cognitive Computing (ICCI*CC), Milan, Italy, 23–25 July 2019. [Google Scholar] [CrossRef]
- Doignon, J.-P.; Falmagne, J.-C. Knowledge Spaces; Springer: Berlin/Heidelberg, Germany, 1999; Volume XVI, p. 334. [Google Scholar] [CrossRef]
- Doignon, J.-P.; Falmagne, J.-C. Spaces for the assessment of knowledge. Int. J. Man-Mach. Stud. 1985, 23, 175–196. [Google Scholar] [CrossRef]
- Segedinac, M.; Milićević, N.; Čeliković, M.; Savić, G. A neuroevolutionary method for knowledge space construction. Comput. Sci. Inf. Syst. 2022, 19, 763–781. [Google Scholar] [CrossRef]
- Sheth, A.; Henson, C.; Sahoo, S.S. Semantic sensor web. IEEE Internet Comput. 2008, 12, 78–83. [Google Scholar] [CrossRef]
- Bermudez-Edo, M.; Elsaleh, T.; Barnaghi, P.; Taylor, K. IoT-Lite: A lightweight semantic model for the Internet of Things. In Proceedings of the 2016 INTL IEEE Conferences on Ubiquitous Intelligence & Computing, Advanced and Trusted Computing, scaN4le Computing and Communications, Cloud and Big Data Computing, Internet of People, and Smart World Congress (UIC/ATC/ScalCom/CBDCom/IoP/SmartWorld), Toulouse, France, 18–21 July 2016; pp. 90–97. [Google Scholar] [CrossRef]
- Nikolić, S.; Penca, V.; Segedinac, M.; Konjović, Z. Semantic web based architecture for managing hardware heterogeneity in wireless sensor network. In Proceedings of the WIMS’ 11: Proceedings of the International Conference on Web Intelligence, Mining and Semantics, Sogndal, Norway, 25–27 May 2011. [Google Scholar] [CrossRef]
- Steinmetz, C.; Rettberg, A.; Ribeiro, F.G.C.; Schroeder, G.; Pereira, C.E. Internet of things ontology for digital twin in cyber physical systems. In Proceedings of the 2018 VIII Brazilian Symposium on Computing Systems Engineering (SBESC), Salvador, Brazil, 6–9 November 2018. [Google Scholar] [CrossRef]
- Reda, R.; Carbonaro, A.; de Boer, V.; Siebes, R.; van der Weerdt, R.; Nouwt, B.; Daniele, L. Supporting Smart Home Scenarios Using OWL and SWRL Rules. Sensors 2022, 22, 4131. [Google Scholar] [CrossRef]
- Antoniazzi, F.; Viola, F. Building the Semantic Web of Things Through a Dynamic Ontology. IEEE Internet Things J. 2019, 6, 10560–10579. [Google Scholar] [CrossRef]
- Source Forge. Compare the Top Digital Twin Software of 2023. Slashdot Media. 2023. Available online: https://sourceforge.net/software/digital-twin/ (accessed on 17 February 2023).
- Lehner, D.; Pfeiffer, J.; Tinsel, E.-F.; Strljic, M.M.; Sint, S.; Vierhauser, M.; Wortmann, A.; Wimmer, M. Digital Twin Platforms: Requirements, Capabilities, and Future Prospects. IEEE Softw. 2022, 39, 53–61. [Google Scholar] [CrossRef]
- Bonney, M.S.; de Angelis, M.; Borgo, M.D.; Andrade, L.; Beregi, S.; Jamia, N.; Wagg, D.J. Development of a digital twin operational platform using Python Flask. Data-Centric Eng. 2022, 3, e1. [Google Scholar] [CrossRef]
- Kovalyov, S.P. Distributed Energy Resources Management: From Digital Twin to Digital Platform. IFAC Pap. 2022, 55, 460–465. [Google Scholar] [CrossRef]
- Walk About. Elevate Any Business to Digital Heights. WalkAbout. Available online: https://www.wolkabout.ai/ (accessed on 8 January 2023).
- Kovačević, I.; Kolačanj-Mohači, A.; Vidaković, M.; Segedinac, M. DemeTer: An Extendable Ontology-based Digital Twin Platform. In Proceedings of the ICIST 2022 Proceedings, Harbin, China, 10–12 August 2022. [Google Scholar]
- Sargin, A.; Ünlü, A. Inductive item tree analysis: Corrections, improvements, and comparisons. Math. Soc. Sci. 2009, 58, 376–392. [Google Scholar] [CrossRef]
- Segedinac, M.T.; Horvat, S.; Rodić, D.; Rončević, T.; Savić, G. Using knowledge space theory to compare expected and real knowledge spaces in learning stoichiometry. Chem. Educ. Res. Pract. 2018, 19, 670–680. [Google Scholar] [CrossRef]
- Facebook, Microsoft. Open Neural Network Exchange (ONNX). Linux Foundation. 2023. Available online: https://onnx.ai/onnx/intro/ (accessed on 23 February 2023).
Platform Goal/Requirement | CDT Challenge/Opportunity |
---|---|
A logical view of the system tailored to diverse tasks and user groups | Knowledge management relies upon ontology-driven modeling and Semantic Web technologies (RDF, OWL). |
Extensibility and easy integration with external systems | Integration of CDT models, where the development of CDTs is based on model-based system engineering, ontology-driven models’ integration, and standards (ISO 42010, OWL, SPARQL); implementation of CDT viewed as a component of a loosely coupled component-based software architecture (REST, JSON). |
Support for diverse modeling approaches and reasoning over models | Knowledge management and Integration of CDT models governed by a semantic approach and Semantic Web technologies (RDF, OWL, SPARQL, and SWRL). |
Interoperability | Ontology-based Integration of CDT models; standards-based syntactic and semantic interoperability (JSON, ISO 23247) |
Scalability | Implementation of CDT as a cloud-based digital twin (WolkAbout, Novi Sad, Serbia). |
N1 | N2 | N3 | N4 | N5 | |
---|---|---|---|---|---|
N1 | 0 | 0.7 | 0.15 | 0.05 | 0.1 |
N2 | 0.1 | 0 | 0.2 | 0 | 0.7 |
N3 | 0.2 | 0.4 | 0 | 0.2 | 0.2 |
N4 | 0.3 | 0.3 | 0.4 | 0 | 0.4 |
N5 | 0.2 | 0.2 | 0.5 | 0.1 | 0 |
C2PS Digital Twin Architecture Reference Model | Properties | ||
Computation | Control | Communication | |
Mapping to Abstract architecture | Ontology of C2PS Things in Inference layer + Simulation layer for analytical modelling of operational modes + Data layer | Decision system modelling in simulation layer + Cloud interactions modelling in inference layer + Data acquisition and devices actuation in observation/actuation layer + data layer | Modelling subsystems modes of interactions in Inference layer + Modelling composition of C2PS Things in simulation layer + Data layer |
Three-dimensional CDT reference architecture | Dimensions | ||
Full Lifecycle phases | System hierarchy levels | Functional layers | |
Mapping to Abstract architecture | ABPM (adapted business process model) ontology in inference layer annotated by metadata from simulation layer. | Hierarchical model of the system (HMS) represented by an ontology at inference layer. | Multilayer model of functions (MLFM) represented by an upper DT ontology defining layers and domain ontologies defining DTs at inference layer and simulation layer. |
Three-dimensional CDT reference architecture | Perspectives | ||
Lifecycle phases and System hierarchy levels | Functional layers and System hierarchy levels | Lifecycle phases and Functional layers | |
Mapping to Abstract architecture | ABPM-driven access to HMS. | HMS-driven access to MLFM. | ABPM-driven access to MFLM. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Savić, G.; Segedinac, M.; Konjović, Z.; Vidaković, M.; Dutina, R. Towards a Domain-Neutral Platform for Sustainable Digital Twin Development. Sustainability 2023, 15, 13612. https://doi.org/10.3390/su151813612
Savić G, Segedinac M, Konjović Z, Vidaković M, Dutina R. Towards a Domain-Neutral Platform for Sustainable Digital Twin Development. Sustainability. 2023; 15(18):13612. https://doi.org/10.3390/su151813612
Chicago/Turabian StyleSavić, Goran, Milan Segedinac, Zora Konjović, Milan Vidaković, and Radoslav Dutina. 2023. "Towards a Domain-Neutral Platform for Sustainable Digital Twin Development" Sustainability 15, no. 18: 13612. https://doi.org/10.3390/su151813612
APA StyleSavić, G., Segedinac, M., Konjović, Z., Vidaković, M., & Dutina, R. (2023). Towards a Domain-Neutral Platform for Sustainable Digital Twin Development. Sustainability, 15(18), 13612. https://doi.org/10.3390/su151813612