Valorization of Fruit Co-Product Flours for Human Nutrition: Challenges, Applications, and Perspectives
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. The Importance of Converting Fruit Agro–Industry Waste into Co-Products
3.2. Flours from Unconventional Parts: Drying Challenges as an Alternative in the Treatment of Fruit By-Products
3.3. Flours Derived from Fruit Co-Products: Applications and Perspectives in Human Nutrition
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Otles, S.; Despoudi, S.; Bucatariu, C.; Kartal, C. Food Waste Management, Valorization, and Sustainability in the Food Industry. In Food Waste Recovery; Elsevier: Amsterdam, The Netherlands, 2015; pp. 3–23. [Google Scholar] [CrossRef]
- Parsafar, B.; Ahmadi, M.; Jahed Khaniki, G.R.; Shariatifar, N.; Rahimi Foroushani, A. The Impact of Fruit and Vegetable Waste on Economic Loss Estimation. Glob. J. Environ. Sci. Manag. 2023, 9, 871–884. [Google Scholar] [CrossRef]
- FAO. Food and Agriculture Organization of the United Nations ODS. Metas Nacionais Dos Objetivos de Desenvolvimento Sustentável. Available online: https://www.fao.org/family-farming/detail/en/c/1184284/ (accessed on 2 May 2023).
- FAO. Save Food: Global Initiative on Food Loss and Waste Reduction. Definitional Framework of Food Loss. Available online: https://www.fao.org/3/i4068e/i4068e.pdf (accessed on 28 May 2023).
- Banerjee, S.; Ranganathan, V.; Patti, A.; Arora, A. Valorisation of Pineapple Wastes for Food and Therapeutic Applications. Trends Food Sci. Technol. 2018, 82, 60–70. [Google Scholar] [CrossRef]
- Sharma, P.; Vishvakarma, R.; Gautam, K.; Vimal, A.; Kumar Gaur, V.; Farooqui, A.; Varjani, S.; Younis, K. Valorization of Citrus Peel Waste for the Sustainable Production of Value-Added Products. Bioresour. Technol. 2022, 351, 127064. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, A.; Singh, G.; Chowdhary, K.; Choudhir, G.; Sharma, V.; Sharma, S.; Srivastava, R.K. Co-Product Recovery in Food Processing. In Smart and Sustainable Food Technologies; Springer Nature: Singapore, 2022; pp. 341–366. [Google Scholar]
- Yingdan, Z.; Yueting, L.; Yingnan, Z.; Jiali, L.; Zhangqun, D.; Roger, R. Current Technologies and Uses for Fruit and Vegetable Wastes in a Sustainable System: A Review. Foods 2023, 12, 1949. [Google Scholar] [CrossRef]
- Lucarini, M.; Durazzo, A.; Bernini, R.; Campo, M.; Vita, C.; Souto, E.B.; Lombardi-Boccia, G.; Ramadan, M.F.; Santini, A.; Romani, A. Fruit Wastes as a Valuable Source of Value-Added Compounds: A Collaborative Perspective. Molecules 2021, 26, 6338. [Google Scholar] [CrossRef]
- De Pérez-Chabela, M.L.; Cebollón-Juárez, A.; Bosquez-Molina, E.; Totosaus, A. Mango Peel Flour and Potato Peel Flour as Bioactive Ingredients in the Formulation of Functional Yogurt. Food Sci. Technol. 2022, 42, e38220. [Google Scholar] [CrossRef]
- Roda, A.; Lambri, M. Food Uses of Pineapple Waste and By-products: A Review. Int. J. Food Sci. Technol. 2019, 54, 1009–1017. [Google Scholar] [CrossRef]
- De Silva, J.M.; Maffei, A. Produção de Farinha Funcional a Partir de Cascas e Albedos de Frutos para Aplicação em Alimentos. In Avanços em Ciência e Tecnologia de Alimentos; Editora Científica Digital: São Carlos, Brazil, 2022; Volume 6, pp. 359–372. [Google Scholar]
- Salvia, A.L.; Leal Filho, W.; Brandli, L.L.; Griebeler, J.S. Assessing Research Trends Related to Sustainable Development Goals: Local and Global Issues. J. Clean. Prod. 2019, 208, 841–849. [Google Scholar] [CrossRef]
- Suri, S.; Singh, A.; Nema, P.K. Recent Advances in Valorization of Citrus Fruits Processing Waste: A Way Forward towards Environmental Sustainability. Food Sci. Biotechnol. 2021, 30, 1601–1626. [Google Scholar] [CrossRef]
- Can-Cauich, C.A.; Sauri-Duch, E.; Betancur-Ancona, D.; Chel-Guerrero, L.; González-Aguilar, G.A.; Cuevas-Glory, L.F.; Pérez-Pacheco, E.; Moo-Huchin, V.M. Tropical Fruit Peel Powders as Functional Ingredients: Evaluation of Their Bioactive Compounds and Antioxidant Activity. J. Funct. Foods 2017, 37, 501–506. [Google Scholar] [CrossRef]
- Osorio, L.L.D.R.; Flórez-López, E.; Grande-Tovar, C.D. The Potential of Selected Agri-Food Loss and Waste to Contribute to a Circular Economy: Applications in the Food, Cosmetic and Pharmaceutical Industries. Molecules 2021, 26, 515. [Google Scholar] [CrossRef] [PubMed]
- Alexandri, M.; Kachrimanidou, V.; Papapostolou, H.; Papadaki, A.; Kopsahelis, N. Sustainable Food Systems: The Case of Functional Compounds towards the Development of Clean Label Food Products. Foods 2022, 11, 2796. [Google Scholar] [CrossRef] [PubMed]
- Zuñiga-Martínez, B.S.; Domínguez-Avila, J.A.; Robles-Sánchez, R.M.; Ayala-Zavala, J.F.; Villegas-Ochoa, M.A.; González-Aguilar, G.A. Agro-Industrial Fruit Byproducts as Health-Promoting Ingredients Used to Supplement Baked Food Products. Foods 2022, 11, 3181. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, Y. Food Waste Management with Technological Platforms: Evidence from Indian Food Supply Chains. Sustainability 2020, 12, 8162. [Google Scholar] [CrossRef]
- Do Nascimento Filho, W.B.; Franco, C.R. Potential Assessment of Waste Produced through the Agro-Industrial Processing in Brazil. Rev. Virtual Quim. 2015, 7, 1968–1987. [Google Scholar] [CrossRef]
- Chavan, P.; Singh, A.K.; Kaur, G. Recent Progress in the Utilization of Industrial Waste and By-products of Citrus Fruits: A Review. J. Food Process. Eng. 2018, 41, e12895. [Google Scholar] [CrossRef]
- Igual, M.; Chiş, M.S.; Păucean, A.; Vodnar, D.C.; Muste, S.; Man, S.; Martínez-Monzó, J.; García-Segovia, P. Valorization of Rose Hip (Rosa canina) Puree Co-Product in Enriched Corn Extrudates. Foods 2021, 10, 2787. [Google Scholar] [CrossRef]
- Roy, P.; Mohanty, A.K.; Dick, P.; Misra, M. A Review on the Challenges and Choices for Food Waste Valorization: Environmental and Economic Impacts. ACS Environ. Au 2023, 3, 58–75. [Google Scholar] [CrossRef]
- Joardder, M.U.H.; Masud, M.H. Causes of Food Waste. In Food Preservation in Developing Countries: Challenges and Solutions; Springer International Publishing: Cham, Switzerland, 2019; pp. 27–55. [Google Scholar]
- Martins, A.C.S.; de Medeiros, G.K.V.V.; da Silva, J.Y.P.; Viera, V.B.; de Barros, P.S.; dos Lima, M.S.; da Silva, M.S.; Tavares, J.F.; do Nascimento, Y.M.; da Silva, E.F.; et al. Physical, Nutritional, and Bioactive Properties of Mandacaru Cladode Flour (Cereus jamacaru DC.): An Unconventional Food Plant from the Semi-Arid Brazilian Northeast. Foods 2022, 11, 3814. [Google Scholar] [CrossRef]
- De Melo, A.M.; Barbi, R.C.T.; Costa, B.P.; Ikeda, M.; Carpiné, D.; Ribani, R.H. Valorization of the Agro-Industrial By-Products of Bacupari (Garcinia brasiliensis (Mart.)) through Production of Flour with Bioactive Properties. Food Biosci. 2022, 45, 101343. [Google Scholar] [CrossRef]
- Cassani, L.; Gomez-Zavaglia, A. Sustainable Food Systems in Fruits and Vegetables Food Supply Chains. Front. Nutr. 2022, 9, 829061. [Google Scholar] [CrossRef] [PubMed]
- Jaouhari, Y.; Travaglia, F.; Giovannelli, L.; Picco, A.; Oz, E.; Oz, F.; Bordiga, M. From Industrial Food Waste to Bioactive Ingredients: A Review on the Sustainable Management and Transformation of Plant-Derived Food Waste. Foods 2023, 12, 2183. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Dong, F.; Chen, M.; Zhu, J.; Tan, J.; Fu, X.; Wang, Y.; Chen, S. Advances in Recycling and Utilization of Agricultural Wastes in China: Based on Environmental Risk, Crucial Pathways, Influencing Factors, Policy Mechanism. Procedia Environ. Sci. 2016, 31, 12–17. [Google Scholar] [CrossRef]
- Ali, R.F.M.; El-Anany, A.M.; Mousa, H.M.; Hamad, E.M. Nutritional and Sensory Characteristics of Bread Enriched with Roasted Prickly Pear (Opuntia ficus-indica) Seed Flour. Food Funct. 2020, 11, 2117–2125. [Google Scholar] [CrossRef]
- Díaz-Vela, J.; Totosaus, A.; Pérez-Chabela, M.L. Integration of Agroindustrial Co-Products as Functional Food Ingredients: Cactus Pear (Opuntia ficus indica) Flour and Pineapple (Ananas comosus) Peel Flour as Fiber Source in Cooked Sausages Inoculated with Lactic Acid Bacteria. J. Food Process. Preserv. 2015, 39, 2630–2638. [Google Scholar] [CrossRef]
- Taghian Dinani, S.; van der Goot, A.J. Challenges and Solutions of Extracting Value-Added Ingredients from Fruit and Vegetable By-Products: A Review. Crit. Rev. Food Sci. Nutr. 2022, 1–23. [Google Scholar] [CrossRef]
- Larrosa, A.P.Q.; Otero, D.M. Flour Made from Fruit By-products: Characteristics, Processing Conditions, and Applications. J. Food Process. Preserv. 2021, 45, e15398. [Google Scholar] [CrossRef]
- Wang, Y.; Jian, C. Sustainable Plant-Based Ingredients as Wheat Flour Substitutes in Bread Making. NPJ Sci. Food 2022, 6, 49. [Google Scholar] [CrossRef]
- Renard, C.M.G.C. Extraction of Bioactives from Fruit and Vegetables: State of the Art and Perspectives. LWT 2018, 93, 390–395. [Google Scholar] [CrossRef]
- Li, L.; Zhang, M.; Bhandari, B. Influence of Drying Methods on Some Physicochemical, Functional and Pasting Properties of Chinese Yam Flour. LWT 2019, 111, 182–189. [Google Scholar] [CrossRef]
- Yang, H.; Sombatngamwilai, T.; Yu, W.-Y.; Kuo, M.-I. Drying Applications during Value-Added Sustainable Processing for Selected Mass-Produced Food Coproducts. Processes 2020, 8, 307. [Google Scholar] [CrossRef]
- Fierascu, R.C.; Sieniawska, E.; Ortan, A.; Fierascu, I.; Xiao, J. Fruits By-Products—A Source of Valuable Active Principles: A Short Review. Front. Bioeng. Biotechnol. 2020, 8, 00319. [Google Scholar] [CrossRef] [PubMed]
- Santos, D.; Lopes da Silva, J.A.; Pintado, M. Fruit and Vegetable By-Products’ Flours as Ingredients: A Review on Production Process, Health Benefits and Technological Functionalities. LWT 2022, 154, 112707. [Google Scholar] [CrossRef]
- Menon, A.; Stojceska, V.; Tassou, S.A. A Systematic Review on the Recent Advances of the Energy Efficiency Improvements in Non-Conventional Food Drying Technologies. Trends Food Sci. Technol. 2020, 100, 67–76. [Google Scholar] [CrossRef]
- De Sousa, A.P.M.; Campos, A.R.N.; de Santana, R.A.C.; Dantas, D.L.; de Macedo, A.D.B.; da Silva, J.R.B.; Malaquias, A.B.; da Nóbrega Albuquerque, T.; da Silva, G.B.; Gomes, J.P. Parâmetros de Qualidade Física e Química Do Eixo Central, Mesocarpo e Semente de Jaca Submetidos a Diferentes Processos de Secagem. Res. Soc. Dev. 2022, 11, e34311427328. [Google Scholar] [CrossRef]
- Dos Santos, C.M.; Rocha, D.A.; Madeira, R.A.V.; de Rezende Queiroz, E.; Mendonça, M.M.; Pereira, J.; de Preparação Abreu, C.M.P. Caracterização e Análise Sensorial de Pão Integral Enriquecido Com Farinha de Subprodutos Do Mamão. Braz. J. Food Technol. 2018, 21, 12017. [Google Scholar] [CrossRef]
- Da Cunha, J.A.; Rolim, P.M.; da Silva Chaves Damasceno, K.S.F.; de Sousa Júnior, F.C.; Nabas, R.C.; Seabra, L.M.J. From Seed to Flour: Sowing Sustainability in the Use of Cantaloupe Melon Residue (Cucumis melo L. Var. Reticulatus). PLoS ONE 2020, 15, e0219229. [Google Scholar] [CrossRef]
- De Oliveira, N.A.S.; Winkelmann, D.O.V.; Tobal, T.M. Farinhas e Subprodutos Da Laranja Sanguínea-de-Mombuca: Caracterização Química e Aplicação Em Sorvete. Braz. J. Food Technol. 2019, 22, 24618. [Google Scholar] [CrossRef]
- Charoenphun, N.; Klangbud, W.K. Antioxidant and Anti-Inflammatory Activities of Durian (Durio zibethinus Murr.) Pulp, Seed and Peel Flour. PeerJ 2022, 10, e12933. [Google Scholar] [CrossRef]
- Das, P.C.; Khan, M.J.; Rahman, M.S.; Majumder, S.; Islam, M.N. Comparison of the Physico-Chemical and Functional Properties of Mango Kernel Flour with Wheat Flour and Development of Mango Kernel Flour Based Composite Cakes. NFS J. 2019, 17, 1–7. [Google Scholar] [CrossRef]
- De Dios-Avila, N.; Tirado-Gallegos, J.M.; Rios-Velasco, C.; Luna-Esquivel, G.; Isiordia-Aquino, N.; Zamudio-Flores, P.B.; Estrada-Virgen, M.O.; Cambero-Campos, O.J. Physicochemical, Structural, Thermal and Rheological Properties of Flour and Starch Isolated from Avocado Seeds of Landrace and Hass Cultivars. Molecules 2022, 27, 910. [Google Scholar] [CrossRef] [PubMed]
- Souza, J.O.; Camilloto, G.P.; Cruz, R.S. Biscoitos Tipo Amanteigado Incorporado com Farinha de Caroço de Açaí. Braz. J. Dev. 2020, 6, 81331–81340. [Google Scholar] [CrossRef]
- Barros, S.K.A.; de Souza, A.R.M.; Damiani, C.; Pereira, A.S.; Alves, D.G.; Clemente, R.C.; da Costa, D.M. Obtenção e Caracterização de Farinhas de Caroço de Açaí (Euterper oleracea) e de Casca de Bacaba (Oenocarpus bacaba). Res. Soc. Dev. 2021, 10, e2710413724. [Google Scholar] [CrossRef]
- Bontempo, L.H.S.; Castejon, L.V.; Santos, K.G. dos Secagem Da Casca de Tangerina: Cinética e Desempenho Do Secador Solar Convectivo. Res. Soc. Dev. 2020, 9, e44963458. [Google Scholar] [CrossRef]
- Carvalho, J.B.; da Silva Rocha Marques, K.H.; Mesquita, A.A.; de Paula, G.H.; de Lima, M.S.; Ferreira, S.V.; Medeiros, J.S.; Teixeira, P.C.; Nicolau, E.S.; da Silva, M.A.P. Propriedades Químicas e Funcionais Da Casca de Mamão Verde Submetida à Secagem Em Diferentes Temperaturas e Aplicação Em Pães. Res. Soc. Dev. 2020, 9, e29953154. [Google Scholar] [CrossRef]
- De Souza Salgado, C.; Alexandre, A.C.N.P.; do Amaral, L.A.; Sarmento, U.C.; Nabeshima, E.H.; Novello, D.; dos Santos, E.F. Adição de Farinha de Casca de Guavira Em Pão: Características Físico-Químicas e Sensoriais. Braz. J. Food Technol. 2022, 25, 17021. [Google Scholar] [CrossRef]
- Souza, E.L.; Nascimento, T.S.; Magalhães, C.M.; de Abreu Barreto, G.; Leal, I.L.; dos Anjos, J.P.; Machado, B.A.S. Development and Characterization of Powdered Antioxidant Compounds Made from Shiraz (Vitis vinifera L.) Grape Peels and Arrowroot (Maranta arundinacea L.). Sci. World J. 2022, 2022, 7664321. [Google Scholar] [CrossRef]
- Da Silva Alves, P.L.; Berrios, J.D.J.; Pan, J.; Ascheri, J.L.R. Passion Fruit Shell Flour and Rice Blends Processed into Fiber-Rich Expanded Extrudates. CyTA J. Food 2018, 16, 901–908. [Google Scholar] [CrossRef]
- Macedo, M.C.C.; Correia, V.T.d.V.; Silva, V.D.M.; Pereira, D.T.V.; Augusti, R.; Melo, J.O.F.; Pires, C.V.; de Paula, A.C.C.F.F.; Fante, C.A. Development and Characterization of Yellow Passion Fruit Peel Flour (Passiflora edulis f. Flavicarpa). Metabolites 2023, 13, 684. [Google Scholar] [CrossRef]
- Narita, I.M.P.; Filbido, G.S.; Ferreira, B.A.; de Oliveira Pinheiro, A.P.; da Cruz e Silva, D.; Nascimento, E.; Villa, R.D.; de Oliveira, A.P. Bioacessibilidade in Vitro de Carotenoides e Compostos Fenólicos e Capacidade Antioxidante de Farinhas Do Fruto Pequi (Caryocar Brasiliense Camb.). Braz. J. Food Technol. 2022, 25, 06821. [Google Scholar] [CrossRef]
- Das Chagas, E.G.L.; dos Santos Garcia, V.A.; da Silva, L.C.B.; Vanin, F.M.; de Carvalho, R.A. Farinha De Casca De Manga: Propriedades Tecnológicas e Perfil De Compostos Fenólicos. In Tecnologia de Alimentos: Tópicos Físicos, Químicos e Biológicos; Editora Científica Digital: São Carlos, Brazil, 2020; Volume 2, pp. 360–379. [Google Scholar]
- Korese, J.K.; Chikpah, S.K. Understanding Infrared Drying Behavior of Shea (Vitellaria paradoxa) Fruit by-Product for the Production of Value-Added Products. Biomass Convers. Biorefin. 2022. [Google Scholar] [CrossRef]
- Jiménez Nempeque, L.V.; Gómez Cabrera, Á.P.; Colina Moncayo, J.Y. Evaluation of Tahiti Lemon Shell Flour (Citrus latifolia tanaka) as a Fat Mimetic. J. Food Sci. Technol. 2021, 58, 720–730. [Google Scholar] [CrossRef] [PubMed]
- Acar, C.; Dincer, I.; Mujumdar, A. A Comprehensive Review of Recent Advances in Renewable-Based Drying Technologies for a Sustainable Future. Dry. Technol. 2022, 40, 1029–1050. [Google Scholar] [CrossRef]
- Hasan Masud, M.; Karim, A.; Ananno, A.A.; Ahmed, A. Conditions for Selecting Drying Techniques in Developing Countries. In Sustainable Food Drying Techniques in Developing Countries: Prospects and Challenges; Springer International Publishing: Cham, Switzerland, 2020; pp. 21–40. [Google Scholar]
- Hasan, M.U.; Malik, A.U.; Ali, S.; Imtiaz, A.; Munir, A.; Amjad, W.; Anwar, R. Modern Drying Techniques in Fruits and Vegetables to Overcome Postharvest Losses: A Review. J. Food Process. Preserv. 2019, 43, 14280. [Google Scholar] [CrossRef]
- Waghmare, A.G.; Arya, S.S. Use of Fruit By-Products in the Preparation of Hypoglycemic Thepla: Indian Unleavened Vegetable Flat Bread. J. Food Process. Preserv. 2014, 38, 1198–1206. [Google Scholar] [CrossRef]
- De Toledo, N.; de Camargo, A.; Ramos, P.; Button, D.; Granato, D.; Canniatti-Brazaca, S. Potentials and Pitfalls on the Use of Passion Fruit By-Products in Drinkable Yogurt: Physicochemical, Technological, Microbiological, and Sensory Aspects. Beverages 2018, 4, 47. [Google Scholar] [CrossRef]
- Carvalho, V.S.; Conti-Silva, A.C. Cereal Bars Produced with Banana Peel Flour: Evaluation of Acceptability and Sensory Profile. J. Sci. Food Agric. 2018, 98, 134–139. [Google Scholar] [CrossRef]
- Kausar, T. Utilization of Watermelon Seed Flour as Protein Supplement in Cookies. Pure Appl. Biol. 2020, 9, 202–206. [Google Scholar] [CrossRef]
- Oyeyinka, A.T.; Dahunsi, J.O.; Akintayo, O.A.; Oyeyinka, S.A.; Adebiyi, J.A.; Otutu, O.L.; Awofadeju, O.F.J.; Gbashi, S.; Chinma, C.E.; Manley, M.; et al. Nutritionally Improved Cookies from Whole Wheat Flour Enriched with Processed Tamarind Seed Flour. J. Food Process. Preserv. 2022, 46, e16185. [Google Scholar] [CrossRef]
- Najjar, Z.; Alkaabi, M.; Alketbi, K.; Stathopoulos, C.; Ranasinghe, M. Physical Chemical and Textural Characteristics and Sensory Evaluation of Cookies Formulated with Date Seed Powder. Foods 2022, 11, 305. [Google Scholar] [CrossRef]
- Novelina; Asben, A.; Nerishwari, K.; Hapsari, S.; Hari, P.D. Utilization of Avocado Seed Powder (Persea americana Mill.) as a Mixture of Modified Cassava Flour in Making Cookies. IOP Conf. Ser. Earth Environ. Sci. 2022, 1059, 012060. [Google Scholar] [CrossRef]
- Nascimento, N.C.; de Medeiros, H.I.R.; Pereira, I.C.; da Silva Oliveira, R.E.; de Medeiros, I.L.; de Medeiros Junior, F.C. Elaboração de Biscoito Com a Farinha Da Casca Do Maracujá (Passiflora edulis). Res. Soc. Dev. 2020, 9, e501974333. [Google Scholar] [CrossRef]
- Amin, K.; Akhtar, S.; Ismail, T. Nutritional and Organoleptic Evaluation of Functional Bread Prepared from Raw and Processed Defatted Mango Kernel Flour. J. Food Process. Preserv. 2018, 42, e13570. [Google Scholar] [CrossRef]
- Ayoubi, A.; Balvardi, M.; Akhavan, H.-R.; Hajimohammadi-Farimani, R. Fortified Cake with Pomegranate Seed Powder as a Functional Product. J. Food Sci. Technol. 2022, 59, 308–316. [Google Scholar] [CrossRef] [PubMed]
- Antonic, B.; Dordevic, D.; Jancikova, S.; Holeckova, D.; Tremlova, B.; Kulawik, P. Effect of Grape Seed Flour on the Antioxidant Profile, Textural and Sensory Properties of Waffles. Processes 2021, 9, 131. [Google Scholar] [CrossRef]
- Ning, X.; Zhou, Y.; Wang, Z.; Zheng, X.; Pan, X.; Chen, Z.; Liu, Q.; Du, W.; Cao, X.; Wang, L. Evaluation of Passion Fruit Mesocarp Flour on the Paste, Dough, and Quality Characteristics of Dried Noodles. Food Sci. Nutr. 2022, 10, 1657–1666. [Google Scholar] [CrossRef]
- Ferreira, S.P.L.; Jardim, F.B.B.; da Fonseca, C.R.; Costa, L.L. Whole-Grain Pan Bread with the Addition of Jabuticaba Peel Flour. Ciência Rural. 2020, 50, e20190623. [Google Scholar] [CrossRef]
- Micheletti, J.; Soares, J.M.; Franco, B.C.; de Carvalho, I.R.A.; Candido, C.J.; dos Santos, E.F.; Novello, D. The Addition of Jaboticaba Skin Flour to Muffins Alters the Physicochemical Composition and Their Sensory Acceptability by Children. Braz. J. Food Technol. 2018, 21, 8917. [Google Scholar] [CrossRef]
- Ortega-González, L.; Güemes-Vera, N.; Piloni-Martini, J.; Quintero-Lira, A.; Soto-Simental, S. Substitution of Wheat Flour by Jackfruit (Artocarpus heterophyllus Lam.) Seed Flour: Effects on Dough Rheology and Deep-Frying Doughnuts Texture and Sensory Analysis. Int. J. Gastron. Food Sci. 2022, 30, 100612. [Google Scholar] [CrossRef]
- De Abreu, D.J.M.; de Moraes, I.A.; Asquieri, E.R.; Damiani, C. Red Mombin (Spondias purpurea L.) Seed Flour as a Functional Component in Chocolate Brownies. J. Food Sci. Technol. 2021, 58, 612–620. [Google Scholar] [CrossRef]
- Ervina, E. The Sensory Profiles and Preferences of Gluten-Free Cookies Made from Alternative Flours Sourced from Indonesia. Int. J. Gastron. Food Sci. 2023, 33, 100796. [Google Scholar] [CrossRef]
- Olusanya, R.N.; Kolanisi, U.; Ngobese, N.Z. Mineral Composition and Consumer Acceptability of Amaranthus Leaf Powder Supplemented Ujeqe for Improved Nutrition Security. Foods 2023, 12, 2182. [Google Scholar] [CrossRef] [PubMed]
- Echave, J.; Silva, A.; Pereira, A.G.; Garcia-Oliveira, P.; Fraga-Corral, M.; Otero, P.; Cassani, L.; Cao, H.; Simal-Gandara, J.; Prieto, M.A.; et al. Benefits and Drawbacks of Incorporating Grape Seeds into Bakery Products: Is It Worth It? In Proceedings of the 2nd International Electronic Conference on Processes: Process Engineering—Current State and Future Trends, Online, 17–31 May 2021; MDPI: Basel, Switzerland, 2023; p. 117. [Google Scholar]
- Toledo, N.M.V.; Mondoni, J.; Harada-Padermo, S.S.; Vela-Paredes, R.S.; Berni, P.R.A.; Selani, M.M.; Canniatti-Brazaca, S.G. Characterization of Apple, Pineapple, and Melon By-products and Their Application in Cookie Formulations as an Alternative to Enhance the Antioxidant Capacity. J. Food Process. Preserv. 2019, 43, e14100. [Google Scholar] [CrossRef]
- Ademosun, A.O.; Odanye, O.S.; Oboh, G. Orange Peel Flavored Unripe Plantain Noodles with Low Glycemic Index Improved Antioxidant Status and Reduced Blood Glucose Levels in Diabetic Rats. J. Food Meas. Charact. 2021, 15, 3742–3751. [Google Scholar] [CrossRef]
- De Faveri, A.; De Faveri, R.; Broering, M.F.; Bousfield, I.T.; Goss, M.J.; Muller, S.P.; Pereira, R.O.; de Oliveira e Silva, A.M.; Machado, I.D.; Quintão, N.L.M.; et al. Effects of Passion Fruit Peel Flour (Passiflora edulis f. Flavicarpa O. Deg.) in Cafeteria Diet-Induced Metabolic Disorders. J. Ethnopharmacol. 2020, 250, 112482. [Google Scholar] [CrossRef]
- Wu, M.-Y.; Shiau, S.-Y. Effect of the Amount and Particle Size of Pineapple Peel Fiber on Dough Rheology and Steamed Bread Quality. J. Food Process. Preserv. 2015, 39, 549–558. [Google Scholar] [CrossRef]
- Sayas-Barberá, E.; Pérez-Álvarez, J.A.; Navarro-Rodríguez de Vera, C.; Fernández-López, M.; Viuda-Martos, M.; Fernández-López, J. Sustainability and Gender Perspective in Food Innovation: Foods and Food Processing Coproducts as Source of Macro- and Micro-Nutrients for Woman-Fortified Foods. Foods 2022, 11, 3661. [Google Scholar] [CrossRef]
- Kruger, J.; Taylor, J.R.N.; Ferruzzi, M.G.; Debelo, H. What Is Food-to-food Fortification? A Working Definition and Framework for Evaluation of Efficiency and Implementation of Best Practices. Compr. Rev. Food Sci. Food Saf. 2020, 19, 3618–3658. [Google Scholar] [CrossRef]
- Imathiu, S. Benefits and Food Safety Concerns Associated with Consumption of Edible Insects. NFS J. 2020, 18, 1–11. [Google Scholar] [CrossRef]
- Colgrave, M.L.; Dominik, S.; Tobin, A.B.; Stockmann, R.; Simon, C.; Howitt, C.A.; Belobrajdic, D.P.; Paull, C.; Vanhercke, T. Perspectives on Future Protein Production. J. Agric. Food Chem. 2021, 69, 15076–15083. [Google Scholar] [CrossRef]
- Torres-León, C.; Ramírez-Guzman, N.; Londoño-Hernandez, L.; Martinez-Medina, G.A.; Díaz-Herrera, R.; Navarro-Macias, V.; Alvarez-Pérez, O.B.; Picazo, B.; Villarreal-Vázquez, M.; Ascacio-Valdes, J.; et al. Food Waste and Byproducts: An Opportunity to Minimize Malnutrition and Hunger in Developing Countries. Front. Sustain. Food Syst. 2018, 2, 52. [Google Scholar] [CrossRef]
- Lau, K.Q.; Sabran, M.R.; Shafie, S.R. Utilization of Vegetable and Fruit By-Products as Functional Ingredient and Food. Front. Nutr. 2021, 8, 661693. [Google Scholar] [CrossRef] [PubMed]
Raw Materials | Temperature (°C) | Time (Hours) | Drying Equipment | Reference |
---|---|---|---|---|
Jackfruit seeds (Artocarpus heterophyllus) | 60 | 5–6 | Microwave oven. | [41] |
Papaya seeds and shells (Citrus reticulata) | 45 | 72 | Air-circulating oven | [42] |
Melon seeds (Cucumis melo L.) | 80 | 24 | Air-circulating oven | [43] |
Orange seeds (Citrus sinensis L.) | 75 | 10 | Tray dryer | [44] |
Durian Seed and Shell (Durio zibethinus Murr.) | 60 | 18 | Air-circulating oven | [45] |
Prickly pear seed (Opuntia ficus-indica) | 60 | 48 | Air-circulating oven | [30] |
Mango kernel (Mangifera indica) | 60–65 | 15–16 | Tray dryer | [46] |
Avocado seeds (Persea americana) | 40 | 30 | Dehydrator | [47] |
Acai seed (Euterpe oleracea) | 50 | 3 | Tray dryer | [48] |
Acai seed (Euterpe oleracea) | 50 | 28 | Air-circulating oven | [49] |
Tangerine shell (Citrus reticulata) | 74 | 6 | Solar convective dryer | [50] |
Papaya shell (Carica papaya) | 70 | 6 | Air-circulating oven | [51] |
Guavira shell (Campomanesia xanthocarpa) | 40 | 24 | Air-circulating oven | [52] |
Grape peel (Vitis vinifera L.) | 50 | 2 | Air-circulating oven | [53] |
Bacaba shell (Oenocarpus Bacaba) | 50 | 45 | Air-circulating oven | [49] |
Passion fruit shells (Passiflora edulis) | 60–65 | 24 | Air-circulating oven | [54,55] |
Shell and seed of pequi (Caryocar brasiliense Camb.) | 60 | 72 | Air-circulating oven | [56] |
Mango shell (Mangifera indica L.) | 60 | 26 | Air-circulating oven | [57] |
Study | Results | References |
---|---|---|
Fortification of yogurts with passion fruit peel and seed flour | A = Nutritional, technological and sensory viability. D = Not reported in the study | [64] |
Cereal bars produced with banana peel flour | A = Viability for new product development; sustainable option for different niche markets. D = Not reported in the study | [65] |
Use of watermelon seed flour as a protein supplement in cookies | A = Improved nutritional content; good sensory acceptability D = Not reported in the study | [66] |
Nutritionally enhanced wheat flour cookies with tamarind seed flour | A = Increased protein content and antioxidant properties D = Not reported in the study | [67] |
Cookies formulated with date seed powder | A = Improvement in sensory characteristics and nutritional profile; can be used as a partial substitute for wheat flour D = Not reported in the study | [68] |
Avocado stone flour as a mixture of cassava flour in the manufacture of cookies | A = Acceptable sensory characteristics; high antioxidant activity D = Not reported in the study | [69] |
Addition of guavira flour in breads | A = Increased vitamin C content; good sensory quality. D = Not reported in the study | [52] |
Preparation of cookie with passion fruit peel flour | Technological potential for the bakery market. D = Not reported in the study | [70] |
Functional bread made with mango stone flour | A = Good nutritional characteristics; antioxidant potential. D = Not reported in the study | [71] |
Partial substitution of wheat flour by prickly pear stone four in breads. | A = Increased content of total phenolics, flavonoids and radical scavenging activity; increased dietary fiber, fat and ash content; reduction in carbohydrate content. D = Not reported in the study | [30] |
Cake fortified with pomegranate seed powder. | A = Increase in protein, fat and fiber content of the product; up to 5% replacement of wheat promotes nutritional enrichment without affecting the quality and acceptance of the cake. D = Not reported in the study | [72] |
Effect of grape seed flour on antioxidant profile, textural and sensory properties of waffles | A = Improved total phenolic content and antioxidant activity of the final product D = Not reported in the study | [73] |
Passion fruit mesocarp flour (PFMF) in pasta on the quality of dry noodles | A = Considerable increase in fiber content D = Substitution of PFMF hindered the formation of the gluten network; the quality of dry noodles was affected by PFMF substitution. | [74] |
Integral bread rolls with the addition of jaboticaba peel flour | A = Increased fiber content; increased content of phenolic compounds; increased antioxidant activity. D = Not reported in the study | [75] |
Integral bread enriched with papaya by-product flour | A = Increased fiber and protein content D = Decrease in the technological quality of the final product | [42] |
Composition and sensory acceptability of muffin with jaboticaba peel flour | A = Reduction of lipids in products; increase in fiber content; good acceptability by children with the addition of up to 9% of jaboticaba peel flour lipids in products D = Decrease in protein content | [76] |
Substitution of wheat flour by jackfruit seed flour in fried donuts | A = Increasing the amount of fiber and protein D = Hardness, resilience, chewiness, and firmness were negatively affected due to the difficulty of gluten formation. | [77] |
Red mombin seed flour as a functional component in chocolate brownies | A = Improved nutritional content, especially in relation to dietary fiber and mineral content. Improved elasticity, cohesiveness, gumminess, chewiness, and resilience. D = Not reported in the study | [78] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lima, S.K.R.; Durazzo, A.; Lucarini, M.; de Oliveira, J.J.A.; da Silva, R.A.; Arcanjo, D.D.R. Valorization of Fruit Co-Product Flours for Human Nutrition: Challenges, Applications, and Perspectives. Sustainability 2023, 15, 13665. https://doi.org/10.3390/su151813665
Lima SKR, Durazzo A, Lucarini M, de Oliveira JJA, da Silva RA, Arcanjo DDR. Valorization of Fruit Co-Product Flours for Human Nutrition: Challenges, Applications, and Perspectives. Sustainability. 2023; 15(18):13665. https://doi.org/10.3390/su151813665
Chicago/Turabian StyleLima, Simone Kelly Rodrigues, Alessandra Durazzo, Massimo Lucarini, João José Alves de Oliveira, Robson Alves da Silva, and Daniel Dias Rufino Arcanjo. 2023. "Valorization of Fruit Co-Product Flours for Human Nutrition: Challenges, Applications, and Perspectives" Sustainability 15, no. 18: 13665. https://doi.org/10.3390/su151813665
APA StyleLima, S. K. R., Durazzo, A., Lucarini, M., de Oliveira, J. J. A., da Silva, R. A., & Arcanjo, D. D. R. (2023). Valorization of Fruit Co-Product Flours for Human Nutrition: Challenges, Applications, and Perspectives. Sustainability, 15(18), 13665. https://doi.org/10.3390/su151813665