A Transient Seepage–Thermal Stability Model for Cohesionless Soil Slopes in the Semi-Arid Continental Climate of the Canadian Prairies
Abstract
:1. Introduction
2. Governing Equations
3. Model Development
3.1. Study Area
3.2. Modeling Scheme
3.3. Soil Properties
3.4. Climate Parameters
3.5. Ground Temperature
4. Results and Discussion
5. Summary and Conclusions
- For mean climate conditions, FS trends fluctuate till April, followed by an increase that remains constant up to November and decreases thereafter. Generally, the FS shows subdued fluctuations and higher values for the high slope when compared with the low slope.
- For wet climate conditions, the FS patterns are similar to mean conditions albeit with reduced durations of stability during the summer; for dry climate conditions, FS values are higher than mean conditions and nearly constant most of the year.
- For no ponding and downstream ponding, FS > 1 throughout the year. In contrast, FS > 1 only during the summer (with reduced time in wet climate and extended time in dry climate conditions) for upstream ponding and both upstream–downstream ponding.
- For train loading, FS show subdued fluctuations and lower values than the corresponding no-loading scenarios for both slopes. The effect of climatic conditions and ponding scenarios was further reduced for high slopes.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, P.; Vanapalli, S.K.; Li, T. Review of Collapse Triggering Mechanism of Collapsible Soils Due to Wetting. J. Rock Mech. Geotech. Eng. 2016, 8, 256–274. [Google Scholar] [CrossRef]
- Wickens, G.E. Ecophysiology of Economic Plants in Arid and Semi-Arid Land; Springer: New York, NY, USA, 1998. [Google Scholar]
- Houston, S.L. Characterization of Unsaturated Soils: The Importance of Response to Wetting. In Proceedings of the Geo-Congress 2014 Keynote Lectures: Geo-Characterization and Modeling for Sustainability, Atlanta, GA, USA, 23–26 February 2014; pp. 77–96. [Google Scholar]
- Jefferson, I.; Rogers, C.D. Collapsible Soils. ICE Man. Geotech. Eng. 2012, 1, 391–411. [Google Scholar]
- Ravindran, S.; Gratchev, I. Effect of Water Content on Apparent Cohesion of Soils from Landslide Sites. Geotechnics 2022, 2, 385–394. [Google Scholar] [CrossRef]
- Areco, P.; Li, Y.; Eguez, C.M.; Fuentes, M.J.R. Afsluitdijk Upgrading-Non Typical Dutch Solutions; T U Delft: Delft, The Netherlands, 2013. [Google Scholar]
- Wichman, B.; Knoeff, J.G.; de Vries, G. Geotechnical Aspects of Reinforcement Alternatives of the Afsluitdijk. In Proceedings of the 17th International Conference on Soil Mechanics and Geotechnical Engineering (Volumes 1, 2, 3 and 4), Alexandria, Egypt, 5–9 October 2009; IOS Press: Amsterdam, The Netherlands, 2009; pp. 1514–1517. [Google Scholar]
- Bush, E.; Lemmen, D.S. Canada’s Changing Climate Report; Government of Canada: Ottawa, ON, Canada, 2019.
- Vincent, L.A.; Zhang, X.; Mekis, É.; Wan, H.; Bush, E.J. Changes in Canada’s Climate: Trends in Indices Based on Daily Temperature and Precipitation Data. Atmos. Ocean. 2018, 56, 332–349. [Google Scholar] [CrossRef]
- Eekhout, J.P.; de Vente, J. Global Impact of Climate Change on Soil Erosion and Potential for Adaptation through Soil Conservation. Earth-Sci. Rev. 2022, 226, 103921. [Google Scholar] [CrossRef]
- Fan, X.; Dufresne, A.; Subramanian, S.S.; Strom, A.; Hermanns, R.; Stefanelli, C.T.; Hewitt, K.; Yunus, A.P.; Dunning, S.; Capra, L. The Formation and Impact of Landslide Dams–State of the Art. Earth-Sci. Rev. 2020, 203, 1–28. [Google Scholar] [CrossRef]
- Chen, X.; Cui, P.; You, Y.; Cheng, Z.; Khan, A.; Ye, C.; Zhang, S. Dam-Break Risk Analysis of the Attabad Landslide Dam in Pakistan and Emergency Countermeasures. Landslides 2017, 14, 675–683. [Google Scholar] [CrossRef]
- Wartman, J.; Montgomery, D.R.; Anderson, S.A.; Keaton, J.R.; Benoît, J.; dela Chapelle, J.; Gilbert, R. The 22 March 2014 Oso Landslide, Washington, USA. Geomorphology 2016, 253, 275–288. [Google Scholar] [CrossRef]
- Gaur, M.K.; Squires, V.R. Geographic Extent and Characteristics of the World’s Arid Zones and Their Peoples. Clim. Var. Impacts Land Use Livelihoods Drylands 2018, 1, 3–20. [Google Scholar]
- Qader, S.H.; Dash, J.; Alegana, V.A.; Khwarahm, N.R.; Tatem, A.J.; Atkinson, P.M. The Role of Earth Observation in Achieving Sustainable Agricultural Production in Arid and Semi-Arid Regions of the World. Remote Sens. 2021, 13, 3382. [Google Scholar] [CrossRef]
- Xie, W.; Li, P.; Zhang, M.; Cheng, T.; Wang, Y. Collapse Behavior and Microstructural Evolution of Loess Soils from the Loess Plateau of China. J. Mt. Sci. 2018, 15, 1642–1657. [Google Scholar] [CrossRef]
- Geertsema, M.; Highland, L.; Vaugeouis, L. Environmental Impact of Landslides. Landslides–Disaster Risk Reduct. 2009, 1, 589–607. [Google Scholar]
- Montgomery, D.R.; Massong, T.M.; Hawley, S.C. Influence of Debris Flows and Log Jams on the Location of Pools and Alluvial Channel Reaches, Oregon Coast Range. Geol. Soc. Am. Bull. 2003, 115, 78–88. [Google Scholar] [CrossRef]
- Sams, C. Impact of Landslides on Environment. J. Sci. Geosci. 2022, 10, 1–2. [Google Scholar]
- Schuster, R.L.; Highland, L.M. Overview of the Effects of Mass Wasting on the Natural Environment. Environ. Eng. Geosci. 2007, 13, 25–44. [Google Scholar] [CrossRef]
- Acton, D.F.; Bedard-Haughn, A. Prairie. The Canadian Encyclopedia. 2015. Available online: https://www.thecanadianencyclopedia.ca/en/article/prairie (accessed on 20 August 2023).
- City of Calgary. Flooding in Calgary—Flood of 2013; Government of Alberta: Edmonton, AB, Canada, 2013.
- Public Safety Canada. Floods; Government of Canada: Ottawa, ON, Canada, 2022.
- AGR. Current Drought Conditions-Canadian Drought Monitor; Government of Canada: Ottawa, ON, Canada, 2023.
- Canada Dam Association. Inventory of Large Dams in Canada. In Proceedings of the 87th Annual Meeting and Symposium of the International Commission on Large Dams (ICOLD), Ottawa, ON, Canada, 9–14 June 2019. [Google Scholar]
- Parizot, M. A counting of tailings in Canada. CIM Magazine. 2020. Available online: https://magazine.cim.org/en/tailings/a-counting-of-tailings-in-canada/ (accessed on 21 August 2023).
- Suchan, J.; Azam, S. Effect of Salinity on Evaporation from Water Surface in Bench-Scale Testing. Water 2021, 13, 2067. [Google Scholar] [CrossRef]
- Ur Rehman, Z.; Khalid, U.; Ijaz, N.; Mujtaba, H.; Haider, A.; Farooq, K.; Ijaz, Z. Machine Learning-Based Intelligent Modeling of Hydraulic Conductivity of Sandy Soils Considering a Wide Range of Grain Sizes. Eng. Geol. 2022, 311, 106899. [Google Scholar] [CrossRef]
- Porter, M.; Van Hove, J.; Barlow, P.; Froese, C.; Bunce, C. The Estimated Economic Impacts of Prairie Landslides in Western Canada. In Proceedings of the 72nd Canadian Geotechnical Conference, St. John’s, NL, Canada, 2 October 2019. [Google Scholar]
- Leishman, E.M. Analysis of Canadian Train Derailments from 2001 to 2014. Master’s Thesis, University of Alberta, Edmonton, AB, Canada, 2017. [Google Scholar]
- Kelly, A.J.; Antunes, P.J.; Vu, H.Q.; Clifton, A.W.; Widger, R.A.; King, G.L. Analysis of Multiple Landslide Blocks on a Highway Crossing of the Frenchman River Valley, Saskatchewan. In Proceedings of the 58th Geotechnical Conference, Saskatoon, SK, Canada, 18–21 September 2005. [Google Scholar]
- Transportation Safety Board. Natural Gas Pipeline Rupture, Manitoba; Report P14H0011; Transportation Safety Board of Canada: Gatineau, QC, Canada, 2014. [Google Scholar]
- Kost, H. Bassano Dam Emergency Spillway Completed. CBC News, 25 October 2019. [Google Scholar]
- Government of Manitoba Province Recommending Evacuation of People and Livestock from Specific Properties Downstream of Rivers Dam. Available online: https://news.gov.mb.ca/news/index.html?item=48548 (accessed on 31 August 2023).
- PAS. Saskatchewan Watershed Authority-Dam Safety Report; Report submitted to Government of Saskatchewan: Regina, SK, Canada, 2005. [Google Scholar]
- Water Security Agency. Map of Dams; Government of Saskatchewan: Regina, SK, Canada, 2023.
- Henschel, M.D.; Deschamps, B.; Robert, G.; Zulkoski, D. Preliminary Monitoring of Ground Slumping Across a Natural Gas Distribution Network with Satellite Radar. In Proceedings of the International Pipeline Conference, American Society of Mechanical Engineers, Calgary, AB, Canada, 26–30 September 2016; Volume 50275, pp. 1–6. [Google Scholar]
- Huang, Q.; Akram, I.; Azam, S. Geohazard Evaluation at South Lake; SaskEnergy: Swift Current, SK, Canada, 2019. [Google Scholar]
- Clifton Associates. Upper Qu’Appelle Water Supply Project -Economic Impact & Sensitivity Analysis; Government of Saskatchewan: Regina, SK, Canada, 2012.
- SNC-Lavalin. Saskatoon Freeway Functional Planning Study; Government of Saskatchewan: Regina, SK, Canada, 2019.
- Greco, R.; Gargano, R. A Novel Equation for Determining the Suction Stress of Unsaturated Soils from the Water Retention Curve Based on Wetted Surface Area in Pores. Water Resour. Res. 2015, 51, 6143–6155. [Google Scholar] [CrossRef]
- Zhu, Y.; Ishikawa, T.; Subramanian, S.S.; Luo, B. Simultaneous Analysis of Slope Instabilities on a Small Catchment-Scale Using Coupled Surface and Subsurface Flows. Eng. Geol. 2020, 275, 105750. [Google Scholar] [CrossRef]
- Lu, N.; Likos, W.J. Unsaturated Soil Mechanics; John Wiley and Sons Inc.: New York, NY, USA, 2004. [Google Scholar]
- Suchan, J.; Azam, S. Determination of Evaporative Fluxes Using a Bench-Scale Atmosphere Simulator. Water 2021, 13, 84. [Google Scholar] [CrossRef]
- Andersland, O.B.; Ladanyi, B. Frozen Ground Engineering; John Wiley and Sons Inc.: New York, NY, USA, 2004. [Google Scholar]
- Tissen, C.; Menberg, K.; Bayer, P.; Blum, P. Meeting the Demand: Geothermal Heat Supply Rates for an Urban Quarter in Germany. Geotherm. Energy 2019, 7, 9. [Google Scholar] [CrossRef]
- Uchaipichat, A.; Khalili, N. Experimental Investigation of Thermo-Hydro-Mechanical Behaviour of an Unsaturated Silt. Géotechnique 2009, 59, 339–353. [Google Scholar] [CrossRef]
- Konrad, J.-M. Freezing-Induced Water Migration in Compacted Base-Course Materials. Can. Geotech. J. 2008, 45, 895–909. [Google Scholar] [CrossRef]
- Konrad, J.-M.; Morgenstern, N.R. A Mechanistic Theory of Ice Lens Formation in Fine-Grained Soils. Can. Geotech. J. 1980, 17, 473–486. [Google Scholar] [CrossRef]
- Farouki, O.T. Thermal Properties of Soils; Cold Regions Research and Engineering Lab Hanover NH.: Hanover, NH, USA, 1981. [Google Scholar]
- Harlan, R.L. Analysis of Coupled Heat-Fluid Transport in Partially Frozen Soil. Water Resour. Res. 1973, 9, 1314–1323. [Google Scholar] [CrossRef]
- Johansen, O. Thermal Conductivity of Soils; Cold Regions Research and Engineering Lab Hanover NH.: Hanover, NH, USA, 1977. [Google Scholar]
- Nixon, J.F. Discrete Ice Lens Theory for Frost Heave in Soils. Can. Geotech. J. 1991, 29, 843–859. [Google Scholar] [CrossRef]
- Tsegaye, A.B. Simple Models for Frozen Soil. Modeling the Strength of Saturated Frozen Soil; Norwegian University of Science and Technology: Trondheim, Norway, 2014. [Google Scholar]
- Gasmo, J.M.; Rahardjo, H.; Leong, E.C. Infiltration Effects on Stability of a Residual Soil Slope. Comput. Geotech. 2000, 26, 145–165. [Google Scholar] [CrossRef]
- Oswaldo, A.F.; Fernandes, M.A. Landslide Analysis of Unsaturated Soil Slopes Based on Rainfall and Matric Suction Data. Bull. Eng. Geol. Environ. 2019, 78, 4167–4185. [Google Scholar]
- Zhang, L.L.; Zhang, L.M.; Tang, W.H. Rainfall-Induced Slope Failure Considering Variability of Soil Properties. Geotechnique 2005, 55, 183–188. [Google Scholar] [CrossRef]
- Qin, Z.; Lai, Y.; Tian, Y.; Zhang, M. Stability Behavior of a Reservoir Soil Bank Slope under Freeze-Thaw Cycles in Cold Regions. Cold Reg. Sci. Technol. 2021, 181, 103181. [Google Scholar] [CrossRef]
- Shin, Y.; Choi, J.C.; Quinteros, S.; Svendsen, I.; L’Heureux, J.S.; Seong, J. Evaluation and Monitoring of Slope Stability in Cold Region: Case Study of Man-Made Slope at Øysand, Norway. Appl. Sci. 2020, 10, 4136. [Google Scholar] [CrossRef]
- Batenipour, H.; Alfaro, M.; Kurz, D.; Graham, J. Deformations and Ground Temperatures at a Road Embankment in Northern Canada. Can. Geotech. J. 2014, 51, 260–271. [Google Scholar] [CrossRef]
- Zhu, Y.; Ishikawa, T.; Yamada, T.J.; Subramanian, S.S. Probability Assessment of Slope Instability in Seasonally Cold Regions under Climate Change. J. Infrastruct. Preserv. Resil. 2021, 2, 1–15. [Google Scholar] [CrossRef]
- Rodríguez, S.; Puig i Polo, C.; Lloret Morancho, A.; Vaunat, J.; Hurlimann Ziegler, M. Effect of Climate Change on Slope Stability: A Numerical Analysis Using Predictions of the Catalan Pyrenees. In Proceedings of the 13th International Symposium on Landslides, Cartagena, Colombia, 22–26 February 2021; ISSMGE: London, UK, 2021; pp. 1–8. [Google Scholar]
- Subramanian, S.S.; Ishikawa, T.; Tokoro, T. Stability Assessment Approach for Soil Slopes in Seasonal Cold Regions. Eng. Geol. 2017, 221, 154–169. [Google Scholar] [CrossRef]
- Korshunov, A.A.; Doroshenko, S.P.; Nevzorov, A.L. The Impact of Freezing-Thawing Process on Slope Stability of Earth Structure in Cold Climate. Procedia Eng. 2016, 143, 682–688. [Google Scholar] [CrossRef]
- Gariano, S.L.; Rianna, G.; Petrucci, O.; Guzzetti, F. Assessing Future Changes in the Occurrence of Rainfall-Induced Landslides at a Regional Scale. Sci. Total Environ. 2017, 596, 417–426. [Google Scholar] [CrossRef]
- Alvioli, M.; Melillo, M.; Guzzetti, F.; Rossi, M.; Palazzi, E.; von Hardenberg, J.; Brunetti, M.T.; Peruccacci, S. Implications of Climate Change on Landslide Hazard in Central Italy. Sci. Total Environ. 2018, 630, 1528–1543. [Google Scholar] [CrossRef]
- Subramanian, S.S.; Ishikawa, T.; Tokoro, T. An Early Warning Criterion for the Prediction of Snowmelt-Induced Soil Slope Failures in Seasonally Cold Regions. Soils Found. 2018, 58, 582–601. [Google Scholar] [CrossRef]
- Tang, Y.; Wu, W.; Yin, K.; Wang, S.; Lei, G. A Hydro-Mechanical Coupled Analysis of Rainfall Induced Landslide Using a Hypoplastic Constitutive Model. Comput. Geotech. 2019, 112, 284–292. [Google Scholar] [CrossRef]
- Mateos, R.M.; García-Moreno, I.; Azañón, J.M. Freeze–Thaw Cycles and Rainfall as Triggering Factors of Mass Movements in a Warm Mediterranean Region: The Case of the Tramuntana Range (Majorca, Spain). Landslides 2012, 9, 417–432. [Google Scholar] [CrossRef]
- Zhou, J.; Cui, P.; Hao, M. Comprehensive Analyses of the Initiation and Entrainment Processes of the 2000 Yigong Catastrophic Landslide in Tibet, China. Landslides 2016, 13, 39–54. [Google Scholar] [CrossRef]
- Bahrami, S.; Ardejani, F.D.; Baafi, E. Application of Artificial Neural Network Coupled with Genetic Algorithm and Simulated Annealing to Solve Groundwater Inflow Problem to an Advancing Open Pit Mine. J. Hydrol. 2016, 536, 471–484. [Google Scholar] [CrossRef]
- Ijaz, N.; Ye, W.; ur Rehman, Z.; Dai, F.; Ijaz, Z. Numerical Study on Stability of Lignosulphonate-Based Stabilized Surficial Layer of Unsaturated Expansive Soil Slope Considering Hydro-Mechanical Effect. Transp. Geotech. 2022, 32, 100697. [Google Scholar] [CrossRef]
- Geo-Slope. Thermal Modeling with TEMP/W: An Engineering Methodology; GEO-SLOPE International Ltd.: Calgary, AB, Canada, 2020. [Google Scholar]
- Alsherif, N.; Wayllace, A.; Lu, N. Measuring the Soil Water Retention Curve under Positive and Negative Matric Suction Regimes. Geotech. Test. J. 2015, 38, 442–451. [Google Scholar] [CrossRef]
- Wayllace, A.; Lu, N. A Transient Water Release and Imbibitions Method for Rapidly Measuring Wetting and Drying Soil Water Retention and Hydraulic Conductivity Functions. Geotech. Test. J. 2012, 35, 1–15. [Google Scholar]
- Vanapalli, S.K.; Lane, J.J. A Simple Technique for Determining the Shear Strength of Finegrained Unsaturated Soils Using the Conventional Direct Shear Apparatus. In Proceedings of the Second Canadian Specialty Conference on Computer Applications in Geotechnique, Winnipeg, MB, Canada, 28–30 April 2002; pp. 245–253. [Google Scholar]
- Mahmood, K.; Kim, J.M.; Ashraf, M. Ziaurrehman The Effect of Soil Type on Matric Suction and Stability of Unsaturated Slope under Uniform Rainfall. KSCE J. Civ. Eng. 2016, 20, 1294–1299. [Google Scholar] [CrossRef]
- GeoSlope. Stability Modeling with GeoStudio; GEO-SLOPE International Ltd.: Calgary, AB, Canada, 2020. [Google Scholar]
- Azmatch, T.F.; Sego, D.C.; Arenson, L.U.; Biggar, K.W. Soil Freezing Characteristic Curve of Devon Silt. In Proceedings of the David C. Sego Symposium, University of Alberta, Edmonton, AB, Canada, 26–27 April 2012; pp. 26–27. [Google Scholar]
- Unold, F.; Derk, L. Cryosuction–a Model to Describe the Mechanism during Ground Freezing. In PanAm Unsaturated Soils 2017; American Society of Civil Engineers: Reston, VA, USA, 2017; pp. 290–299. [Google Scholar]
- Stuurop, J.C.; van der Zee, S.E.M.; Voss, C.I.; French, H.K. Simulating Water and Heat Transport with Freezing and Cryosuction in Unsaturated Soil: Comparing an Empirical, Semi-Empirical and Physically-Based Approach. Adv. Water Resour. 2021, 149, 103846. [Google Scholar] [CrossRef]
- Flerchinger, G.N.; Seyfried, M.S.; Hardegree, S.P. Using Soil Freezing Characteristics to Model Multi-Season Soil Water Dynamics. Vadose Zone J. 2006, 5, 1143–1153. [Google Scholar] [CrossRef]
- Morgenstern, N.R.U.; Price, V.E. The Analysis of the Stability of General Slip Surfaces. Geotechnique 1965, 15, 79–93. [Google Scholar] [CrossRef]
- Ward, N. Geography of Saskatchewan. The Canadian Encyclopedia. 2023. Available online: https://www.thecanadianencyclopedia.ca/en/article/geography-of-saskatchewan (accessed on 20 August 2023).
- StatCan. Focus on Geography-Population Change in Province and Terri Tories; Government of Canada: Ottawa, ON, Canada, 2016.
- Azam, S.; Khan, F. Geohydrological Properties of Selected Badland Sediments in Saskatchewan, Canada. Bull. Eng. Geol. Environ. 2014, 73, 389–399. [Google Scholar] [CrossRef]
- Wittrock, V. Cliamte Reference Station-Conservation Learning Center; Saskatchewan Research Council: Saskatoon, SK, Canada, 2023. [Google Scholar]
- Aguiar, M. Vegetation and Soil Biodiversity Across Perennial Grassland-Annual Cropland Edges. Ph.D. Thesis, University of Saskatchewan, Saskatoon, SK, Canada, 2019. [Google Scholar]
- Infoplease Saskatchewan Map|Infoplease. Available online: https://www.infoplease.com/atlas/north-america/canada/saskatchewan-map (accessed on 1 September 2023).
- Map Trove Where Is Saskatchewan? Available online: https://www.maptrove.ca/info/where/canada/saskatchewan (accessed on 1 September 2023).
- Darve, F.; Laouafa, F. Plane Strain Instabilities in Soil: Application to Slopes Stability. In Numerical Models in Geomechanics; CRC Press: Boca Raton FL, USA, 2020; pp. 85–90. [Google Scholar]
- Gitirana, J.G. Weather-Related Geo-Hazard Assessment Model for Railway Embankment Stability. PhD Thesis, University of Saskatchewan, Saskatoon, SK, Canada, 2005. [Google Scholar]
- de Gitirana, G.F.; Fredlund, D.G. The Application of Unsaturated Soil Mechanics to the Assessment of Weather-Related Geo-Hazards. In Proceedings of the 16th International Conference on Soil Mechanics and Geotechnical Engineering, Osaka, Japan, 12–16 September 2005; IOS Press: Amsterdam, The Netherlands, 2005; pp. 2515–2520. [Google Scholar]
- Akram, I.; Azam, S. Determination of Saturated-Unsaturated Flow through Silty Sand. Geotech. Geol. Eng. 2022, 40, 469–481. [Google Scholar] [CrossRef]
- Mitchell, J.K.; Soga, K. Fundamentals of Soil Behavior; John Wiley and Sons Inc.: New York, NY, USA, 2005. [Google Scholar]
- ASTM-D2487; Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System). West Conshohocken: Montgomery, PA, USA, 2017.
- Newman, G.P. Heat and Mass Transfer in Unsaturated Soils during Freezing. Master’s Thesis, University of Saskatchewan, Saskatoon, SK, Canada, 1995. [Google Scholar]
- De Vries, D.A. Heat Transfer in Soils, Heat and Mass Transfer in the Bioaphere. Adv. Therm. Exgineerings 1975, 1, 5–28. [Google Scholar]
- Akram, I.; Azam, S. Effect of Sample Preparation on Saturated and Unsaturated Shear Strength of Cohesionless Soils. Geotechnics 2023, 3, 212–223. [Google Scholar] [CrossRef]
- Li, Z.; Wang, S.; Li, J. Spatial Variations and Long-Term Trends of Potential Evaporation in Canada. Sci. Rep. 2020, 10, 22089. [Google Scholar] [CrossRef] [PubMed]
- Sauchyn, D.; Kulshreshtha, S. Prairies. In From Impacts to Adaptation: Canada in a Changing Climate; Natural Resources Canada: Ottawa, ON, Canada, 2008. [Google Scholar]
- Sauchyn, D.; Barrow, E.; Fang, X.; Henderson, N.; Johnston, M.; Pomeroy, J. Saskatchewan’s Natural Capital in a Changing Climate: An Assessment of Impacts and Adaptation; Saskatchewan Ministry of Environment: Regina, SK, Canada, 2009.
- Saskatchewan Research Council. Monthly Climate Data Report; Saskatchewan Research Council Climate: Saskatoon, SK, Canada, 2021. [Google Scholar]
- Environment Canada. Environment Canada Climate Normals (1981–2008); Government of Canada: Ottawa, ON, Canada, 2014.
- Tang, R.; Zhou, G.; Jiao, W.; Ji, Y. Theoretical Model of Hydraulic Conductivity for Frozen Saline/Non-Saline Soil Based on Freezing Characteristic Curve. Cold Reg. Sci. Technol. 2019, 165, 102794. [Google Scholar] [CrossRef]
- Fang, X.; Pomeroy, J.W. Snowmelt Runoff Sensitivity Analysis to Drought on the Canadian Prairies. Hydrol. Process. 2007, 21, 2594–2609. [Google Scholar] [CrossRef]
- McGinn, S.M. Weather and Climate Patterns in Canada’s Prairie Grasslands. Arthropods Can. Grassl. 2010, 1, 105–119. [Google Scholar]
- Vickers, G.; Buzza, S.; Schmidt, D.; Mullock, J. The Weather of the Canadian Prairies; NAV: Ottawa, ON, Canada, 2002. [Google Scholar]
- Basu, S.; Sauchyn, D.J. Future Changes in the Surface Water Balance over Western Canada Using the CanESM5 (CMIP6) Ensemble for the Shared Socioeconomic Pathways 5 Scenario. Water 2022, 14, 691. [Google Scholar] [CrossRef]
- Pomeroy, J.W.; Fang, X.; Williams, B. Impacts of Climate Change on Saskatchewan’s Water Resources; Centre of Hydrology, University of Saskatchewan: Saskatoon, SK, Canada, 2009. [Google Scholar]
- Barrow, E. Climate Scenarios for Saskatchewan; Prairie Adaptation Research Collaborative Report; University of Regina: Regina, SK, Canada, 2009. [Google Scholar]
- Akhter, A.; Azam, S. Flood-Drought Hazard Assessment for a Flat Clayey Deposit in the Canadian Prairies. J. Environ. Inform. Lett. 2019, 1, 8–19. [Google Scholar] [CrossRef]
- Bonsal, B.R.; Cuell, C.; Wheaton, E.; Sauchyn, D.J.; Barrow, E. An Assessment of Historical and Projected Future Hydro-Climatic Variability and Extremes over Southern Watersheds in the Canadian Prairies. Int. J. Climatol. 2017, 37, 3934–3948. [Google Scholar] [CrossRef]
- Paranthaman, R.; Azam, S. Coupled Hydraulic-Thermal Model for Soils under Extreme Weather in Cold Regions. J. Environ. Inform. Lett. 2022, 7, 90–102. [Google Scholar] [CrossRef]
- Pei, Z.; Fang, S.; Wang, L.; Yang, W. Comparative Analysis of Drought Indicated by the SPI and SPEI at Various Timescales in Inner Mongolia, China. Water 2020, 12, 1925. [Google Scholar] [CrossRef]
- Nam, W.-H.; Hayes, M.J.; Svoboda, M.D.; Tadesse, T.; Wilhite, D.A. Drought Hazard Assessment in the Context of Climate Change for South Korea. Agric. Water Manag. 2015, 160, 106–117. [Google Scholar] [CrossRef]
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World Map of the Köppen-Geiger Climate Classification Updated. Meteorol. Zeitschrif 2006, 15, 259–263. [Google Scholar] [CrossRef] [PubMed]
- Mujtaba, H.; Shimobe, S.; Farooq, K.; ur Rehman, Z.; Khalid, U. Relating Gradational Parameters with Hydraulic Conductivity of Sandy Soils: A Renewed Attempt. Arab. J. Geosci. 2021, 14, 1–17. [Google Scholar] [CrossRef]
- Puri, N.; Prasad, H.D.; Jain, A. Prediction of Geotechnical Parameters Using Machine Learning Techniques. Procedia Comput. Sci. 2018, 125, 509–517. [Google Scholar] [CrossRef]
- Smith, G.N. Probability and Statistics in Civil Engineering-An Introduction; Collins: London, UK, 1986. [Google Scholar]
- Pavon, G. Evaluating the Thermal Properties of Soils Based on Measured Ground Temperatures. Master’s Thesis, University of Manitoba, Winnipeg, MB, Canada, 2018. [Google Scholar]
- Roshankhah, S.; Garcia, A.V.; Carlos Santamarina, J. Thermal Conductivity of Sand–Silt Mixtures. J. Geotech. Geoenviron. Eng. 2021, 147, 1–9. [Google Scholar] [CrossRef]
- Al-Kaisi, M.M.; Lal, R.; Olson, K.R.; Lowery, B. Fundamentals and Functions of Soil Environment. In Soil Health and Intensification of Agroecosytems; Al-Kaisi, M.M., Lowery, B., Eds.; Academic Press: Cambridge, MA, USA, 2017; pp. 1–23. [Google Scholar]
- Le, A.T.; Wang, L.; Wang, Y.; Li, D. Measurement Investigation on the Feasibility of Shallow Geothermal Energy for Heating and Cooling Applied in Agricultural Greenhouses of Shouguang City: Ground Temperature Profiles and Geothermal Potential. Inf. Process. Agric. 2021, 8, 251–269. [Google Scholar] [CrossRef]
- Singh, R.K.; Sharma, R.V. Numerical Analysis for Ground Temperature Variation. Geotherm. Energy 2017, 5, 22. [Google Scholar] [CrossRef]
- Qiu, H.; Cui, P.; Regmi, A.D.; Hu, S.; Wang, X.; Zhang, Y. The Effects of Slope Length and Slope Gradient on the Size Distributions of Loess Slides: Field Observations and Simulations. Geomorphology 2018, 300, 69–76. [Google Scholar] [CrossRef]
- Miller, G.A.; Teh, S.Y.; Li, D.; Zaman, M.M. Cyclic Shear Strength of Soft Railroad Subgrade. J. Geotech. Geoenviron. Eng. 2000, 126, 139–147. [Google Scholar] [CrossRef]
- Li, D.; Li, L.; Xu, L.; Li, C.; Meng, K.; Gao, Y.; Yang, Z. Stability Analysis of Upstream and Downstream Dam Slopes with Water Level Drawdown Using Response Surface Function. Geotech. Geol. Eng. 2022, 40, 3107–3123. [Google Scholar] [CrossRef]
- Lyu, Z.; Chai, J.; Xu, Z.; Qin, Y.; Cao, J. A Comprehensive Review on Reasons for Tailings Dam Failures Based on Case History. Adv. Civ. Eng. 2019, 2019, 4159306. [Google Scholar] [CrossRef]
- Transportation Safety Board. Main Track Train Derailment; Report R18W0237; Transportation Safety Board of Canada: Gatineau, QC, Canada, 2018. [Google Scholar]
- Gofar, N.; Lee, M.L.; Asof, M. Transient Seepage and Slope Stability Analysis for Rainfall-Induced Landslide: A Case Study. Malays. J. Civ. Eng. 2006, 18, 1–13. [Google Scholar]
- Huang, Q.; Azam, S. Modeling of Weather-Induced Volumetric Changes in Cracked Expansive Clays. Geotech. Geol. Eng. 2023, 41, 861–879. [Google Scholar] [CrossRef]
- Gallage, C.; Abeykoon, T.; Uchimura, T. Instrumented Model Slopes to Investigate the Effects of Slope Inclination on Rainfall-Induced Landslides. Soils Found. 2021, 61, 160–174. [Google Scholar] [CrossRef]
- Shiferaw, H.M. Study on the Influence of Slope Height and Angle on the Factor of Safety and Shape of Failure of Slopes Based on Strength Reduction Method of Analysis. Beni-Suef Univ. J. Basic Appl. Sci. 2021, 10, 31. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, L.; Zhang, H. Rainfall Infiltration Process of a Rock Slope with Considering the Heterogeneity of Saturated Hydraulic Conductivity. Front. Earth Sci. 2022, 9, 804005. [Google Scholar] [CrossRef]
Climate | Upstream | Downstream | Loading | Geometry | Code |
---|---|---|---|---|---|
Mean | - | - | - | High | M-NP-NL-H |
Low | M-NP-NL-L | ||||
70 kN/m | High | M-NP-TL-H | |||
Low | M-NP-TL-L | ||||
Ponding | - | - | High | M-US-NL-H | |
Low | M-US-NL-L | ||||
70 kN/m | High | M-US-TL-H | |||
Low | M-US-TL-L | ||||
- | Ponding | - | High | M-DS-NL-H | |
Low | M-DS-NL-L | ||||
70 kN/m | High | M-DS-TL-H | |||
Low | M-DS-TL-L | ||||
Ponding | Ponding | - | High | M-US-DS-NL-H | |
Low | M-US-DS-NL-L | ||||
70 kN/m | High | M-US-DS-TL-H | |||
Low | M-US-DS-TL-L | ||||
Wet | - | - | - | High | W-NP-NL-H |
Low | W-NP-NL-L | ||||
70 kN/m | High | W-NP-TL-H | |||
Low | W-NP-TL-L | ||||
Ponding | - | - | High | W-US-NL-H | |
Low | W-US-NL-L | ||||
70 kN/m | High | W-US-TL-H | |||
Low | W-US-TL-L | ||||
- | Ponding | - | High | W-DS-NL-H | |
Low | W-DS-NL-L | ||||
70 kN/m | High | W-DS-TL-H | |||
Low | W-DS-TL-L | ||||
Ponding | Ponding | - | High | W-US-DS-NL-H | |
Low | W-US-DS-NL-L | ||||
70 kN/m | High | W-US-DS-TL-H | |||
Low | W-US-DS-TL-L | ||||
Dry | - | - | - | High | D-NP-NL-H |
Low | D-NP-NL-L | ||||
70 kN/m | High | D-NP-TL-H | |||
Low | D-NP-TL-L | ||||
Ponding | - | - | High | D-US-NL-H | |
Low | D-US-NL-L | ||||
70 kN/m | High | D-US-TL-H | |||
Low | D-US-TL-L | ||||
- | Ponding | - | High | D-DS-NL-H | |
Low | D-DS-NL-L | ||||
70 kN/m | High | D-DS-TL-H | |||
Low | D-DS-TL-L | ||||
Ponding | Ponding | - | High | D-US-DS-NL-H | |
Low | D-US-DS-NL-L | ||||
70 kN/m | High | D-US-DS-TL-H | |||
Low | D-US-DS-TL-L |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akram, I.; Azam, S. A Transient Seepage–Thermal Stability Model for Cohesionless Soil Slopes in the Semi-Arid Continental Climate of the Canadian Prairies. Sustainability 2023, 15, 13739. https://doi.org/10.3390/su151813739
Akram I, Azam S. A Transient Seepage–Thermal Stability Model for Cohesionless Soil Slopes in the Semi-Arid Continental Climate of the Canadian Prairies. Sustainability. 2023; 15(18):13739. https://doi.org/10.3390/su151813739
Chicago/Turabian StyleAkram, Ilyas, and Shahid Azam. 2023. "A Transient Seepage–Thermal Stability Model for Cohesionless Soil Slopes in the Semi-Arid Continental Climate of the Canadian Prairies" Sustainability 15, no. 18: 13739. https://doi.org/10.3390/su151813739
APA StyleAkram, I., & Azam, S. (2023). A Transient Seepage–Thermal Stability Model for Cohesionless Soil Slopes in the Semi-Arid Continental Climate of the Canadian Prairies. Sustainability, 15(18), 13739. https://doi.org/10.3390/su151813739