Environmental Impact Evaluation as a Key Element in Ensuring Sustainable Development of Rail Transport
Abstract
:1. Introduction
2. Environmental Aspects of Rail Transport
2.1. Noise Pollution
2.2. Emissions
2.3. Direct Threats to Wildlife
3. Discussion
4. Conclusions
5. Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Salas, E.B. Rail Industry Worldwide—Statistics & Facts. Available online: https://www.statista.com/topics/1088/rail-industry/#topicOverview (accessed on 12 July 2023).
- China’s New Rail Target: 175,000 Km until 2025. Available online: https://www.railwaypro.com/wp/chinas-new-rail-target-175-000-km-until-2025/ (accessed on 12 July 2023).
- Chen, Z.-W.; Guo, Z.-H.; Ni, Y.-Q.; Liu, T.-H.; Zhang, J. A Suction Method to Mitigate Pressure Waves Induced by High-Speed Maglev Trains Passing through Tunnels. Sustain. Cities Soc. 2023, 96, 104682. [Google Scholar] [CrossRef]
- Levinson, D.M. Accessibility Impacts of High-Speed Rail. J. Transp. Geogr. 2012, 22, 288–291. [Google Scholar] [CrossRef]
- Augustowski, T.; Gołaszewski, A. Czterdzieści Lat Centralnej Magistrali Kolejowej. Probl. Kolejnictwa 2015, Z. 167, 7–23. [Google Scholar]
- Massel, A. Dostosowanie Centralnej Magistrali Kolejowej Do Dużych Prędkości Jazdy. TTS Tech. Transp. Szyn. 2015, 4, 47–52. [Google Scholar]
- Pomykała, A.; Engelhardt, J. Concepts of Construction of High-Speed Rail in Poland in Context to the European High-Speed Rail Networks. Socioecon. Plann Sci. 2023, 85, 101421. [Google Scholar] [CrossRef]
- Ambrasaite, I.; Barfod, M.B.; Salling, K.B. MCDA and Risk Analysis in Transport Infrastructure Appraisals: The Rail Baltica Case. Procedia Soc. Behav. Sci. 2011, 20, 944–953. [Google Scholar] [CrossRef]
- United Nations: Johannesburg Declaration on Sustainable Development. Available online: http://www.un-documents.net/jburgdec.htm (accessed on 11 July 2023).
- Behrends, S. The Significance of the Urban Context for the Sustainability Performance of Intermodal Road-Rail Transport. Procedia Soc. Behav. Sci. 2012, 54, 375–386. [Google Scholar] [CrossRef]
- Jacyna, M.; Wasiak, M.; Kłodawski, M.; Lewczuk, K. Simulation Model of Transport System of Poland as a Tool for Developing Sustainable Transport. Arch. Transp. 2014, 31, 23–35. [Google Scholar] [CrossRef]
- Henke, I.; Cartenì, A.; Molitierno, C.; Errico, A. Decision-Making in the Transport Sector: A Sustainable Evaluation Method for Road Infrastructure. Sustainability 2020, 12, 764. [Google Scholar] [CrossRef]
- Shen, L.; Wu, Y.; Zhang, X. Key Assessment Indicators for the Sustainability of Infrastructure Projects. J. Constr. Eng. Manag. 2011, 137, 441–451. [Google Scholar] [CrossRef]
- Rau, H.; Scheiner, J. Sustainable Mobility: Interdisciplinary Approaches. Sustainability 2020, 12, 9995. [Google Scholar] [CrossRef]
- Wang, D.D. Assessing Road Transport Sustainability by Combining Environmental Impacts and Safety Concerns. Transp. Res. D Transp. Environ. 2019, 77, 212–223. [Google Scholar] [CrossRef]
- Ambroziak, T.; Jacyna, M.; Jacyna-Gołda, I.; Jachimowski, R.; Merkisz-Guranowska, A.; Pyza, D.; Żak, J. O pewnym podejściu do modelowania systemu transportowego w aspekcie zrównoważonego rozwoju. Logistyka 2014, 4, 1617–1624. [Google Scholar]
- International Union of Railways; Community of European Railway and Infrastructure. Rail Transport and Environment: Facts & Figures; UIC/CER: Paris, France, 2015. [Google Scholar]
- Kossak, S. Zasada Działania Atrapy Bodźców Kluczowych Zastosowanej w Urządzeniu UOZ-1 Wypłaszającym Zwierzęta z Torów Kolei Szybkiego Ruchu. In Oddziaływanie Infrastruktury Transportowej na Przestrzeń Przyrodniczą; Jackowiak, B., Ed.; Generalna Dyrekcja Dróg Krajowych i Autostrad: Warszawa, Poland; Poznań, Poland; Lublin, Poland, 2007; pp. 173–179. [Google Scholar]
- Barrientos, R.; Borda-de-Água, L. Railways as Barriers for Wildlife: Current Knowledge. In Railway Ecology; Springer International Publishing: Cham, Switzerland, 2017; pp. 43–64. [Google Scholar]
- Ito, T.Y.; Lhagvasuren, B.; Tsunekawa, A.; Shinoda, M. Habitat Fragmentation by Railways as a Barrier to Great Migrations of Ungulates in Mongolia. In Railway Ecology; Springer International Publishing: Cham, Switzerland, 2017; pp. 229–246. [Google Scholar]
- Kušta, T.; Ježek, M.; Keken, Z. Mortality of Large Mammals on Railway Tracks. Sci. Agric. Bohem. 2011, 42, 12–18. [Google Scholar]
- Bartoszek, D.; Stolarski, M. Kolizje Pojazdów Szynowych Ze Zwierzętami a Bezpieczeństwo Ruchu Pociągów. Pr. Nauk. Politech. Warszawskiej. Transp. 2013, 96, 49–58. [Google Scholar]
- Gilhooly, P.S.; Nielsen, S.E.; Whittington, J.; St. Clair, C.C. Wildlife Mortality on Roads and Railways Following Highway Mitigation. Ecosphere 2019, 10, e02597. [Google Scholar] [CrossRef]
- Snyder, H. Literature review as a research methodology: An overview and guidelines. J. Bus. Res. 2019, 104, 333–339. [Google Scholar] [CrossRef]
- Babisch, W.; Swart, W.; Houthuijs, D.; Selander, J.; Bluhm, G.; Pershagen, G.; Dimakopoulou, K.; Haralabidis, A.S.; Katsouyanni, K.; Davou, E.; et al. Exposure Modifiers of the Relationships of Transportation Noise with High Blood Pressure and Noise Annoyance. J. Acoust. Soc. Am. 2012, 132, 3788–3808. [Google Scholar] [CrossRef]
- Smith, M.G.; Croy, I.; Ögren, M.; Hammar, O.; Lindberg, E.; Persson Waye, K. Physiological Effects of Railway Vibration and Noise on Sleep. J. Acoust. Soc. Am. 2017, 141, 3262–3269. [Google Scholar] [CrossRef]
- Goines, L.; Hagler, L. Noise Pollution: A Modem Plague. South. Med. J. 2007, 100, 287–294. [Google Scholar] [CrossRef]
- Selander, J.; Nilsson, M.E.; Bluhm, G.; Rosenlund, M.; Lindqvist, M.; Nise, G.; Pershagen, G. Long-Term Exposure to Road Traffic Noise and Myocardial Infarction. Epidemiology 2009, 20, 272–279. [Google Scholar] [CrossRef]
- Wrótny, M.; Bohatkiewicz, J. Impact of Railway Noise on People Based on Strategic Acoustic Maps. Sustainability 2020, 12, 5637. [Google Scholar] [CrossRef]
- International Union of Railways (UIC). Sustainability Nuisance and Health Impacts of Railway Noise—Noise and Vibration Technical Advice (NOVITÀ) Project; International Union of Railways (UIC): Paris, France, 2022; ISBN 978-2-7461-3209-2. [Google Scholar]
- Lucas, P.S.; de Carvalho, R.G.; Grilo, C. Railway Disturbances on Wildlife: Types, Effects, and Mitigation Measures. In Railway Ecology; Springer International Publishing: Cham, Switzerland, 2017; pp. 81–99. [Google Scholar]
- He, B.; Jin, X. Investigation into External Noise of a High-Speed Train at Different Speeds. J. Zhejiang Univ. Sci. A 2014, 15, 1019–1033. [Google Scholar] [CrossRef]
- European Environment Agency. Environmental Noise in Europe, 2020; Publications Office: Luxembourg, 2020. [Google Scholar]
- Palacin, R.; Correia, J.; Zdziech, M.; Cassese, T.; Chitakova, T. Rail Environmental Impact: Energy Consumption and Noise Pollution Assessment of Different Transport Modes Connecting Big Ben (London, UK) and Eiffel Tower (Paris, FR). Transp. Probl. 2014, 9, 9–27. [Google Scholar]
- Fortea, P. Exploring Innovative Solutions for Reducing Railway Noise and Vibration Pollution. Available online: https://www.globalrailwayreview.com/article/92854/pedro-fortea-mafex-noise-vibrations/ (accessed on 16 July 2023).
- Thompson, D.; Jones, C. Noise and Vibration from the Wheel–Rail Interface. In Wheel–Rail Interface Handbook; Elsevier: Amsterdam, The Netherlands, 2009; pp. 477–509. ISBN 9781845696788. [Google Scholar]
- Komorski, P.; Szymanski, G.M.; Nowakowski, T.; Orczyk, M. Advanced Acoustic Signal Analysis Used for Wheel-Flat Detection. Lat. Am. J. Solids Struct. 2021, 18, 1–14. [Google Scholar] [CrossRef]
- Ouakka, S.; Verlinden, O.; Kouroussis, G. Railway Ground Vibration and Mitigation Measures: Benchmarking of Best Practices. Railw. Eng. Sci. 2022, 30, 1–22. [Google Scholar] [CrossRef]
- Croy, I.; Smith, M.G.; Waye, K.P. Effects of Train Noise and Vibration on Human Heart Rate during Sleep: An Experimental Study. BMJ Open 2013, 3, e002655. [Google Scholar] [CrossRef]
- Maclachlan, L.; Waye, K.P.; Pedersen, E. Exploring Perception of Vibrations from Rail: An Interview Study. Int. J. Environ. Res. Public. Health 2017, 14, 1303. [Google Scholar] [CrossRef]
- Thompson, D.J.; Gautier, P.-E. Review of Research into Wheel/Rail Rolling Noise Reduction. Proc. Inst. Mech. Eng. F J. Rail Rapid Transit. 2006, 220, 385–408. [Google Scholar] [CrossRef]
- Nowakowski, T.; Firlik, B.; Staśkiewicz, T. Developing Assumptions for the Tram Noise Attenuation Passive System Using the Noise Maps Analysis Method. Arch. Acoust. 2023, 44, 783–792. [Google Scholar] [CrossRef]
- Milewicz, J.; Mokrzan, D.; Nowakowski, T.; Szymański, G.M. Using the MIMO Method to Evaluate the Modal Properties of the Elements of a Wheelset in an Active Experiment. Vib. Phys. Syst. 2022, 33, 2022324. [Google Scholar] [CrossRef]
- Liepert, M.; Möhler, U.; Schreckenberg, D.; Schuemer, R. The Impact of Rail Grinding on Noise Levels and Residents’ Noise Responses–Part I: Study Design and Acoustical Results. In Proceedings of the Inter-Noise Congress, Innsbruck, Austria, 15–18 September 2013; pp. 15–18. [Google Scholar]
- Lakuši, S.; Ahac, M.; Haladin, I. Experimental Investigation of Railway Track with under Sleeper Pad. In Proceedings of the 10th Slovenian Road and Transportation Congress, Ljubjana, October 2010; pp. 386–393. [Google Scholar]
- Zuo, C.; Birkin, M.; Clarke, G.; McEvoy, F.; Bloodworth, A. Reducing Carbon Emissions Related to the Transportation of Aggregates: Is Road or Rail the Solution? Transp. Res. Part A Policy Pract. 2018, 117, 26–38. [Google Scholar] [CrossRef]
- International Union of Railways (UIC). 2022 Global Rail Sustainability Report; International Union of Railways (UIC): Paris, France, 2023. [Google Scholar]
- Lawrence, M.; Bullock, R. The Role of Rail in Decarbonizing Transport in Developing Countries; World Bank: Washington, DC, USA, 2022. [Google Scholar]
- Kim, M.-K.; Park, D.; Kim, M.; Heo, J.; Park, S.; Chong, H. A Study on Characteristic Emission Factors of Exhaust Gas from Diesel Locomotives. Int. J. Environ. Res. Public. Health 2020, 17, 3788. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.-H.; Yan, J.-W. Comparisons of Particulate Matter, CO, and CO2 Levels in Underground and Ground-Level Stations in the Taipei Mass Rapid Transit System. Atmos. Environ. 2011, 45, 4882–4891. [Google Scholar] [CrossRef]
- Abbasi, S.; Jansson, A.; Sellgren, U.; Olofsson, U. Particle Emissions from Rail Traffic: A Literature Review. Crit. Rev. Environ. Sci. Technol. 2013, 43, 2511–2544. [Google Scholar] [CrossRef]
- Mulley, C.; Hensher, D.A.; Cosgrove, D. Is Rail Cleaner and Greener than Bus? Transp. Res. D Transp. Environ. 2017, 51, 14–28. [Google Scholar] [CrossRef]
- Kamińska, M.; Rymaniak, Ł.; Lijewski, P.; Szymlet, N.; Daszkiewicz, P.; Grzeszczyk, R. Investigations of Exhaust Emissions from Rail Machinery during Track Maintenance Operations. Energies 2021, 14, 3141. [Google Scholar] [CrossRef]
- Kamińska, M.; Kołodziejek, D.; Szymlet, N.; Fuć, P.; Grzeszczyk, R. Measurement of Rail Vehicles Exhaust Emissions. Combust. Engines 2022, 189, 10–17. [Google Scholar] [CrossRef]
- Logan, K.G.; Nelson, J.D.; McLellan, B.C.; Hastings, A. Electric and Hydrogen Rail: Potential Contribution to Net Zero in the UK. Transp. Res. D Transp. Environ. 2020, 87, 102523. [Google Scholar] [CrossRef]
- Ćwil, M.; Bartnik, W.; Jarzębowski, S. Railway Vehicle Energy Efficiency as a Key Factor in Creating Sustainable Transportation Systems. Energies 2021, 14, 5211. [Google Scholar] [CrossRef]
- Lai, Y.-C.; Barkan, C.P.L.; Önal, H. Optimizing the Aerodynamic Efficiency of Intermodal Freight Trains. Transp. Res. E Logist. Transp. Rev. 2008, 44, 820–834. [Google Scholar] [CrossRef]
- González-Gil, A.; Palacin, R.; Batty, P.; Powell, J.P. A Systems Approach to Reduce Urban Rail Energy Consumption. Energy Convers. Manag. 2014, 80, 509–524. [Google Scholar] [CrossRef]
- Benítez-López, A.; Alkemade, R.; Verweij, P.A. The Impacts of Roads and Other Infrastructure on Mammal and Bird Populations: A Meta-Analysis. Biol. Conserv. 2010, 143, 1307–1316. [Google Scholar] [CrossRef]
- Chen, H.L.; Koprowski, J.L. Barrier Effects of Roads on an Endangered Forest Obligate: Influences of Traffic, Road Edges, and Gaps. Biol. Conserv. 2016, 199, 33–40. [Google Scholar] [CrossRef]
- Popp, J.; Hamr, J. Seasonal Use of Railways by Wildlife. Diversity 2018, 10, 104. [Google Scholar] [CrossRef]
- Barrientos, R.; Ascensão, F.; Beja, P.; Pereira, H.M.; Borda-de-Água, L. Railway Ecology vs. Road Ecology: Similarities and Differences. Eur. J. Wildl. Res. 2019, 65, 12. [Google Scholar] [CrossRef]
- Coffin, A.W. From Roadkill to Road Ecology: A Review of the Ecological Effects of Roads. J. Transp. Geogr. 2007, 15, 396–406. [Google Scholar] [CrossRef]
- Dorsey, B.; Olsson, M.; Rew, L.J. Ecological Effects of Railways on Wildlife. In Handbook of Road Ecology; John Wiley & Sons, Ltd.: Chichester, UK, 2015; pp. 219–227. [Google Scholar]
- Romanowski, J. Korytarze i Lacznosc Siedlisk w Ekologii i Ochronie Przyrody. Wiadomości Ekol. 2008, 2, 67–78. [Google Scholar]
- Kowal, P.; Jasińska, K.; Babinska-Werka, J. Active Animal Protection Methods along Railway Lines on European Ecological Network Natura 2000. Sci. Rev. Eng. Environ. Sci. 2013, 22, 463–471. [Google Scholar]
- Ito, T.Y.; Miura, N.; Lhagvasuren, B.; Enkhbileg, D.; Takatsuki, S.; Tsunekawa, A.; Jiang, Z. Preliminary Evidence of a Barrier Effect of a Railroad on the Migration of Mongolian Gazelles. Conserv. Biol. 2005, 19, 945–948. [Google Scholar] [CrossRef]
- Kornilev, Y.V.; Price, S.J.; Dorcas, M.E. Between a Rock and a Hard Place: Responses of Eastern Box Turtles (Terrapene Carolina) When Trapped Between Railroad Tracks. Herpetol. Rev. 2006, 37, 145–148. [Google Scholar]
- Fahrig, L. Effects of Habitat Fragmentation on Biodiversity. Annu. Rev. Ecol. Evol. Syst. 2003, 34, 487–515. [Google Scholar] [CrossRef]
- Bhattacharya, M.; Primack, R.B.; Gerwein, J. Are Roads and Railroads Barriers to Bumblebee Movement in a Temperate Suburban Conservation Area? Biol. Conserv. 2003, 109, 37–45. [Google Scholar] [CrossRef]
- Jaeger, J.A.G.; Bowman, J.; Brennan, J.; Fahrig, L.; Bert, D.; Bouchard, J.; Charbonneau, N.; Frank, K.; Gruber, B.; von Toschanowitz, K.T. Predicting When Animal Populations Are at Risk from Roads: An Interactive Model of Road Avoidance Behavior. Ecol. Model. 2005, 185, 329–348. [Google Scholar] [CrossRef]
- Waller, J.S.; Servheen, C. Effects of Transportation Infrastructure on Grizzly Bears in Northwestern Montana. J. Wildl. Manag. 2005, 69, 985–1000. [Google Scholar] [CrossRef]
- Derworiz, C. Trains Travelling through Those National Parks Kill almost 30 Animals a Year. Available online: https://www.cbc.ca/news/canada/calgary/train-speed-death-wildlife-study-1.5822610 (accessed on 8 September 2023).
- Belant, J.L. Moose Collisions with Vehicles and Trains in Northeastern Minnesota. Alces A J. Devoted Biol. Manag. Moose 1995, 31, 45–52. [Google Scholar]
- Krauze-Gryz, D.; Żmihorski, M.; Jasińska, K.; Kwaśny, Ł.; Werka, J. Temporal Pattern of Wildlife-train Collisions in Poland. J. Wildl. Manag. 2017, 81, 1513–1519. [Google Scholar] [CrossRef]
- Jasińska, K.D.; Bijak, S.; Child, K.N.; Rea, R.V. Temporal Patterns of Moose-Train Collisions in British Columbia—Implications for Mitigation. Sylwan 2020, 164, 32–40. [Google Scholar] [CrossRef]
- Treinen, L. Hungry, Angry and Aggressive Moose Put Mushers on High Alert before Iditarod. Available online: https://alaskapublic.org/2022/03/03/hungry-angry-and-aggressive-moose-put-mushers-on-high-alert-before-iditarod/ (accessed on 12 July 2023).
- Malo, J.E.; García de la Morena, E.L.; Hervás, I.; Mata, C.; Herranz, J. Uncapped Tubular Poles along High-Speed Railway Lines Act as Pitfall Traps for Cavity Nesting Birds. Eur. J. Wildl. Res. 2016, 62, 483–489. [Google Scholar] [CrossRef]
- Milewicz, J.; Mokrzan, D.; Szymański, G. Methods to Reduce Wildlife Collisions with Rail Vehicles. Rail Veh. 2021, 3, 30–43. [Google Scholar] [CrossRef]
- Backs, J.A.J.; Nychka, J.A.; St. Clair, C.C. Warning Systems Triggered by Trains Could Reduce Collisions with Wildlife. Ecol. Eng. 2017, 106, 563–569. [Google Scholar] [CrossRef]
- Seiler, A.; Olsson, M. Wildlife Deterrent Methods for Railways—An Experimental Study. In Railway Ecology; Springer International Publishing: Cham, Switzerland, 2017; pp. 277–291. [Google Scholar]
- Shimura, M.; Ushiogi, T.; Ikehata, M. Development of an Acoustic Deterrent to Prevent Deer-Train Collisions. Q. Rep. RTRI 2018, 59, 207–211. [Google Scholar] [CrossRef] [PubMed]
- Iuell, B. Wildlife and Traffic-a European Handbook for Identifying Conflicts and Designing Solutions. In Proceedings of the XXIInd PIARC World Road Congress, Durban, South Africa, 19–25 October 2003; World Road Association (PIARC): Paris, France, 2003. [Google Scholar]
Chosen Aspect of the Environment Impact of Railway | Areas of Negative Impact | Methods of Reducing the Impact |
---|---|---|
Noise pollution | Individuals, wildlife habitats | Legal: speed restrictions, TSI Noise regulations Technological: changes in vehicle constructions and designs Infrastructural: track modernization and noise barriers |
Emissions of toxic gases | Ecosystems, air quality | Legal: EU emissions standards Technological: construction changes in vehicles, use of clean energy Infrastructural: electrification of railway lines |
Direct threats to wildlife | Individuals, wildlife habitats, ecosystems | Legal: eco-friendly railway network development planning, strategies for monitoring wildlife behavior and populations Technological: improving animal deterrence systems Infrastructural: animal crossings |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Milewicz, J.; Mokrzan, D.; Szymański, G.M. Environmental Impact Evaluation as a Key Element in Ensuring Sustainable Development of Rail Transport. Sustainability 2023, 15, 13754. https://doi.org/10.3390/su151813754
Milewicz J, Mokrzan D, Szymański GM. Environmental Impact Evaluation as a Key Element in Ensuring Sustainable Development of Rail Transport. Sustainability. 2023; 15(18):13754. https://doi.org/10.3390/su151813754
Chicago/Turabian StyleMilewicz, Julia, Daniel Mokrzan, and Grzegorz M. Szymański. 2023. "Environmental Impact Evaluation as a Key Element in Ensuring Sustainable Development of Rail Transport" Sustainability 15, no. 18: 13754. https://doi.org/10.3390/su151813754
APA StyleMilewicz, J., Mokrzan, D., & Szymański, G. M. (2023). Environmental Impact Evaluation as a Key Element in Ensuring Sustainable Development of Rail Transport. Sustainability, 15(18), 13754. https://doi.org/10.3390/su151813754