Environmental Impact Assessment of Nesjavellir Geothermal Power Plant for Heat and Electricity Production
Abstract
:1. Introduction
2. Materials and Methods
2.1. Nesjavellir GPP
2.2. Environmental Evaluation Methodology
2.2.1. Goal and Scope Definition
2.2.2. Exergy Allocation Factors
- —the installed electricity capacity (MW);
- —the installed hot water capacity (MW);
- —the auxiliary power demand (4%);
- —the average temperature of the surrounding environment (K);
- —the log-mean temperature of the district heating network (K).
2.2.3. Life Cycle Inventory
- Construction
- Operation and Maintenance
- Dismantling
2.2.4. Impact Assessment
2.2.5. Interpretation
2.3. Environmental Evaluation Methodology
- EI—the environmental indicator referred to the unit of the reference substance under consideration (for example, kg CO2 eq as the unit for the global warming indicator per kWh);
- ECF—the external environmental cost factor related to the environmental impact (EI) under consideration in EUR/(unit of the EI).
3. Results
3.1. Life Cycle Assessment of Nesjavellir GPP Baseline
3.2. Life Cycle Assessment of the Three Main Stages of the Baseline Scenario
3.3. Results Comparison by Applying Abatement Stage
3.4. Environmental Evaluation Methodology
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
EI | Environmental indicator |
GPP | Geothermal power plant |
LCA | Life cycle assessment |
LCI | Life cycle inventory |
NCG | Non-condensable gases |
WTP | Willingness to pay |
Appendix A. LCI of Nesjavellir Power Plant
Construction—Geothermal Narrow Wells | Amount | Unit |
---|---|---|
Steel (for well casing) | 2,373,155.4 | kg |
Portland cement (drilling) | 136,500 | kg |
Portland cement (well casing) | 1,314,366.9 | kg |
Silica flour (well casing) | 525,747.9 | kg |
Wyoming bentonite (well casing) | 26,287.8 | kg |
Perlite (well casing) | 26,287.8 | kg |
Retardant (drilling) | 2436 | kg |
Water binder | 4200 | kg |
Drill soap (drilling) | 12,425.7 | kg |
Bentonite clay (drilling) | 823,200 | kg |
Caustic soda (drilling) | 58,612.47 | kg |
Water (from ground, for concrete) | 12,534,459 | kg |
Water (from ground, for drilling) | 12,534,459 | kg |
Diesel (operating of drill rig) | 2,004,307.2 | L |
Construction—Geothermal Reinjection Wells | Amount | Unit |
---|---|---|
Steel (for well casing) | 162,657 | kg |
Portland cement (drilling) | 9222.15 | kg |
Portland cement (well casing) | 88,800.75 | kg |
Silica flour (well casing) | 35,520.35 | kg |
Wyoming bentonite (well casing) | 1776.05 | kg |
Perlite (well casing) | 1776.05 | kg |
Retardant (drilling) | 164.6 | kg |
Water binder | 283.75 | kg |
Drill soap (drilling) | 839.5 | kg |
Bentonite clay (drilling) | 55,616.75 | kg |
Caustic soda (drilling) | 3959.95 | kg |
Water (from ground, for concrete) | 76,986.2 | kg |
Water (from ground, for drilling) | 846,848.4 | kg |
Diesel (operating of drill rig) | 137,376 | L |
Construction—Wellhead Equipment | Amount | Unit |
---|---|---|
Excavation | 78,000 | m3 |
Fill | 2600 | m3 |
Concrete | 468 | kg |
Steel | 378,924 | kg |
Stainless steel | 416 | kg |
Aluminium | 31,668 | kg |
Construction—Collection Pipeline | Amount | Unit |
---|---|---|
Excavation | 93,600 | m3 |
Fill | 43,160 | m3 |
Concrete | 3,744,000 | kg |
Steel | 1,024,400 | Kg |
Aluminium | 32,240 | Kg |
Rockwool | 223,600 | Kg |
Construction—Extraction Site Land Use | Amount | Unit |
---|---|---|
Land use for drilling operations | 135 | m2 |
Land use for drilling operations | 810 | m2 |
Land use for drilling operations | 810 | m2 |
Construction—Power Plant Buildings | Amount | Unit |
---|---|---|
Excavation | 230,100 | m3 |
Filling | 168,900 | m3 |
Concrete | 21,600,000 | m3 |
Steel | 6,617,400 | kg material |
Stainless steel | 75,600 | kg material |
Aluminium | 88,200 | kg material |
Cooper | 19,800 | kg material |
Mineral wool | 74,700 | kg material |
Asphalt | 531,000 | kg material |
Construction—Electrical Distribution Buildings | Amount | Unit |
---|---|---|
Excavation | 38,750 | m3 |
Fill | 40,770 | m3 |
Concrete | 17,551,200 | m3 |
Steel | 742,983.8 | kg material |
Cast iron | 41,423.70 | kg material |
Black steel | 267,113 | kg material |
PVC | 1660.20 | kg material |
Rock wool | 35,155 | kg material |
Iron | 69,600 | kg material |
Aluminium | 69,600 | kg material |
Plastic | 196 | kg material |
Seals | 225 | kg material |
Wood | 11,385 | kg material |
Aluminium cladding | 7656 | kg material |
Stainless steel | 42,140 | kg material |
Antifreeze | 2072 | kg material |
Asphalt | 154,767 | kg material |
Fibreglass | 3750 | kg material |
Stone | 10,267 | kg material |
Equipment | Material | Amount | Unit |
---|---|---|---|
HP Steam Separator | Steel | 179,961 | kg material |
Aluminium | 3355 | kg material | |
Mineral wool | 18,007 | kg material | |
PE plastic | 701 | kg material | |
HP Pre-separator | Steel | 31,945 | kg material |
Aluminium | 599 | kg material | |
Mineral wool | 3216 | kg material | |
PE plastic | 125 | kg material | |
HP Moisture Separator | Steel | 104,134 | kg material |
Aluminium | 1654 | kg material | |
Mineral wool | 8875 | kg material | |
PE plastic | 345 | kg material | |
Steam Hood | Steel | 59,831 | kg material |
Stainless steel | 22,160 | kg material | |
Aluminium | 1428 | kg material | |
Mineral wool | 5552 | kg material | |
PE plastic | 304 | kg material | |
HP Turbine | Steel | 816,000 | kg material |
Transformer oil + lubricant oil | 28,160 | kg material | |
Cold and Engines | Steel | 25,688 | kg material |
Aluminium | 32,128 | kg material | |
GRP fibreglass reinforced plastic | 380,932 | kg material | |
HP Condenser | Stainless steel | 425,600 | kg material |
Aluminium | 3240 | kg material | |
Titanium | 106,400 | kg material | |
Mineral wool | 1440 | kg material | |
Electrical Transformers | Steel | 203,175 | kg material |
Copper | 74,770 | kg material | |
Transformer oil | 107,394 | kg material | |
Wood | 10,691 | kg material | |
Cooling Tower | Steel | 6422 | kg material |
Aluminium | 8032 | kg material | |
GRP fibreglass reinforced plastic | 95,233 | kg material |
- Material1—the amount of material corresponding to the pilot facilities (kg);
- Material2—the amount of material corresponding to the facilities expected for 2030 (kg);
- Removal capacity1—the percentage of gases not emitted to the atmosphere (8%);
- Removal capacity2—the percentage of gases not emitted to the atmosphere expected for 2030 (95%);
- n—William exponent, which may vary from 0.48 to 0.87 for equipment.
Equipment | Material | Amount | Unit |
---|---|---|---|
Housing | Steel | 16,771.19 | kg material |
Heat exchanger | Stainless steel | 3310 | kg material |
Compressor | Steel | 4650.91 | kg material |
Copper | 618.64 | kg material | |
Absorption tower | Stainless steel | 4767.36 | kg material |
Pump 1 | Stainless steel | 75.42 | kg material |
Copper | 10.03 | kg material | |
Pump 2 | Stainless steel | 68.41 | kg material |
Copper | 9.10 | kg material |
Material | Amount | Unit |
---|---|---|
High-density polyethylene | 48,182.38 | kg material |
Polyurethane (insulation) | 698.42 | kg material |
Cross-linked polyethylene | 103.69 | kg material |
Polyethylene | 736.62 | kg material |
Stainless steel | 3658.25 | kg material |
Operation Phase (Utilities) | |||
---|---|---|---|
Material | Amount | Unit | |
Utility consumption | Water | 41,754,956,217 | l |
Electricity | 220,373,380 | kWh | |
Maintenance Phase (Replacement) | |||
Equipment | Material | Amount | Unit |
Heat exchanger | Stainless steel | 9930.307 | kg material |
Compressor | Stainless steel | 11,162.17 | kg material |
Copper | 1484.75 | kg material | |
Pump 1 | Stainless steel | 133.10 | kg material |
Copper | 17.70 | kg material | |
Pump 2 | Stainless steel | 120.73 | kg material |
Copper | 16.05 | kg material |
Appendix B. Economic Value Conversion Factors
Impact Category | Unit | Economic Value Conversion Factor (EUR) |
---|---|---|
Climate change | kg CO2 eq | 0.0273 |
Terrestrial acidification | kg SO2 eq | 0.9191 |
Freshwater eutrophication | kg P eq | 4.0768 |
Marine eutrophication | kg N eq | 1.274 |
Terrestrial ecotoxicity | kg 1.4-DB eq | 10.2284 |
Freshwater ecotoxicity | kg 1.4-DB eq | 10.2284 |
Marine ecotoxicity | kg 1.4-DB eq | 10.2284 |
Agricultural land occupation | m2a | 0.14833 |
Urban land occupation | m2a | 0.10374 |
Natural land transformation | m2a | 2.9666 |
Water depletion | m3 | 0.0546 |
Metal depletion | kg Fe eq | 0.004368 |
Fossil depletion | kg oilg eq | 0.02457 |
Ozone depletion | DALY | 8471.827 |
Photochemical oxidant formation | DALY | 8471.827 |
Particulate matter formation | DALY | 8471.827 |
Human toxicity | DALY | 8471.827 |
Ionising radiation | DALY | 8471.827 |
References
- Gunnarsdottir, I.; Davidsdottir, B.; Worrell, E.; Sigurgeirsdottir, S. Indicators for sustainable energy development: An Icelandic case study. Energy Policy 2022, 164, 112926. [Google Scholar] [CrossRef]
- Armaroli, N.; Balzani, V. The future of energy supply: Challenges and opportunities. Angew. Chem. Int. Ed. 2007, 46, 52–66. [Google Scholar] [CrossRef] [PubMed]
- Greiner, P.T.; York, R.; McGee, J.A. When are fossil fuels displaced? An exploratory inquiry into the role of nuclear electricity production in the displacement of fossil fuels. Heliyon 2022, 8, e08795. [Google Scholar] [CrossRef]
- Olabi, A.G.; Abdelkareem, M.A. Renewable energy and climate change. Renew. Sustain. Energy Rev. 2022, 158, 112111. [Google Scholar] [CrossRef]
- Tutak, M.; Brodny, J. Renewable energy consumption in economic sectors in the EU-27. The impact on economics, environment and conventional energy sources. A 20-year perspective. J. Clean. Prod. 2022, 345, 131076. [Google Scholar] [CrossRef]
- Cunha, R.P.; Bourne-Webb, P.J. A critical review on the current knowledge of geothermal energy piles to sustainably climatize buildings. Renew. Sustain. Energy Rev. 2022, 158, 112072. [Google Scholar] [CrossRef]
- Vargas, C.A.; Caracciolo, L.; Ball, P.J. Geothermal energy as a means to decarbonize the energy mix of megacities. Commun. Earth Environ. 2022, 3, 66. [Google Scholar] [CrossRef]
- Frick, S.; Kaltschmitt, M.; Schröder, G. Life cycle assessment of geothermal binary power plants using enhanced low-temperature reservoirs. Energy 2010, 35, 2281–2294. [Google Scholar] [CrossRef]
- Vicidomini, M.; Agostino, D.D. Geothermal Source Exploitation for Energy Saving and Environmental Energy Production. Energies 2022, 15, 6420. [Google Scholar] [CrossRef]
- Global Geothermal Energy Capacity 2021|Statista. Available online: https://www.statista.com/statistics/476281/global-capacity-of-geothermal-energy/ (accessed on 27 March 2023).
- Lund, J.W.; Toth, A.N. Direct utilization of geothermal energy 2020 worldwide review. Geothermics 2021, 90, 101915. [Google Scholar] [CrossRef]
- Gkousis, S.; Welkenhuysen, K.; Compernolle, T. Deep geothermal energy extraction, a review on environmental hotspots with focus on geo-technical site conditions. Renew. Sustain. Energy Rev. 2022, 162, 112430. [Google Scholar] [CrossRef]
- Soltani, M.; Kashkooli, F.M.; Souri, M.; Rafiei, B.; Jabarifar, M.; Gharali, K.; Nathwani, J.S. Environmental, economic, and social impacts of geothermal energy systems. Renew. Sustain. Energy Rev. 2021, 140, 110750. [Google Scholar] [CrossRef]
- Hamm, S.G.; Anderson, A.; Blankenship, D.; Boyd, L.W.; Brown, E.A.; Frone, Z.; Winick, J. Geothermal energy R&D: An overview of the U.S. department of energy’s geothermal technologies office. J. Energy Resour. Technol. Trans. ASME 2021, 143, 100801–100802. [Google Scholar] [CrossRef]
- Kabeyi, M.J.B.; Olanrewaju, O.A. Geothermal wellhead technology power plants in grid electricity generation: A review. Energy Strategy Rev. 2022, 39, 100735. [Google Scholar] [CrossRef]
- Díaz-Ramírez, M.; Jokull, S.; Zuffi, C.; Mainar-Toledo, M.D.; Manfrida, G. Environmental Assessment of Hellisheidi Geothermal Power Plant based on Exergy Allocation Factors for Heat and Electricity Production. Energies 2023, 16, 3616. [Google Scholar] [CrossRef]
- Manfrida, G.; Talluri, L.; Ungar, P.; Zuffi, C.; Díaz-Ramírez, M.; Leiva, H.; Mainar-Toledo, M.D.; Jokull, S. Exergo-economic and exergo-environmental assessment of two large CHP geothermal power plants. Geothermics 2023, 113, 102758. [Google Scholar] [CrossRef]
- Sigfússon, B.; Arnarson, M.P.; Snæbjörnsdóttir, S.Ó.; Karlsdóttir, M.R.; Aradóttir, E.S.; Gunnarsson, I. Reducing emissions of carbon dioxide and hydrogen sulphide at Hellisheidi power plant in 2014–2017 and the role of CarbFix in achieving the 2040 Iceland climate goals. Energy Procedia 2018, 146, 135–145. [Google Scholar] [CrossRef]
- Kristjánsdóttir, H.; Kristjánsdóttir, S. Carbfix and sulfix in geothermal production, and the blue lagoon in iceland: Grindavík urban settlement, and volcanic activity. Balt. J. Econ. Stud. 2021, 7, 1–9. [Google Scholar] [CrossRef]
- Karlsdottir, M.R.; Palsson, O.P.; Palsson, H. LCA of Combined Heat and Power Production at Hellisheidi Geothermal Power Plant with Focus on Primary Energy Efficiency. 2010, pp. 184–192. Available online: https://iris.rais.is/en/publications/lca-of-combined-heat-and-power-production-at-hellisheidi-geotherm (accessed on 27 March 2023).
- Douziech, M.; Tosti, L.; Ferrara, N.; Parisi, M.L.; Pérez-López, P.; Ravier, G. Applying harmonised geothermal life cycle assessment guidelines to the Rittershoffen geothermal heat plant. Energies 2021, 14, 3820. [Google Scholar] [CrossRef]
- Gómez-Diaz, E.; Newson, J.; Scott, S.; Ratouis, T. Numerical Modelling of Fluid Flow and Heat Transfer in a Dual-porosity Domain in the Shallow Zone of the Nesjavellir Geothermal System. In Proceedings of the 43rd New Zealand Geothermal Workshop, Wellington, New Zealand, 23–25 November 2021; Available online: https://www.researchgate.net/publication/358274211_Numerical_Modelling_of_Fluid_Flow_and_Heat_Transfer_in_a_Dual-porosity_Domain_in_the_Shallow_Zone_of_the_Nesjavellir_Geothermal_System (accessed on 27 March 2023).
- Atlason, R.S.; Unnthorsson, R. Hot water production improves the energy return on investment of geothermal power plants. Energy 2013, 51, 273–280. [Google Scholar] [CrossRef]
- Reykjavík Energy. Emissions of Carbon Dioxide & Hydrogen Sulphide and Emission Intensity from Hellisheidi and Nesjavellir; Reykjavík Energy: Reykjavík, Iceland, 2021. [Google Scholar]
- Gunnarsson, I.; Aradóttir, E.S.; Sigfússon, B.; Gunnlaugsson, E.; Júlíusson, B.M. Geothermal Gas Emission From Hellisheidi and Nesjavellir Power Plants, Iceland. GRC Trans. 2013, 37, 7859. Available online: https://www.or.is/documents/645/geothermal_gas_emission_from_hellisheidi_and_nesjavellir_power_plants_fudCiwr.pdf (accessed on 5 April 2023).
- Díaz-Ramírez, M.C.; Blecua-de-Pedro, M.; Arnal, A.J.; Post, J. Acid/base flow battery environmental and economic performance based on its potential service to renewables support. J. Clean. Prod. 2022, 330, 129529. [Google Scholar] [CrossRef]
- Royo, P.; Acevedo, L.; Arnal, J.; Diaz-Ramírez, M.; García-Armingol, T.; Ferreira, V.J.; Ferreira, G.; López-Sabirón, A.M. Decision Support System of Innovative High-Temperature Latent Heat Storage for Waste Heat Recovery in the Energy-Intensive Industry. Energies 2021, 14, 365. [Google Scholar] [CrossRef]
- Blecua-De-pedro, M.; Díaz-Ramírez, M.C. Assessment of Potential Barriers to the Implementation of an Innovative AB-FB Energy Storage System under a Sustainable Perspective. Sustainability 2021, 13, 11042. [Google Scholar] [CrossRef]
- Arnal, Á.J.; Díaz-Ramírez, M.; Acevedo, L.; Ferreira, V.J.; García-Armingol, T.; López-Sabirón, A.M.; Ferreira, G. Multicriteria analysis for retrofitting of natural gas melting and heating furnaces for sustainable manufacturing and industry 4.0. J. Energy Resour. Technol. Trans. ASME 2020, 142, 2. [Google Scholar] [CrossRef]
- Díaz-Ramírez, M.C.; Ferreira, V.J.; García-Armingol, T.; López-Sabirón, A.M.; Ferreira, G. Battery Manufacturing Resource Assessment to Minimise Component Production Environmental Impacts. Sustainability 2020, 12, 6840. [Google Scholar] [CrossRef]
- Díaz-Ramírez, M.C.; Ferreira, V.J.; García-Armingol, T.; López-Sabirón, A.M.; Ferreira, G. Environmental Assessment of Electrochemical Energy Storage Device Manufacturing to Identify Drivers for Attaining Goals of Sustainable Materials 4.0. Sustainability 2020, 12, 342. [Google Scholar] [CrossRef]
- Karlsdóttir, M.R.; Pálsson, Ó.P.; Pálsson, H.; Maya-Drysdale, L. Life cycle inventory of a flash geothermal combined heat and power plant located in Iceland. Int. J. Life Cycle Assess. 2015, 20, 503–519. [Google Scholar] [CrossRef]
- Blanc, I.; Damen, L.; Douziech, M.; Fiaschi, D.; Manfrida, G.; Parisi, M.L.; Lopez, P.P.; Ravier, G.; Tosti, L.; Mendecka, B. First version of harmonized Guidelines to Perform Environmental Assessment for Geothermal Systems Based on LCA and non LCA Impact Indicators: LCA Guidelines for Geothermal Installations. Deliverable 3.2. In GEOENVI Project. 2010. Available online: https://www.geoenvi.eu/wp-content/uploads/2020/03/D3.2_LCA_Guidelines-for-geothermal-installations_February-2020.pdf (accessed on 22 January 2022).
- Hai, T.; Radman, S.; Abed, A.M.; Shawabkeh, A.; Abbas, S.Z.; Deifalla, A.; Ghaebi, H. Exergo-economic and exergo-environmental evaluations and multi-objective optimization of a novel multi-generation plant powered by geothermal energy. Process Saf. Environ. Prot. 2023, 172, 57–68. [Google Scholar] [CrossRef]
- Colucci, V.; Manfrida, G.; Mendecka, B.; Talluri, L.; Zuffi, C. LCA and Exergo-Environmental Evaluation of a Combined Heat and Power Double-Flash Geothermal Power Plant. Sustainability 2021, 13, 1935. [Google Scholar] [CrossRef]
- Karlsdottir, M.R.; Heinonen, J.; Palsson, H.; Palsson, O.P. High-Temperature Geothermal Utilization in the Context of European Energy Policy—Implications and Limitations. Energies 2020, 12, 3187. [Google Scholar] [CrossRef]
- Orfanidou, V.S.; Rachaniotis, N.P.; Tsoulfas, G.T.; Chondrokoukis, G.P. Life Cycle Costing Implementation in Green Public Procurement: A Case Study from the Greek Public Sector. Sustainability 2023, 15, 2817. [Google Scholar] [CrossRef]
- Paulillo, A.; Striolo, A.; Lettieri, P. The environmental impacts and the carbon intensity of geothermal energy: A case study on the Hellisheiði plant. Environ. Int. 2019, 133, 105226. [Google Scholar] [CrossRef] [PubMed]
- Yuan, X.; Chen, L.; Sheng, X.; Liu, M.; Xu, Y.; Tang, Y.; Wang, Q.; Ma, Q.; Zuo, J. Life Cycle Cost of Electricity Production: A Comparative Study of Coal-Fired, Biomass, and Wind Power in China. Energies 2021, 14, 3463. [Google Scholar] [CrossRef]
- Seider, W.D.; Lewin, D.R.; Seader, J.D.; Widagdo, S.; Gani, K.M.N.R. Product and Process Design Principles: Synthesis, Analysis, and Evaluation, 4th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2016. [Google Scholar]
Impact Category | Unit | Abbr. |
---|---|---|
Global Warming Potential | kg CO2 eq | GWP |
Stratospheric Ozone Depletion | kg CF-11 eq | ODP |
Ionising Radiation | kg Co-60 eq | IRP |
Ozone Formation, Human Health | kg NOx eq | HOFP |
Ozone Formation, Terrestrial Ecosystem | kg NOx eq | EOFP |
Fine Particulate Matter Formation | kg PM2.5 eq | PMFP |
Terrestrial Acidification | kg SO2 eq | TAP |
Freshwater Eutrophication | kg P eq | FEP |
Marine Eutrophication | kg N eq | MEP |
Terrestrial Ecotoxicity | kg 1,4-DCB | TETP |
Freshwater Ecotoxicity | kg 1,4-DCB | FETP |
Marine Ecotoxicity | kg 1,4-DCB | METP |
Human Carcinogenic Toxicity | kg 1,4-DCB | HTPc |
Human Non-Carcinogenic Toxicity | kg 1,4-DCB | HTPnc |
Land Use | m2a crop eq | LOP |
Mineral Resource Scarcity | kg Cu eq | SOP |
Fossil Resource Scarcity | kg oil eq | FFP |
Water Consumption | m3 | WCP |
Impact Category | Unit | Economic Value Conversion Factor (EUR/EI) [39] | Total Environmental Impact per Functional Unit (EI/kWhe) | External Cost (EUR/kWhe) |
---|---|---|---|---|
Climate change | kg CO2 eq | 0.03 | 0.0155 | 4.65 × 10−4 |
Terrestrial acidification | kg SO2 eq | 1.01 | 0.0124 | 0.0125 |
Total | - | - | - | 0.01297 |
Impact Category | Unit | Economic Value Conversion Factor (EUR/EI) [39] | Total Environmental Impact per Functional Unit (EI/kWht) | External Cost (EUR/kWht) |
---|---|---|---|---|
Climate change | kg CO2 eq | 0.03 | 0.00255 | 7.65 × 10−5 |
Terrestrial acidification | kg SO2 eq | 1.01 | 0.002 | 0.00202 |
Total | - | - | - | 0.0021 |
Impact Category | Unit | Economic Value Conversion Factor (EUR/EI) [39] | Total Environmental Impact per Functional Unit (EI/kWhe) | External Cost (EUR/kWhe) |
---|---|---|---|---|
Climate change | kg CO2 eq | 0.03 | 0.00339 | 1.017 × 10−4 |
Terrestrial acidification | kg SO2 eq | 1.01 | 6.63 × 10−4 | 6.696 × 10−4 |
Total | - | - | - | 0.00078 |
Impact Category | Unit | Economic Value Conversion Factor (EUR/EI) [39] | Total Environmental Impact per Functional Unit (EI/kWht) | External Cost (EUR/kWht) |
---|---|---|---|---|
Climate change | kg CO2 eq | 0.03 | 0.00101 | 3 × 10−5 |
Terrestrial acidification | kg SO2 eq | 1.01 | 1.03 × 10−4 | 1.04 × 10−4 |
Total | - | - | - | 0.000134 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mainar-Toledo, M.D.; Díaz-Ramírez, M.; Egilsson, S.J.; Zuffi, C.; Manfrida, G.; Leiva, H. Environmental Impact Assessment of Nesjavellir Geothermal Power Plant for Heat and Electricity Production. Sustainability 2023, 15, 13943. https://doi.org/10.3390/su151813943
Mainar-Toledo MD, Díaz-Ramírez M, Egilsson SJ, Zuffi C, Manfrida G, Leiva H. Environmental Impact Assessment of Nesjavellir Geothermal Power Plant for Heat and Electricity Production. Sustainability. 2023; 15(18):13943. https://doi.org/10.3390/su151813943
Chicago/Turabian StyleMainar-Toledo, María Dolores, Maryori Díaz-Ramírez, Snorri J. Egilsson, Claudio Zuffi, Giampaolo Manfrida, and Héctor Leiva. 2023. "Environmental Impact Assessment of Nesjavellir Geothermal Power Plant for Heat and Electricity Production" Sustainability 15, no. 18: 13943. https://doi.org/10.3390/su151813943
APA StyleMainar-Toledo, M. D., Díaz-Ramírez, M., Egilsson, S. J., Zuffi, C., Manfrida, G., & Leiva, H. (2023). Environmental Impact Assessment of Nesjavellir Geothermal Power Plant for Heat and Electricity Production. Sustainability, 15(18), 13943. https://doi.org/10.3390/su151813943