Trends in Green Chemistry Research between 2012 and 2022: Current Trends and Research Agenda
Abstract
:1. Introduction
- RQ1: What are the years with the highest interest in Green Chemistry?
- RQ2: What type of growth is observed in the number of scientific articles on Green Chemistry?
- RQ3: Who are the main research references in Green Chemistry in terms of productivity and scientific impact?
- RQ4: What is the thematic evolution derived from the scientific production of Green Chemistry?
- RQ5: What are the main clusters of international scientific collaboration in research on Green Chemistry?
- RQ6: What are the main thematic clusters in Green Chemistry?
- RQ7: What are the emerging and growing keywords in the field of Green Chemistry research?
2. Methodology
2.1. Inclusion Criteria
2.2. Exclusion Criteria
2.3. Sources of Information
2.4. Search Strategies
TITLE (“Green Chemistry” OR “Sustainable Chemistry” OR “Green-chemistry”) AND (LIMIT-TO (PUBYEAR, 2022) OR LIMIT-TO (PUBYEAR, 2021) OR LIMIT-TO (PUBYEAR, 2020) OR LIMIT-TO (PUBYEAR, 2019) OR LIMIT-TO (PUBYEAR, 2018) OR LIMIT-TO (PUBYEAR, 2017) OR LIMIT-TO (PUBYEAR, 2016) OR LIMIT-TO (PUBYEAR, 2015) OR LIMIT-TO (PUBYEAR, 2014) OR LIMIT-TO (PUBYEAR, 2013) OR LIMIT-TO (PUBYEAR, 2012))
TI = (“Green Chemistry” OR “Sustainable Chemistry” OR “Green-chemistry”) AND (PY = (2022) OR PY = (2021) OR PY = (2020) OR PY = (2019) OR PY = (2018) OR PY = (2017) OR PY = (2016) OR PY = (2015) OR PY = (2014) OR PY = (2013) OR PY = (2012))
2.5. Data Management
2.6. Assessment of Reporting Bias
3. Results and Discussions
3.1. Referents for Green Chemistry Research
3.2. Structure Indicators of Green Chemistry Research
3.3. Thematic Components of Green Chemistry Research
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ahmad, C.; Yahaya, A.; Yahaya, R.; Taha, H.; Ibrahim, M. Establishment of green chemistry awareness instrument for secondary school students. Int. J. Eval. Res. Educ. 2022, 11, 1833–1844. [Google Scholar] [CrossRef]
- Grieger, K.; Hill, B.; Leontyev, A. Exploring curriculum adoption of green and sustainable chemistry in undergraduate organic chemistry courses: Results from a national survey in the United States. Green Chem. 2022, 24, 8770–8782. [Google Scholar] [CrossRef]
- Liu, Y. Effects of a CURE laboratory module on general chemistry students’ perceptions of scientific research, green chemistry, and self-efficacy. J. Chem. Educ. 2022, 99, 2588–2596. [Google Scholar] [CrossRef]
- England, A.; Morrison, L.; Wood-Moore, M.; Kennedy, A.; Velasco, J.D.; White, J.; Meredith, N.A.; Mauldin, R.F. Treatment of waste from the molybdenum blue analysis of phosphate: A laboratory experiment in green chemistry. J. Chem. Educ. 2022, 99, 2643–2648. [Google Scholar] [CrossRef]
- Rosales-Martínez, A.; Rodríguez-García, I.; López-Martínez, J.L. Green reductive regioselective opening of epoxides: A green chemistry laboratory experiment. J. Chem. Educ. 2022, 99, 2710–2714. [Google Scholar] [CrossRef]
- Paschalidou, K.; Salta, K.; Koulougliotis, D. Exploring the connections between systems thinking and green chemistry in the context of chemistry education: A scoping review. Sustain. Chem. Pharm. 2022, 29, 100788. [Google Scholar] [CrossRef]
- Mammino, L. Computational chemistry and green chemistry: Familiarizing chemistry students with the modes and benefits of promising synergies. Sustain. Chem. Pharm. 2022, 29, 100743. [Google Scholar] [CrossRef]
- Antenucci, A.; Nejrotti, S.; Plata, M.J.M.; Mariotti, N.; Barbero, N. Unconventional and sustainable synthesis of polymethine dyes: Critical overview and perspectives within the framework of the twelve principles of green chemistry. Eur. J. Org. Chem. 2022, 2022, e202200943. [Google Scholar] [CrossRef]
- Rubab, L.; Anum, A.; Al-Hussain, S.A.; Irfan, A.; Ahmad, S.; Ullah, S.; Al-Mutairi, A.A.; Zaki, M.E.A. Green chemistry in organic synthesis: Recent update on green catalytic approaches in synthesis of 1,2,4-thiadiazoles. Catalysts 2022, 12, 1329. [Google Scholar] [CrossRef]
- Visser, D.; Bakhshi, H.; Rogg, K.; Fuhrmann, E.; Wieland, F.; Schenke-Layland, K.; Meyer, W.; Hartmann, H. Green chemistry for biomimetic materials: Synthesis and electrospinning of high-molecular-weight polycarbonate-based nonisocyanate polyurethanes. ACS Omega 2022, 7, 39772–39781. [Google Scholar] [CrossRef]
- Cherian, T.; Maity, D.; Kumar, R.T.R.; Balasubramani, G.; Ragavendran, C.; Yalla, S.; Mohanraju, R.; Peijnenburg, W.J.G.M. Green chemistry based gold nanoparticles synthesis using the marine bacterium Lysinibacillus odysseyi PBCW2 and their multitudinous activities. Nanomaterials 2022, 12, 2940. [Google Scholar] [CrossRef] [PubMed]
- Al Jahdaly, B.A.; Maghraby, Y.R.; Ibrahim, A.H.; Shouier, K.R.; Alturki, A.M.; El-Shabasy, R.M. Role of green chemistry in sustainable corrosion inhibition: A review on recent developments. Mater. Today Sustain. 2022, 20, 100242. [Google Scholar] [CrossRef]
- Kumari, S.; Sharma, A.; Kumar, S.; Thakur, A.; Thakur, R.; Bhatia, S.K.; Sharma, A.K. Multifaceted potential applicability of hydrotalcite-type anionic clays from green chemistry to environmental sustainability. Chemosphere 2022, 306, 135464. [Google Scholar] [CrossRef] [PubMed]
- Tada, H.; Naya, S.I. Antimony-doped tin oxide catalysts for green and sustainable chemistry. J. Phys. Chem. C 2022, 126, 13539–13547. [Google Scholar] [CrossRef]
- Zofair, S.F.F.; Ahmad, S.; Hashmi, M.A.; Khan, S.H.; Khan, M.A.; Younus, H. Catalytic roles, immobilization and management of recalcitrant environmental pollutants by laccases: Significance in sustainable green chemistry. J. Environ. Manag. 2022, 309, 114676. [Google Scholar] [CrossRef]
- Kar, S.; Sanderson, H.; Roy, K.; Benfenati, E.; Leszczynski, J. Green chemistry in the synthesis of pharmaceuticals. Chem. Rev. 2022, 122, 3637–3710. [Google Scholar] [CrossRef]
- Fantoni, T.; Tolomelli, A.; Cabri, W. A translation of the twelve principles of green chemistry to guide the development of cross-coupling reactions. Catal. Today 2022, 397–399, 265–271. [Google Scholar] [CrossRef]
- Khan, M.; Shah, S.R.; Khan, F.; Halim, S.A.; Rahman, S.M.; Khalid, M.; Khan, A.; Al-Harrasi, A. Efficient synthesis with green chemistry approach of novel pharmacophores of imidazole-based hybrids for tumor treatment: Mechanistic insights from in situ to in silico. Cancers 2022, 14, 5079. [Google Scholar] [CrossRef]
- Namazi, N.I.; Alshehri, S.; Bafail, R.; Huwaimel, B.; Alsubaiyel, A.M.; Alamri, A.H.; Alatawi, A.D.; Kotb, H.; Sarjadi, M.S.; Rahman, M.L.; et al. Solubility enhancement of decitabine as anticancer drug via green chemistry solvent: Novel computational prediction and optimization. Arab. J. Chem. 2022, 15, 104259. [Google Scholar] [CrossRef]
- Salman, B.I.; Ibrahim, A.E.; El Deeb, S.; Saraya, R.E. Fabrication of novel quantum dots for the estimation of COVID-19 antiviral drug using green chemistry: Application to real human plasma. RSC Adv. 2022, 12, 16624–16631. [Google Scholar] [CrossRef]
- Stubbs, S.; Yousaf, S.; Khan, I. A review on the synthesis of bio-based surfactants using green chemistry principles. DARU J. Pharm. Sci. 2022, 30, 407–426. [Google Scholar] [CrossRef] [PubMed]
- Szabo, K.; Teleky, B.E.; Ranga, F.; Roman, I.; Khaoula, H.; Boudaya, E.; Ltaief, A.B.; Aouani, W.; Thiamrat, M.; Vodnar, D.C. Carotenoid recovery from tomato processing by-products through green chemistry. Molecules 2022, 27, 3771. [Google Scholar] [CrossRef] [PubMed]
- Gómez-García, R.; Vilas-Boas, A.A.; Vilas-Boas, A.M.; Campos, D.A.; Pintado, M. Polyelectrolyte precipitation: A new green chemistry approach to recover value-added proteins from different sources in a circular economy context. Molecules 2022, 27, 5115. [Google Scholar] [CrossRef]
- Banerjee, K.; Hübschmann, H.J. Automation in pesticide residue analysis in foods: A step toward smarter laboratories and green chemistry. ACS Agric. Sci. Technol. 2022, 2, 426–429. [Google Scholar] [CrossRef]
- Erceg, T.; Vukić, N.; Šovljanski, O.; Stupar, A.; Šergelj, V.; Aćimović, M.; Baloš, S.; Ugarković, J.; Šuput, D.; Popović, S.; et al. Characterization of films based on cellulose acetate/poly(caprolactone diol) intended for active packaging prepared by green chemistry principles. ACS Sustain. Chem. Eng. 2022, 10, 9141–9154. [Google Scholar] [CrossRef]
- Feng, J.; Ma, Z.; Xu, Z.; Xie, H.; Lu, Y.; Maluk, C.; Song, P.; Bourbigot, S.; Wang, H. A Si-containing polyphosphoramide via green chemistry for fire-retardant polylactide with well-preserved mechanical and transparent properties. Chem. Eng. J. 2022, 431, 134259. [Google Scholar] [CrossRef]
- Clark, J.H. Using green chemistry to progress a circular fashion industry. Curr. Opin. Green Sustain. Chem. 2022, 38, 100685. [Google Scholar] [CrossRef]
- Saxe, J.K.; Hoffman, L.; Labib, R. Method to incorporate green chemistry principles in early-stage product design for sustainability: Case studies with personal care products. Green Chem. 2022, 24, 4969–4980. [Google Scholar] [CrossRef]
- Lutzweiler, G.; Zhang, Y.; Louis, B. Marginal strategies of CO2 use as a reactant for sustainable chemistry and health applications. Curr. Opin. Green Sustain. Chem. 2022, 37, 100679. [Google Scholar] [CrossRef]
- Altunina, L.K.; Kuvshinov, V.A.; Stasyeva, L.A.; Kuvshinov, I.V.; Kozlov, V.V.; Sholidodov, M.R. Advanced compositions for increasing oil recovery on the principles of “green chemistry”. AIP Conf. Proc. 2022, 2509, 020015. [Google Scholar] [CrossRef]
- Santos, L.B.; Assis, R.S.; Barreto, J.A.; Bezerra, M.A.; Novaes, C.G.; Lemos, V.A. Deep eutectic solvents in liquid-phase microextraction: Contribution to green chemistry. TrAC Trends Anal. Chem. 2022, 146, 116478. [Google Scholar] [CrossRef]
- Rico-Barragán, A.A.; Raziel-Álvarez, J.; Hernández-Fernández, E.; Rodríguez-Hernández, J.; Garza-Navarro, M.A.; Dávila-Guzmán, N.E. Green synthesis of metal-organic framework MIL-101(Cr)—An assessment by quantitative green chemistry metrics. Polyhedron 2022, 225, 116052. [Google Scholar] [CrossRef]
- Donato, L.; Nasser, I.I.; Majdoub, M.; Drioli, E. Green chemistry and molecularly imprinted membranes. Membranes 2022, 12, 472. [Google Scholar] [CrossRef] [PubMed]
- Mastronardi, V.; Kim, J.; Veronesi, M.; Pomili, T.; Berti, F.; Udayan, G.; Brescia, R.; Diercks, J.S.; Herranz, J.; Bandiera, T.; et al. Green chemistry and first-principles theory enhance catalysis: Synthesis and 6-fold catalytic activity increase of sub-5 nm Pd and Pt@Pd nanocubes. Nanoscale 2022, 14, 10155–10168. [Google Scholar] [CrossRef] [PubMed]
- Geng, W.; Wang, L.; Yang, X.Y. Nanocell hybrids for green chemistry. Trends Biotechnol. 2022, 40, 974–986. [Google Scholar] [CrossRef]
- Omran, B.A.; Baek, K.H. Valorization of agro-industrial biowaste to green nanomaterials for wastewater treatment: Approaching green chemistry and circular economy principles. J. Environ. Manag. 2022, 311, 114806. [Google Scholar] [CrossRef]
- Quispe-Quispe, L.G.; Limpe-Ramos, P.; Arenas-Chávez, C.A.; Gomez, M.M.; Mejia, C.R.; Alvarez-Risco, A.; Del-Aguila-Arcentales, S.; Yáñez, J.A.; Vera-Gonzales, C. Physical and mechanical characterization of a functionalized cotton fabric with nanocomposite based on silver nanoparticles and carboxymethyl chitosan using green chemistry. Processes 2022, 10, 1207. [Google Scholar] [CrossRef]
- Mathiesen, J.K.; Cooper, S.R.; Anker, A.S.; Kinnibrugh, T.L.; Jensen, K.M.Ø.; Quinson, J. Simple setup miniaturization with multiple benefits for green chemistry in nanoparticle synthesis. ACS Omega 2022, 7, 4714–4721. [Google Scholar] [CrossRef]
- Irfan, M.; Munir, H.; Ismail, H. Characterization and fabrication of zinc oxide nanoparticles by gum Acacia modesta through green chemistry and impregnation on surgical sutures to boost up the wound healing process. Int. J. Biol. Macromol. 2022, 204, 466–475. [Google Scholar] [CrossRef]
- Ciriminna, R.; Pagliaro, M. Green chemistry in the fine chemicals and pharmaceutical industries. Org. Process Res. Dev. 2022, 17, 1479–1484. [Google Scholar] [CrossRef]
- Fantke, P.; Cinquemani, C.; Yaseneva, P.; De Mello, J.; Schwabe, H.; Ebeling, B.; Lapkin, A.A. Transition to sustainable chemistry through digitalization. Chem 2021, 7, 2866–2882. [Google Scholar] [CrossRef]
- Kahn, M. A bibliometric analysis of South Africa’s scientific outputs—Some trends and implications. S. Afr. J. Sci. 2021, 107, 6. [Google Scholar] [CrossRef]
- Urhan, B.; Hoştut, S.; Güdekli, İ.A.; Aydoğan, H. Climate change and marketing: A bibliometric analysis of research from 1992 to 2022. Environ. Sci. Pollut. Res. 2023, 30, 81550–81572. [Google Scholar] [CrossRef] [PubMed]
- Mishra, M.; Sudarsan, D.; Santos, C.A.G.; Mishra, S.K.; Kar, D.; Baral, K.; Pattnaik, N. An overview of research on natural resources and indigenous communities: A bibliometric analysis based on Scopus database (1979–2020). Environ. Monit. Assess. 2021, 193, 59. [Google Scholar] [CrossRef] [PubMed]
- Furstenau, L.B.; Sott, M.K.; Kipper, L.M.; Machado, E.L.; Lopez-Robles, J.R.; Dohan, M.S.; Cobo, M.J.; Zahid, A.; Abbasi, Q.H.; Imran, M.A. Link Between Sustainability and Industry 4.0: Trends, Challenges and New Perspectives. IEEE Access 2020, 8, 140079–140096. [Google Scholar] [CrossRef]
- Sharma, S.K.; Demir, H. Green Chemistry in Scientific Literature; CRC Press: Boca Raton, FL, USA, 2019. [Google Scholar] [CrossRef]
- Yilan, G.; Cordella, M.; Morone, P. Evaluating and managing the sustainability of investments in green and sustainable chemistry: An overview of sustainable finance approaches and tools. Curr. Opin. Green Sustain. Chem. 2022, 36, 100635. [Google Scholar] [CrossRef]
- Caputo, A.; Kargina, M. A user-friendly method to merge Scopus and Web of Science data during bibliometric analysis. J. Mark. Anal. 2021, 10, 82–88. [Google Scholar] [CrossRef]
- Cascella, M.; Perri, F.; Ottaiano, A.; Cuomo, A.; Wirz, S.; Coluccia, S. Trends in research on artificial intelligence in anesthesia: A VOSviewer -based bibliometric analysis. Intel. Artif. 2022, 25, 126–137. [Google Scholar] [CrossRef]
- Rodriguez-Marin, M.; Saiz-Alvarez, J.M.; Huezo-Ponce, L. A bibliometric analysis on pay-per-click as an instrument for digital entrepreneurship management using VOSviewer and SCOPUS data analysis tools. Sustainability 2022, 14, 16956. [Google Scholar] [CrossRef]
- Van Eck, N.J.; Waltman, L. Text mining and visualization using VOSviewer. arXiv 2023, arXiv:1109.2058. [Google Scholar]
- Machado, C.; Oliynyk, A.O.; Silverman, J.R. Tie-dyeing with foraged acorns and rust: A workshop connecting green chemistry and environmental science. J. Chem. Educ. 2022, 99, 2431–2437. [Google Scholar] [CrossRef]
- Choudhury, A.K.R. Green chemistry and the textile industry. Text. Prog. 2013, 45, 3–143. [Google Scholar] [CrossRef]
- DeVito, S.C.; Keenan, C.; Lazarus, D. Can pollutant release and transfer registers (PRTRs) be used to assess implementation and effectiveness of green chemistry practices? A case study involving the Toxics Release Inventory (TRI) and pharmaceutical manufacturers. Green Chem. 2015, 17, 2679–2692. [Google Scholar] [CrossRef]
- Keppeler, N.; Novaki, L.P.; El Seoud, O.A. Teaching the undergraduate laboratory during pandemic time: Using the synthesis of a biodiesel model to demonstrate aspects of green chemistry. J. Chem. Educ. 2021, 98, 3962–3967. [Google Scholar] [CrossRef]
- Crisci, J.V.; Katinas, L. Las citas bibliográficas en la evaluación de la actividad científica: Significado, consecuencias y un marco conceptual alternativo. Bol. Soc. Argent. Bot. 2020, 55, 327–337. [Google Scholar] [CrossRef]
- Khudzari, J.M.; Kurian, J.; Tartakovsky, B.; Raghavan, G.S.V. Bibliometric analysis of global research trends on microbial fuel cells using Scopus database. Biochem. Eng. J. 2018, 136, 51–60. [Google Scholar] [CrossRef]
- Arshad, R.N.; Abdul-Malek, Z.; Roobab, U.; Ranjha, M.M.A.N.; Jambrak, A.R.; Qureshi, M.I.; Khan, N.; Lorenzo, J.M.; Aadil, R.M. Nonthermal food processing: A step towards a circular economy to meet the sustainable development goals. Food Chem. X 2022, 16, 100516. [Google Scholar] [CrossRef]
- Ebolor, A.; Agarwal, N.; Brem, A. Sustainable development in the construction industry: The role of frugal innovation. J. Clean. Prod. 2022, 380, 134922. [Google Scholar] [CrossRef]
- Sharma, S.; Das, J.; Braje, W.M.; Dash, A.K.; Handa, S. A glimpse into green chemistry practices in the pharmaceutical industry. ChemSusChem 2020, 13, 2859–2875. [Google Scholar] [CrossRef]
- Koenig, S.G.; Bee, C.; Borovika, A.; Briddell, C.; Colberg, J.; Humphrey, G.R.; Kopach, M.E.; Martinez, I.; Nambiar, S.; Plummer, S.V.; et al. A green chemistry continuum for a robust and sustainable active pharmaceutical ingredient supply chain. ACS Sustain. Chem. Eng. 2019, 7, 16937–16951. [Google Scholar] [CrossRef]
- Withers, P.J.A.; Elser, J.J.; Hilton, J.; Ohtake, H.; Schipper, W.J.; van Dijk, K.C. Greening the global phosphorus cycle: How green chemistry can help achieve planetary P sustainability. Green Chem. 2015, 17, 2087–2099. [Google Scholar] [CrossRef]
- Matus, K.J.M.; Xiao, X.; Zimmerman, J.B. Green chemistry and green engineering in China: Drivers, policies and barriers to innovation. J. Clean. Prod. 2012, 32, 193–203. [Google Scholar] [CrossRef]
- Cinelli, M.; Coles, S.R.; Nadagouda, M.N.; Błaszczyński, J.; Słowiński, R.; Varma, R.S.; Kirwan, K. A green chemistry-based classification model for the synthesis of silver nanoparticles. Green Chem. 2015, 17, 2825–2839. [Google Scholar] [CrossRef]
- Abraham, L.; Stachow, L.; Du, H. Cinnamon oil: An alternate and inexpensive resource for green chemistry experiments in organic chemistry laboratory. J. Chem. Educ. 2020, 97, 3797–3805. [Google Scholar] [CrossRef]
- Ali, Z.M.; Harris, V.H.; LaLonde, R.L. Beyond green chemistry: Teaching social justice in organic chemistry. J. Chem. Educ. 2020, 97, 3984–3991. [Google Scholar] [CrossRef]
- Voigt, K.; Scherb, H.; Bruggemann, R.; Schramm, K.W. Discrete mathematical data analysis approach: A valuable assessment method for sustainable chemistry. Sci. Total Environ. 2013, 454–455, 149–153. [Google Scholar] [CrossRef]
- Manchanayakage, R. Designing and incorporating green chemistry courses at a liberal arts college to increase students’ awareness and interdisciplinary collaborative work. J. Chem. Educ. 2013, 90, 1167–1171. [Google Scholar] [CrossRef]
- Buckley, H.L.; Beck, A.R.; Mulvihill, M.J.; Douskey, M.C. Fitting it all in: Adapting a green chemistry extraction experiment for inclusion in an undergraduate analytical laboratory. J. Chem. Educ. 2013, 90, 771–774. [Google Scholar] [CrossRef]
- Aragão, J.S.; Ribeiro, F.W.P.; Portela, R.R.; Santos, V.N.; Sousa, C.P.; Becker, H.; Correia, A.N.; De Lima-Neto, P. Electrochemical determination diethylstilbestrol by a multi-walled carbon nanotube/cobalt phthalocyanine film electrode. Sens. Actuators B Chem. 2017, 239, 933–942. [Google Scholar] [CrossRef]
- Karunanayake, A.G.; Dewage, N.B.; Todd, O.A.; Essandoh, M.; Anderson, R.; Mlsna, T.; Mlsna, D. Salicylic acid and 4-nitroaniline removal from water using magnetic biochar: An environmental and analytical experiment for the undergraduate laboratory. J. Chem. Educ. 2016, 93, 1935–1938. [Google Scholar] [CrossRef]
- Fennie, M.W.; Roth, J.M. Comparing amide-forming reactions using green chemistry metrics in an undergraduate organic laboratory. J. Chem. Educ. 2016, 93, 1788–1793. [Google Scholar] [CrossRef]
- Montoya, D.F.M.; Cosio, E.J.; Aguirre, J.S.; Bocanegra, J.E.M. Ionic liquids as promising catalysts in organic synthesis: A contribution to sustainable chemistry. Rev. Lasallista Investig. 2017, 14, 171–179. [Google Scholar] [CrossRef]
- Muhieddine, M.H.; Viswanath, S.K.; Armstrong, A.; Galindo, A.; Adjiman, C.S. Model-based solvent selection for the synthesis and crystallisation of pharmaceutical compounds. Chem. Eng. Sci. 2022, 264, 118125. [Google Scholar] [CrossRef]
- Chang, X.X.; Mubarak, N.M.; Mazari, S.A.; Jatoi, A.S.; Ahmad, A.; Khalid, M.; Walvekar, R.; Abdullah, E.C.; Karri, R.R.; Siddiqui, M.T.H.; et al. A review on the properties and applications of chitosan, cellulose and deep eutectic solvent in green chemistry. J. Ind. Eng. Chem. 2021, 104, 362–380. [Google Scholar] [CrossRef]
- Seferji, K.A.; Susapto, H.H.; Khan, B.K.; Rehman, Z.U.; Abbas, M.; Emwas, A.H.; Hauser, C.A.E. Green synthesis of silver-peptide nanoparticles generated by the photoionization process for anti-biofilm application. ACS Appl. Bio Mater. 2021, 4, 8522–8535. [Google Scholar] [CrossRef]
- Zięba, W.; Jurkiewicz, K.; Burian, A.; Pawlyta, M.; Boncel, S.; Szymański, G.S.; Kubacki, J.; Kowalczyk, P.; Krukiewicz, K.; Furuse, A.; et al. High-surface-area graphene oxide for next-generation energy storage applications. ACS Appl. Nano Mater. 2022, 5, 18448–18461. [Google Scholar] [CrossRef]
- Holme, T. Using the chemistry of pharmaceuticals to introduce sustainable chemistry and systems thinking in general chemistry. Sustain. Chem. Pharm. 2020, 16, 100234. [Google Scholar] [CrossRef]
- Ciriminna, R.; Albo, Y.; Fidalgo, A.; Ilharco, L.; Pagliaro, M. Silanes for building protection: A case study in systems thinking approach to materials science education. Educ. Sci. 2020, 10, 171. [Google Scholar] [CrossRef]
- Jefferson, M.T.; Rutter, C.; Fraine, K.; Borges, G.V.B.; De Souza Santos, G.M.; Schoene, F.A.P.; Hurst, G.A. Valorization of sour milk to form bioplastics: Friend or foe? J. Chem. Educ. 2020, 97, 1073–1076. [Google Scholar] [CrossRef]
- Gawlik-Kobylińska, M.; Walkowiak, W.; Maciejewski, P. Improvement of a sustainable world through the application of innovative didactic tools in green chemistry teaching: A review. J. Chem. Educ. 2020, 97, 916–924. [Google Scholar] [CrossRef]
- Feng, Y.; Wang, R.; Ge, T. Pathways to energy-efficient water production from the atmosphere. Adv. Sci. 2022, 9, 2204508. [Google Scholar] [CrossRef]
- Zhang, Y.; Jiang, F.; Zhao, W.; Fu, L.; Xu, C.; Lin, B. One-pot synthesis of degradable and renewable cellulose-based packaging films. ACS Sustain. Chem. Eng. 2022, 10, 16871–16881. [Google Scholar] [CrossRef]
- Selestin, A.V.; Karuppiah, A.; Thanapalan, V.G.; Christopher, I.F.F. Detailed analysis of crystal structure and optical properties of green synthesized nanoparticles: Application for photocatalyst degradation of methylene blue. Trends Sci. 2022, 19, 4430. [Google Scholar] [CrossRef]
- Mesquita, P.C.; Rodrigues, L.G.G.; Mazzutti, S.; Da Silva, M.; Vitali, L.; Lanza, M. Intensified green-based extraction process as a circular economy approach to recover bioactive compounds from soursop seeds (Annona muricata L.). Food Chem. X 2021, 12, 100164. [Google Scholar] [CrossRef] [PubMed]
- Rozina; Ahmad, M.; Zafar, M. Conversion of waste seed oil of Citrus aurantium into methyl ester via green and recyclable nanoparticles of zirconium oxide in the context of circular bioeconomy approach. Waste Manag. 2021, 136, 310–320. [Google Scholar] [CrossRef]
- Niu, H.; Zhang, K.; Myllymäki, S.; Ismail, M.Y.; Kinnunen, P.; Illikainen, M.; Liimatainen, H. Nanostructured and advanced designs from biomass and mineral residues: Multifunctional biopolymer hydrogels and hybrid films reinforced with exfoliated mica nanosheets. ACS Appl. Mater. Interfaces 2021, 13, 57841–57850. [Google Scholar] [CrossRef]
- Schiros, T.N.; Mosher, C.Z.; Zhu, Y.; Bina, T.; Gomez, V.; Lee, C.L.; Lu, H.H.; Obermeyer, A.C. Bioengineering textiles across scales for a sustainable circular economy. Chem 2021, 7, 2913–2926. [Google Scholar] [CrossRef]
- Liu, F.; Liu, X.; Chen, F.; Fu, Q. Tannic acid: A green and efficient stabilizer of Au, Ag, Cu and Pd nanoparticles for the 4-Nitrophenol Reduction, Suzuki–Miyaura coupling reactions and click reactions in aqueous solution. J. Colloid Interface Sci. 2021, 604, 281–291. [Google Scholar] [CrossRef]
- Rattanakit, P. Open inquiry-based laboratory project on plant-mediated green synthesis of metal nanoparticles and their potential applications. J. Chem. Educ. 2021, 98, 3984–3991. [Google Scholar] [CrossRef]
- Wang, C.; Wang, Y.; Gan, Z.; Lu, Y.; Qian, C.; Huo, F.; He, H.; Zhang, S. Topological engineering of two-dimensional ionic liquid islands for high structural stability and CO2 adsorption selectivity. Chem. Sci. 2021, 12, 15503–15510. [Google Scholar] [CrossRef]
- D’Anna, F.; Sbacchi, M.; Infurna, G.; Dintcheva, N.T.; Marullo, S. Boosting the methanolysis of polycarbonate by the synergy between ultrasound irradiation and task specific ionic liquids. Green Chem. 2021, 23, 9957–9967. [Google Scholar] [CrossRef]
- Fardood, S.T.; Ramazani, A.; Joo, S.W. Green chemistry approach for the synthesis of copper oxide nanoparticles using tragacanth gel and their structural characterization. J. Struct. Chem. 2018, 59, 482–486. [Google Scholar] [CrossRef]
- Verma, N. A green synthetic approach for size tunable nanoporous gold nanoparticles and its glucose sensing application. Appl. Surf. Sci. 2018, 462, 753–759. [Google Scholar] [CrossRef]
- Hariram, M.; Vivekanandhan, S. Phytochemical process for the functionalization of materials with metal nanoparticles: Current trends and future perspectives. ChemistrySelect 2018, 3, 13561–13585. [Google Scholar] [CrossRef]
- Reyes-Bozo, L.; Vyhmeister, E.; Godoy-Faúndez, A.; Higueras, P.; Fúnez-Guerra, C.; Valdés-González, H.; Salazar, J.L.; Herrera-Urbina, R. Use of humic substances in froth flotation processes. J. Environ. Manag. 2019, 252, 109699. [Google Scholar] [CrossRef]
- Lee, R.P.; Keller, F.; Meyer, B. A concept to support the transformation from a linear to circular carbon economy: Net zero emissions, resource efficiency and conservation through a coupling of the energy, chemical and waste management sectors. Clean Energy 2017, 1, 102–113. [Google Scholar] [CrossRef]
- Lin, Y.; Zhao, H.; Yu, F.; Yang, J. Design of an extended experiment with electrical double layer capacitors: Electrochemical energy storage devices in green chemistry. Sustainability 2018, 10, 3630. [Google Scholar] [CrossRef]
- Lokteva, E. How to motivate students to use green chemistry approaches in everyday research work: Lomonosov Moscow State University, Russia. Curr. Opin. Green Sustain. Chem. 2018, 13, 81–85. [Google Scholar] [CrossRef]
- Nasiri, J.; Rahimi, M.; Hamezadeh, Z.; Motamedi, E.; Naghavi, M.R. Fulfillment of green chemistry for synthesis of silver nanoparticles using root and leaf extracts of Ferula persica: Solid-state route vs. solution-phase method. J. Clean. Prod. 2018, 192, 514–530. [Google Scholar] [CrossRef]
- Timmer, B.J.J.; Schaufelberger, F.; Hammarberg, D.; Franzén, J.; Ramström, O.; Dinér, P. Simple and effective integration of green chemistry and sustainability education into an existing organic chemistry course. J. Chem. Educ. 2018, 95, 1301–1306. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Medina Valderrama, C.J.; Morales Huamán, H.I.; Valencia-Arias, A.; Vasquez Coronado, M.H.; Cardona-Acevedo, S.; Delgado-Caramutti, J. Trends in Green Chemistry Research between 2012 and 2022: Current Trends and Research Agenda. Sustainability 2023, 15, 13946. https://doi.org/10.3390/su151813946
Medina Valderrama CJ, Morales Huamán HI, Valencia-Arias A, Vasquez Coronado MH, Cardona-Acevedo S, Delgado-Caramutti J. Trends in Green Chemistry Research between 2012 and 2022: Current Trends and Research Agenda. Sustainability. 2023; 15(18):13946. https://doi.org/10.3390/su151813946
Chicago/Turabian StyleMedina Valderrama, Carlos Javier, Humberto Iván Morales Huamán, Alejandro Valencia-Arias, Manuel Humberto Vasquez Coronado, Sebastián Cardona-Acevedo, and Jorge Delgado-Caramutti. 2023. "Trends in Green Chemistry Research between 2012 and 2022: Current Trends and Research Agenda" Sustainability 15, no. 18: 13946. https://doi.org/10.3390/su151813946
APA StyleMedina Valderrama, C. J., Morales Huamán, H. I., Valencia-Arias, A., Vasquez Coronado, M. H., Cardona-Acevedo, S., & Delgado-Caramutti, J. (2023). Trends in Green Chemistry Research between 2012 and 2022: Current Trends and Research Agenda. Sustainability, 15(18), 13946. https://doi.org/10.3390/su151813946