Prediction of the Water Inrush Risk from an Overlying Separation Layer in the Thick Overburden of a Thick Coal Seam
Abstract
:1. Introduction
2. Materials and Methods
2.1. Geological Setting
2.2. Evaluation Model and Weight Determination Method
2.2.1. Core Recovery Rate of the Key Aquiclude (C1)
2.2.2. Lithologic Assemblage Index of Key Aquiclude (C2)
Rock Types | Coarse Sandstone | Medium Sandstone | Fine Sandstone | Siltstone | Sand Mudstone | Mudstone |
---|---|---|---|---|---|---|
Structural coefficient | 1 | 0.8 | 0.6 | 0.4 | 0.3 | 0.2 |
2.2.3. Key Aquiclude Thickness (C3)
2.2.4. Lithologic Structure Index of the Zhidan Formation (C4)
2.2.5. Hydrostatic Head (C5)
2.2.6. Data Statistics
2.3. Attribute Hierarchical Model (AHM)
2.4. Coefficient of Variation Method (CVM)
2.5. Catastrophe Progression Method (CPM)
2.5.1. Determining the Catastrophe Type of Each System of Indicators
2.5.2. Nondimensionalization of the Raw Data
2.5.3. Evaluation with the Normalized Formula
3. Results
3.1. Weight Determination via the AHM
3.2. Coefficient of Variation Method to Determine the Weight
3.3. Determine the Weight Ranking of Comprehensive Indicators
3.4. Establish an Improved Catastrophe Progression Method Evaluation Model
4. Conclusions
- (1)
- The core recovery rate, lithologic assemblage index, key aquiclude thickness, hydrostatic head and lithologic structure index of the Zhidan Formation are selected as the basis for studying of the water inrush from an overlying separation layer. A risk prediction model based on combination weighting and an improved catastrophe progression method is constructed to predict the risk of water inrush from the overlying separation layer of the double-layer structure in the 221 mining area of Shilawusu coal mine.
- (2)
- This paper applies the subjective and objective weighting method to improve the evaluation index locally. Then, the typical sample of high water inrush risk levels is established. To a certain extent, it reduces the disadvantage of difficult weight allocation caused by complex water inrush disaster factors, enriches the evaluation and research system of water inrush risk prediction and has great significance for avoiding the threat of water inrush from the separation layer.
- (3)
- Due to the complexity of the induced mechanism and disaster factors of overlying separation layer water inrush, the quantification and weight determination of indicators still need to be discussed and studied. In addition, the indicators selected in this paper and the risk prediction of overlying separation layer water inrush are all based on the Shilawusu coal mine, and more robust data need to be collected for the whole mining area and the critical parameters of the mathematical model for further discussion.
Author Contributions
Funding
Conflicts of Interest
References
- Wang, M.-J.; Yu, D.-H. Simulation of water hazards caused by burst of cells formed by overburden stratum separation. Chin. J. Geotech. Eng. 2010, 32, 231–236. (In Chinese) [Google Scholar]
- He, J.-H.; Li, W.-P.; Qiao, W. A rock mechanics calculation model for identifying bed separation position and analyzing overburden breakage in mining. Arab. J. Geosci. 2020, 13, 920. [Google Scholar] [CrossRef]
- Li, H.; Chen, Q.; Shu, Z.; Li, L.; Zhang, Y. On prevention and mechanism of bed separation water inrush for thick coal seams: A case study in China. Environ. Earth Sci. 2018, 77, 759. [Google Scholar] [CrossRef]
- Qiao, W.; Wang, Z.W.; Li, W.P.; Lv, Y.G.; Li, L.G.; Huang, Y.; He, J.H.; Li, X.Q.; Zhao, S.L.; Liu, M.N. Formation mechanism, disaster-causing mechanism and prevention technology of roof bed separation water disaster in coal mines. J. China Coal Soc. 2021, 46, 507–522. (In Chinese) [Google Scholar]
- Gui, H.; Lin, M.; Song, X. Features of separation water hazard in China coalmines. Water Pract. Technol. 2017, 12, 146–155. [Google Scholar] [CrossRef]
- Yan, H.; He, F.; Yang, T.; Li, L.; Zhang, S.; Zhang, J. The mechanism of bedding separation in roof strata overlying a roadway within a thick coal seam: A case study from the Pingshuo Coalfield, China. Eng. Fail. Anal. 2016, 62, 75–92. [Google Scholar] [CrossRef]
- He, J.H.; Li, W.P.; Liu, Y.; Yang, Z.; Liu, S.L.; Li, L.F. An improved method for determining the position of overlying separated strata in mining. J. Eng. Fail. Anal. 2018, 83, 17–29. [Google Scholar] [CrossRef]
- Hu, R.; Wu, J.; Zhai, X.; Liu, W. Recognition and Prevention of Bed Separation Water: Based on Trapezoid Platform Model. Geofluids 2021, 2021, 6626268. [Google Scholar] [CrossRef]
- Ji, Y.; Cao, H.; Zhao, B. Mechanism and Control of Water Inrush from Separated Roof Layers in the Jurassic Coalfields. Mine Water Environ. 2021, 40, 357–365. [Google Scholar] [CrossRef]
- Wu, L.; Bai, H.; Ma, D. Prediction and Prevention of Water Inrush Hazards from Bed Separation Space. Mine Water Environ. 2021, 40, 657–670. [Google Scholar] [CrossRef]
- Gui, H.; Tong, S.; Qiu, W.; Lin, M. Research on preventive technologies for bed-separation water hazard in China coal mines. Appl. Water Sci. 2018, 8, 7. [Google Scholar] [CrossRef]
- Gui, H.; Lin, M.; Song, X. Identification and Application of Roof Bed Separation (Water) in Coal Mines. Mine Water Environ. 2018, 37, 376–384. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, Q.; Shao, J.; Zhang, W.; Wu, X.; Zhu, X. New type of similar material for simulating the processes of water inrush from roof bed separation. J. ACS Omega 2020, 5, 30405–30415. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, Q.; Zhang, W. A novel collaborative study of abnormal roof water inrush in coal seam mining based on strata separation and wing crack initiation. Eng. Fail. Anal. 2022, 142, 106762. [Google Scholar] [CrossRef]
- Li, L.; Shu, Z.-Y.; Feng, Y.-F. Analysis and prevention on mechanism of water inrush from bed separation water of overburden by fully-mechanized top coal caving mining in ultra thick seam. Coal Sci. Technol. 2018, 46, 175–182. (In Chinese) [Google Scholar] [CrossRef]
- Xie, D.; Han, J.; Zhang, H.; Wang, K.; Du, Z.; Miao, T. Risk Assessment of Water Inrush from Coal Seam Roof Based on Combination Weighting-Set Pair Analysis. Sustainability 2022, 14, 11978. [Google Scholar] [CrossRef]
- Yuan, S.; Sui, W.; Han, G.; Duan, W. An optimized combination of mine water control, treatment, utilization, and reinjection for environmentally sustainable mining: A case study. J. Mine Water Environ. 2022, 41, 828–839. [Google Scholar] [CrossRef]
- Zhu, T.; Li, W.; Chen, W. Risk assessment of Cretaceous water inrush in the Ordos Basin based on the FAHP-EM. Water Policy 2021, 23, 1249–1265. [Google Scholar] [CrossRef]
- Li, B.; Wu, Q.; Meng-yu, C. Risk analysis model of water inrush through the seam floor based on set pair analysis. J. Mine Water Environ. 2018, 37, 281–287. [Google Scholar]
- Yuan, S.; Sun, B.; Han, G.; Duan, W.; Wang, Z. Application and Prospect of Curtain Grouting Technology in Mine Water Safety Management in China: A Review. Water 2022, 14, 4093. [Google Scholar] [CrossRef]
- Fan, G.; Zhang, S.; Zhang, D.; Zhang, C.; Chen, M.; Li, Q. An Index of Aquiclude Destabilization for Mining-Induced Roof Water Inrush Forecasting: A Case Study. Water 2019, 11, 2170. [Google Scholar] [CrossRef]
- Li, L.; Xie, D.; Wei, J.; Yin, H.; Li, G.; Man, X.; Zhang, W. Analysis and control of water inrush under high-pressure and complex karstic water-filling conditions. Environ. Earth Sci. 2020, 79, 493. [Google Scholar] [CrossRef]
- Zhang, P.; Zhu, H.; Wu, Y.; Duan, Z.; Niu, H.; Li, F. State-of-the-art of mechanism of water inrush from bed separation and key technology of prevention and pre-control in China. J. Eng. Geol. 2021, 29, 1057–1070. (In Chinese) [Google Scholar]
- Li, Z.; Wang, Y.; Liu, S.-Q. Analysis of influence factors on rock quality designation and core recovery percentage. J. Min. Sci. Technol. 2017, 2, 511–518. (In Chinese) [Google Scholar]
- Hou, E.K.; Tong, R.J.; Wang, S.J.; Feng, J.; Chen, T. Prediction method for the water enrichment of weathered bedrock based on Fisher model in Northern Shaaxi Jurassic coalfield. J. China Coal Soc. 2016, 41, 2312–2318. (In Chinese) [Google Scholar]
- Tian, L.-G.; Hu, Q.-Y. Study on the Influencing Factors of Ecological-Health in Small Watershed by Catastrophe Progression Method. Yellow River 2020, 42, 71–75+80. (In Chinese) [Google Scholar]
- Zhang, T.J.; Ren, S.X.; Li, S.G.; Zhang, T.C.; Xu, H.J. Application of the catastrophe progression method in predicting coal and gas outburst. Min. Sci. Technol. 2009, 19, 430–434. [Google Scholar] [CrossRef]
Era | System | Series | Formation | Thickness (m) | Lithologic Description |
---|---|---|---|---|---|
Cenozoic | Quaternary | Holocene | Alluvial sand (Q4al+pl) | <200 | Light yellow–brown, yellow medium fine sand and silty sand. Lacustrine sedimentary layer, alluvial–diluvium layer and eolian layer. |
Aeolian layer (Q4eol) | Brown gravel, grayish yellow sand and silty sand. The thickness of sand layer in the western desert is 0~180 m. | ||||
Upper Pleistocene | Malan Formation (Q3m) | 0~40 | Yellowish sandy loess with calcareous nodules, columnar joints, unconformable above all older strata. | ||
Mesozoic | Cretaceous | Lower | Zhidan Formation (K1zh) | 40~230 | The upper part is light gray, gray–purple, gray–yellow, yellow, purple and red mudstone, siltstone, fine sandstone, sand conglomerate mudstone sand mudstone interbedded with thin layers of argillaceous limestone. Cross-bedding is more developed. Large cross-bedding and channel migration are common at the bottom. Unconformable contact with the underlying floor. |
30~280 | The lower part is light gray, gray–green, brown, red, gray, and purple mudstone, siltstone, sandy mudstone and various grained sandstones and conglomerates, with thin layers of calcareous fine sandstone. Argillaceous cement, relatively loose, with oblique bedding development. Large cross-bedding is common at the bottom. Unconformable contact with the underlying floor. | ||||
Jurassic | Middle | Anding Formation (J2a) | 10~151 | Light gray, gray–green, yellow, purple and brown mudstone, sandy mudstone, medium sandstone. Calcareous nodules and argillaceous masses with parallel bedding and cross bedding. | |
Zhiluo Formation (J2z) | 10~400 | Gray, gray–yellow, gray–green and purplish red mudstone, sandy mudstone, fine sandstone, medium sandstone and coarse sandstone, with cross-bedding and wavy bedding. The lower part sandwiches a thin coal seam and oil shale, containing the 1 coal group. Coal bearing layers 1~3. Pseudoconformity contact with the underlying floor. | |||
Lower | Yan’an Formation (J1–2y) | 78~458 | The sandstones of various gray–gray to grayish white grade are interbedded with dark gray and grayish black sandy mudstone and mudstone. Including coal seams with industrial mining value. Contains the 2, 3, 4, 5, 6, 7 coal groups, 27 layers of coal; among them, the main recoverable coal seams are 2-2 middle, 3-1, 4-1, 4-2 middle, 5-1, 6-1 middle, 6-2. Conformable contact with the underlying floor | ||
Triassic | Upper | Yanchang Formation (T3y) | 35~312 | Gray–green, yellow, purple, gray–black massive coarse and medium sandstone, local containing fine gravel, mudstone, siltstone and coal line. Pseudoconformity contact with the underlying floor. |
Stratum | J1–2y | J2z | J2a | K1zh | |||||
---|---|---|---|---|---|---|---|---|---|
Lithology | Average Thickness (m) | Proportion (%) | Average Thickness (m) | Proportion (%) | Average Thickness (m) | Proportion (%) | Average Thickness (m) | Proportion (%) | |
Coarse Sandstone | 3.58 | 7 | 9.07 | 11 | 11.98 | 7 | 26.86 | 8 | |
Medium Sandstone | 10.65 | 21 | 14.67 | 17 | 19.51 | 12 | 86.51 | 25 | |
Fine Sandstone | 13.31 | 26 | 15.9 | 19 | 31.45 | 19 | 142.92 | 42 | |
Siltstone | 6.59 | 13 | 10.67 | 12 | 22.75 | 14 | 50.59 | 15 | |
Mudstone | 16.92 | 33 | 35.06 | 41 | 79.73 | 48 | 34.23 | 10 |
Borehole | C1 (%) | C2 | C3 (m) | C4 (m) | C5 (m) |
---|---|---|---|---|---|
S01 | 58.19 | 0.43 | 191.93 | 18.42 | 288.85 |
S03 | 73.50 | 0.34 | 155.51 | 43.91 | 328.60 |
S04 | 62.50 | 0.36 | 166.46 | 43.14 | 306.08 |
S05 | 63.20 | 0.30 | 128.26 | 71.37 | 344.27 |
S07 | 67.57 | 0.46 | 142.90 | 208.82 | 322.35 |
S09 | 67.67 | 0.54 | 166.33 | 192.63 | 304.54 |
S10 | 78.44 | 0.48 | 169.33 | 226.25 | 302.72 |
S13 | 74.00 | 0.45 | 216.74 | 148.59 | 250.50 |
S15 | 69.20 | 0.45 | 63.54 | 240.85 | 311.26 |
S16 | 70.80 | 0.36 | 74.53 | 104.20 | 300.87 |
S18 | 63.20 | 0.32 | 57.45 | 63.94 | 299.67 |
N18 | 76.43 | 0.45 | 103.80 | 34.03 | 366.79 |
N42 | 67.00 | 0.42 | 148.35 | 18.66 | 345.27 |
N19 | 75.50 | 0.39 | 133.64 | 26.23 | 347.56 |
N46 | 78.71 | 0.45 | 137.05 | 121.11 | 335.24 |
N47 | 79.50 | 0.50 | 159.67 | 212.97 | 304.54 |
N51 | 64.75 | 0.58 | 79.52 | 29.18 | 286.04 |
N56 | 89.00 | 0.40 | 52.15 | 133.88 | 335.96 |
N58 | 77.17 | 0.42 | 139.53 | 233.49 | 324.82 |
k3 | 74.12 | 0.46 | 195.89 | 230.67 | 306.67 |
k7 | 84.75 | 0.56 | 111.40 | 28.12 | 346.17 |
k8 | 74.71 | 0.48 | 176.50 | 24.47 | 322.89 |
k12 | 89.27 | 0.43 | 98.62 | 62.42 | 366.32 |
k13 | 78.80 | 0.47 | 183.78 | 50.69 | 309.37 |
k14 | 72.64 | 0.48 | 201.51 | 55.87 | 263.78 |
k15 | 78.19 | 0.53 | 179.41 | 215.75 | 280.90 |
k16 | 77.31 | 0.46 | 168.23 | 103.43 | 301.40 |
k21 | 88.13 | 0.46 | 190.28 | 125.00 | 280.69 |
k22 | 64.13 | 0.47 | 182.17 | 55.87 | 294.83 |
k23 | 88.43 | 0.64 | 206.75 | 255.27 | 283.76 |
k28 | 68.00 | 0.54 | 161.84 | 89.74 | 306.97 |
k29 | 86.93 | 0.42 | 196.31 | 108.47 | 281.51 |
k30 | 80.50 | 0.45 | 185.93 | 47.37 | 297.37 |
k31 | 86.85 | 0.56 | 186.37 | 117.57 | 289.28 |
k39 | 82.50 | 0.38 | 166.22 | 99.85 | 296.05 |
k40 | 72.64 | 0.48 | 149.14 | 109.50 | 326.47 |
k46 | 67.00 | 0.66 | 37.90 | 109.36 | 310.54 |
k47 | 61.67 | 0.39 | 35.59 | 50.62 | 297.55 |
k48 | 74.50 | 0.51 | 196.90 | 38.70 | 269.62 |
k54 | 58.67 | 0.69 | 55.53 | 17.04 | 290.48 |
k55 | 55.20 | 0.57 | 61.82 | 14.80 | 286.78 |
k61 | 67.75 | 0.57 | 73.56 | 64.70 | 286.87 |
k62 | 59.43 | 0.58 | 106.50 | 43.41 | 278.41 |
k63 | 63.57 | 0.46 | 108.16 | 19.93 | 280.27 |
k71 | 72.57 | 0.55 | 106.69 | 58.03 | 266.25 |
k72 | 81.00 | 0.53 | 118.91 | 67.70 | 256.61 |
k75 | 70.25 | 0.41 | 92.90 | 21.03 | 287.87 |
Type of Catastrophe | Control Variable | State Variable | Potential Function |
---|---|---|---|
Folding | 1 | 1 | |
Pointy | 2 | 1 | |
Dovetail | 3 | 1 | |
Butterfly | 4 | 1 |
Type of Catastrophe | Control Variable | State Variable | Normalized Formula |
---|---|---|---|
Folding | 1 | 1 | |
Pointy | 2 | 1 | |
Dovetail | 3 | 1 | |
Butterfly | 4 | 1 |
Evaluation Index | B1 | B2 | B3 |
---|---|---|---|
B1 | 1 | 5 | 3 |
B2 | 1/5 | 1 | 1/3 |
B3 | 1/3 | 3 | 1 |
Evaluation Index | C1 | C2 | C3 |
---|---|---|---|
C1 | 1 | 3 | 4 |
C2 | 1/3 | 1 | 3 |
C3 | 1/4 | 1/3 | 1 |
Evaluation Index | B1 | B2 | B3 |
---|---|---|---|
B1 | 0 | 10/11 | 6/7 |
B2 | 1/11 | 0 | 1/7 |
B3 | 1/7 | 6/7 | 0 |
Evaluation Index | C1 | C2 | C3 |
---|---|---|---|
C1 | 0 | 6/7 | 8/9 |
C2 | 1/7 | 0 | 6/7 |
C3 | 1/9 | 1/7 | 0 |
Influencing Factors | C1 | C2 | C3 | C4 | C5 |
---|---|---|---|---|---|
Attribute weight ωAHM | 0.0498 | 0.1962 | 0.3427 | 0.08 | 0.33 |
Influencing Factors | C1 | C2 | C3 | C4 | C5 |
---|---|---|---|---|---|
Index weight ωj | 0.1800 | 0.1559 | 0.2067 | 0.2930 | 0.1644 |
Influencing Factors | C1 | C2 | C3 | C4 | C5 |
---|---|---|---|---|---|
Index weight ωi | 0.08886 | 0.18411 | 0.3019 | 0.1439 | 0.28032 |
Borehole | C1 | C2 | C3 | C4 | C5 |
---|---|---|---|---|---|
S01 | 0.9123 | 0.3316 | 0.1369 | 0.0151 | 0.3298 |
S03 | 0.4629 | 0.1186 | 0.3380 | 0.1211 | 0.6716 |
S04 | 0.7858 | 0.1541 | 0.2775 | 0.1179 | 0.4779 |
S05 | 0.7652 | 0.0000 | 0.4884 | 0.2353 | 0.8064 |
S07 | 0.6369 | 0.4099 | 0.4076 | 0.8069 | 0.6179 |
S09 | 0.6341 | 0.6068 | 0.2783 | 0.7395 | 0.4647 |
S10 | 0.3180 | 0.4661 | 0.2617 | 0.8793 | 0.4490 |
S13 | 0.4482 | 0.3786 | 0.0000 | 0.5564 | 0.0000 |
S15 | 0.5891 | 0.3833 | 0.8457 | 0.9401 | 0.5225 |
S16 | 0.5422 | 0.1575 | 0.7850 | 0.3718 | 0.4331 |
S18 | 0.7652 | 0.0586 | 0.8793 | 0.2044 | 0.4228 |
N18 | 0.3770 | 0.3901 | 0.6234 | 0.0800 | 1.0000 |
N42 | 0.6537 | 0.3045 | 0.3775 | 0.0161 | 0.8150 |
N19 | 0.4042 | 0.2460 | 0.4587 | 0.0476 | 0.8347 |
N46 | 0.3099 | 0.3822 | 0.4399 | 0.4421 | 0.7287 |
N47 | 0.2868 | 0.5213 | 0.3150 | 0.8241 | 0.4647 |
N51 | 0.7197 | 0.7187 | 0.7575 | 0.0598 | 0.3056 |
N56 | 0.0080 | 0.2621 | 0.9085 | 0.4952 | 0.7349 |
N58 | 0.3553 | 0.3024 | 0.4262 | 0.9094 | 0.6391 |
k3 | 0.4448 | 0.4137 | 0.1151 | 0.8977 | 0.4830 |
k7 | 0.1327 | 0.6803 | 0.5815 | 0.0554 | 0.8227 |
k8 | 0.4273 | 0.4554 | 0.2221 | 0.0402 | 0.6225 |
k12 | 0.0000 | 0.3366 | 0.6520 | 0.1981 | 0.9960 |
k13 | 0.3074 | 0.4321 | 0.1820 | 0.1493 | 0.5062 |
k14 | 0.4881 | 0.4603 | 0.0841 | 0.1708 | 0.1142 |
k15 | 0.3253 | 0.5833 | 0.2061 | 0.8357 | 0.2614 |
k16 | 0.3512 | 0.4179 | 0.2678 | 0.3686 | 0.4377 |
k21 | 0.0337 | 0.4193 | 0.1461 | 0.4583 | 0.2596 |
k22 | 0.7381 | 0.4283 | 0.1908 | 0.1708 | 0.3812 |
k23 | 0.0248 | 0.8714 | 0.0551 | 1.0000 | 0.2860 |
k28 | 0.6243 | 0.6260 | 0.3031 | 0.3117 | 0.4856 |
k29 | 0.0688 | 0.3212 | 0.1128 | 0.3895 | 0.2667 |
k30 | 0.2575 | 0.3950 | 0.1701 | 0.1354 | 0.4031 |
k31 | 0.0711 | 0.6703 | 0.1677 | 0.4274 | 0.3335 |
k39 | 0.1988 | 0.2055 | 0.2789 | 0.3537 | 0.3917 |
k40 | 0.4881 | 0.4599 | 0.3731 | 0.3938 | 0.6533 |
k46 | 0.6537 | 0.9169 | 0.9872 | 0.3932 | 0.5163 |
k47 | 0.8102 | 0.2434 | 1.0000 | 0.1490 | 0.4046 |
k48 | 0.4336 | 0.5438 | 0.1095 | 0.0994 | 0.1644 |
k54 | 0.8983 | 1.0000 | 0.8899 | 0.0093 | 0.3438 |
k55 | 1.0000 | 0.6893 | 0.8552 | 0.0000 | 0.3120 |
k61 | 0.6317 | 0.7034 | 0.7904 | 0.2075 | 0.3128 |
k62 | 0.8759 | 0.7257 | 0.6086 | 0.1190 | 0.2400 |
k63 | 0.7543 | 0.4033 | 0.5994 | 0.0213 | 0.2560 |
k71 | 0.4902 | 0.6559 | 0.6075 | 0.1798 | 0.1354 |
k72 | 0.2428 | 0.5993 | 0.5401 | 0.2200 | 0.0525 |
k75 | 0.5583 | 0.2924 | 0.6836 | 0.0259 | 0.3214 |
C1 | C2 | C3 | C4 | C5 | |
---|---|---|---|---|---|
C1 | 1.0000 | ||||
C2 | 0.0308 | 1.0000 | |||
C3 | 0.3743 | 0.0838 | 1.0000 | ||
C4 | −0.3654 | 0.0705 | −0.2559 | 1.0000 | |
C5 | −0.1528 | −0.3434 | 0.2174 | −0.0369 | 1.0000 |
Borehole | A | Borehole | A | Borehole | A | Borehole | A |
---|---|---|---|---|---|---|---|
S01 | 0.5919 | N42 | 0.5967 | k14 | 0.5384 | k46 | 0.8898 |
S03 | 0.7009 | N19 | 0.6833 | k15 | 0.6737 | k47 | 0.8081 |
S04 | 0.7258 | N46 | 0.6512 | k16 | 0.7193 | k48 | 0.5752 |
S05 | 0 | N47 | 0.7491 | k21 | 0.6182 | k54 | 0.5575 |
S07 | 0.799 | N51 | 0.7032 | k22 | 0.6609 | k55 | 0.5523 |
S09 | 0.7263 | N56 | 0.5469 | k23 | 0.4845 | k61 | 0.8215 |
S10 | 0.7152 | N58 | 0.6733 | k28 | 0.7419 | k62 | 0.7663 |
S13 | 0 | k3 | 0.5824 | k29 | 0.5795 | k63 | 0.6182 |
S15 | 0.8522 | k7 | 0.6965 | k30 | 0.6421 | k71 | 0.7166 |
S16 | 0.7348 | k8 | 0.6692 | k31 | 0.6398 | k72 | 0.6119 |
S18 | 0.6231 | k12 | 0 | k39 | 0.7267 | k75 | 0.6334 |
N18 | 0.7292 | k13 | 0.6531 | k40 | 0.7815 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, D.; Du, Z.; Han, C.; Han, J.; Wei, J.; Yan, J. Prediction of the Water Inrush Risk from an Overlying Separation Layer in the Thick Overburden of a Thick Coal Seam. Sustainability 2023, 15, 13988. https://doi.org/10.3390/su151813988
Xie D, Du Z, Han C, Han J, Wei J, Yan J. Prediction of the Water Inrush Risk from an Overlying Separation Layer in the Thick Overburden of a Thick Coal Seam. Sustainability. 2023; 15(18):13988. https://doi.org/10.3390/su151813988
Chicago/Turabian StyleXie, Daolei, Zhongwen Du, Chenghao Han, Jie Han, Jiuchuan Wei, and Jiulei Yan. 2023. "Prediction of the Water Inrush Risk from an Overlying Separation Layer in the Thick Overburden of a Thick Coal Seam" Sustainability 15, no. 18: 13988. https://doi.org/10.3390/su151813988
APA StyleXie, D., Du, Z., Han, C., Han, J., Wei, J., & Yan, J. (2023). Prediction of the Water Inrush Risk from an Overlying Separation Layer in the Thick Overburden of a Thick Coal Seam. Sustainability, 15(18), 13988. https://doi.org/10.3390/su151813988