Beyond the IPCC for Food: An Overarching Framework for Food Systems Sustainability Assessment
Abstract
:1. The Need to Strengthen the Science–Policy Interface
2. A More Informative Approach Drives More Effective Mitigation Policies
2.1. The Multidimensionality Nature of Environmental and Health Impacts
2.2. Production, Consumption, and Post-Consumption
2.3. From Single Food Items to Diets
2.4. From Mass Value to Nutritional Values
3. An Operative Framework to Improve Sustainability Assessment of Food Systems
4. Mind the Gap between Science and Policy
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Galli, A.; Pires, S.M.; Iha, K.; Alves, A.A.; Lin, D.; Mancini, M.S.; Teles, F. Sustainable Food Transition in Portugal: Assessing the Footprint of Dietary Choices and Gaps in National and Local Food Policies. Sci. Total Environ. 2020, 749, 141307. [Google Scholar] [CrossRef]
- Caprile, A. United Nations Food Systems Summit 2021—Process, Challenges and the Way Forward; European Parliamentary Research Service (PE 696.208); European Union: Brussels, Belgium, 2021. [Google Scholar]
- Clapp, J.; Anderson, M.; Rahmanian, S.; Suárez, S.M. An ‘IPCC for Food’. How the UN Food Systems Summit Is Being Used to Advance a Problematic New Science-Policy Agenda; Briefing Note 1 on the Governance of Food Systems; International Panel of Experts on Sustainable Food Systems: Brussels, Belgium, 2021. [Google Scholar]
- Turnhout, E.; Duncan, J.; Candel, J.; Maas, T.Y.; Roodhof, A.M.; DeClerck, F.; Watson, R.T. Do We Need a New Science-Policy Interface for Food Systems? Science 2021, 373, 1093–1095. [Google Scholar] [CrossRef] [PubMed]
- Nature Does the Fight against Hunger Need Its Own IPCC? Nature 2021, 595, 332. [CrossRef] [PubMed]
- Valin, H.; Hertel, T.; Bodirsky, B.L.; Hasegawa, T.; Stehfest, E. Achieving Zero Hunger by 2030 A Review of Quantitative Assessments of Synergies and Tradeoffs amongst the UN Sustainable Development Goals: A Paper from the Scientific Group of the UN Food Systems. Summit 26 May 2021. Bonn: Center for Development Research (ZEF) in cooperation with the Scientific Group for the UN Food System Summit 2021, 2021. Available online: https://bonndoc.ulb.uni-bonn.de/xmlui/handle/20.500.11811/9164 (accessed on 27 February 2023).
- Canfield, M.; Anderson, M.D.; McMichael, P. UN Food Systems Summit 2021: Dismantling Democracy and Resetting Corporate Control of Food Systems. Front. Sustain. Food Syst. 2021, 5, 661552. [Google Scholar] [CrossRef]
- Singh, B.K.; Arnold, T.; Biermayr-Jenzano, P.; Broerse, J.; Brunori, G.; Caron, P.; De Schutter, O.; Fan, S.; Fanzo, J.; Fraser, E.; et al. Enhancing Science–Policy Interfaces for Food Systems Transformation. Nat. Food 2021, 2, 838–842. [Google Scholar] [CrossRef] [PubMed]
- Clark, M.A.; Springmann, M.; Hill, J.; Tilman, D. Multiple Health and Environmental Impacts of Foods. Proc. Natl. Acad. Sci. USA 2019, 116, 23357–23362. [Google Scholar] [CrossRef] [PubMed]
- Willett, W.; Rockström, J.; Loken, B.; Springmann, M.; Lang, T.; Vermeulen, S.; Garnett, T.; Tilman, D.; DeClerck, F.; Wood, A.; et al. Food in the Anthropocene: The EAT–Lancet Commission on Healthy Diets from Sustainable Food Systems. Lancet 2019, 393, 447–492. [Google Scholar] [CrossRef] [PubMed]
- Vanham, D.; Leip, A.; Galli, A.; Kastner, T.; Bruckner, M.; Uwizeye, A.; van Dijk, K.; Ercin, E.; Dalin, C.; Brandão, M.; et al. Environmental Footprint Family to Address Local to Planetary Sustainability and Deliver on the SDGs. Sci. Total Environ. 2019, 693, 133642. [Google Scholar] [CrossRef]
- Wackernagel, M. Ecological Footprint and Appropriated Carrying Capacity: A Tool for Planning toward Sustainability. Ph.D. Thesis, University of British Columbia, Vancouver, BC, Canada, 1994. [Google Scholar] [CrossRef]
- Caro, D. Carbon Footprint. In Encyclopedia of Ecology; Elsevier: Amsterdam, The Netherlands, 2019; pp. 252–257. ISBN 978-0-444-64130-4. [Google Scholar]
- Hoekstra, A.Y.; Chapagain, A.K. Globalization of Water: Sharing the Planet’s Freshwater Resources; Blackwell Pub: Malden, MA, USA, 2008; ISBN 978-1-4051-6335-4. [Google Scholar]
- Galloway, J.N.; Winiwarter, W.; Leip, A.; Leach, A.M.; Bleeker, A.; Erisman, J.W. Nitrogen Footprints: Past, Present and Future. Environ. Res. Lett. 2014, 9, 115003. [Google Scholar] [CrossRef]
- Smith, P.; Gregory, P.J. Climate Change and Sustainable Food Production. Proc. Nutr. Soc. 2013, 72, 21–28. [Google Scholar] [CrossRef]
- Springmann, M.; Godfray, H.C.J.; Rayner, M.; Scarborough, P. Analysis and Valuation of the Health and Climate Change Cobenefits of Dietary Change. Proc. Natl. Acad. Sci. USA 2016, 113, 4146–4151. [Google Scholar] [CrossRef] [PubMed]
- Crippa, M.; Solazzo, E.; Guizzardi, D.; Monforti-Ferrario, F.; Tubiello, F.N.; Leip, A. Food Systems Are Responsible for a Third of Global Anthropogenic GHG Emissions. Nat. Food 2021, 2, 198–209. [Google Scholar] [CrossRef] [PubMed]
- IPCC. Annex VII: Glossary. In Climate Change 2021—The Physical Science Basis: Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2021; pp. 2215–2256. ISBN 978-1-00-915788-9. [Google Scholar]
- FAO. The State of the World’s Land and Water Resources for Food and Agriculture—Systems at Breaking Point; Synthesis report; FAO: Rome, Italy, 2021. [Google Scholar]
- Hoekstra, A.Y.; Mekonnen, M.M. The Water Footprint of Humanity. Proc. Natl. Acad. Sci. USA 2012, 109, 3232–3237. [Google Scholar] [CrossRef] [PubMed]
- Graesser, J.; Ramankutty, N.; Coomes, O.T. Increasing Expansion of Large-Scale Crop Production onto Deforested Land in Sub-Andean South America. Environ. Res. Lett. 2018, 13, 84021. [Google Scholar] [CrossRef]
- Leip, A.; Bodirsky, B.L.; Kugelberg, S. The Role of Nitrogen in Achieving Sustainable Food Systems for Healthy Diets. Glob. Food Secur. 2021, 28, 100408. [Google Scholar] [CrossRef]
- Sporchia, F.; Caro, D. Exploring the Potential of Circular Solutions to Replace Inorganic Fertilizers in the European Union. Sci. Total Environ. 2023, 892, 164636. [Google Scholar] [CrossRef]
- Swinburn, B.A.; Kraak, V.I.; Allender, S.; Atkins, V.J.; Baker, P.I.; Bogard, J.R.; Brinsden, H.; Calvillo, A.; Schutter, O.D.; Devarajan, R.; et al. The Global Syndemic of Obesity, Undernutrition, and Climate Change: The Lancet Commission Report. Lancet 2019, 393, 791–846. [Google Scholar] [CrossRef]
- Murray, C.J.L.; Aravkin, A.Y.; Zheng, P.; Abbafati, C.; Abbas, K.M.; Abbasi-Kangevari, M.; Abd-Allah, F.; Abdelalim, A.; Abdollahi, M.; Abdollahpour, I.; et al. Abdollahpour I Global Burden of 87 Risk Factors in 204 Countries and Territories, 1990–2019: A Systematic Analysis for the Global Burden of Disease Study 2019. Lancet 2020, 396, 1223–1249. [Google Scholar] [CrossRef]
- Godfray, H.C.J.; Aveyard, P.; Garnett, T.; Hall, J.W.; Key, T.J.; Lorimer, J.; Pierrehumbert, R.T.; Scarborough, P.; Springmann, M.; Jebb, S.A. Meat Consumption, Health, and the Environment. Science 2018, 361, eaam5324. [Google Scholar] [CrossRef]
- FAO; IFAD; UNICEF; WFP; WHO. The State of Food Security and Nutrition in the World 2020. Transforming Food Systems for Affordable Healthy Diets; FAO: Rome, Italy, 2020. [Google Scholar]
- Clark, M.; Springmann, M.; Rayner, M.; Scarborough, P.; Hill, J.; Tilman, D.; Macdiarmid, J.I.; Fanzo, J.; Bandy, L.; Harrington, R.A. Estimating the Environmental Impacts of 57,000 Food Products. Proc. Natl. Acad. Sci. USA 2022, 119, e2120584119. [Google Scholar] [CrossRef]
- Poore, J.; Nemecek, T. Reducing Food’s Environmental Impacts through Producers and Consumers. Science 2018, 360, 987–992. [Google Scholar] [CrossRef] [PubMed]
- Tilman, D.; Clark, M. Global Diets Link Environmental Sustainability and Human Health. Nature 2014, 515, 518–522. [Google Scholar] [CrossRef] [PubMed]
- Corrado, S.; Luzzani, G.; Trevisan, M.; Lamastra, L. Contribution of Different Life Cycle Stages to the Greenhouse Gas Emissions Associated with Three Balanced Dietary Patterns. Sci. Total Environ. 2019, 660, 622–630. [Google Scholar] [CrossRef] [PubMed]
- Esteve-Llorens, X.; Darriba, C.; Moreira, M.T.; Feijoo, G.; González-García, S. Towards an Environmentally Sustainable and Healthy Atlantic Dietary Pattern: Life Cycle Carbon Footprint and Nutritional Quality. Sci. Total Environ. 2019, 646, 704–715. [Google Scholar] [CrossRef] [PubMed]
- Notarnicola, B.; Tassielli, G.; Renzulli, P.A.; Castellani, V.; Sala, S. Environmental Impacts of Food Consumption in Europe. J. Clean. Prod. 2017, 140, 753–765. [Google Scholar] [CrossRef]
- Pernollet, F.; Coelho, C.R.V.; Werf, H.M.G. van der Methods to Simplify Diet and Food Life Cycle Inventories: Accuracy versus Data-Collection Resources. J. Clean. Prod. 2017, 140, 410–420. [Google Scholar] [CrossRef]
- Amini, S.; Rohani, A.; Aghkhani, M.H.; Abbaspour-Fard, M.H.; Asgharipour, M.R. Sustainability Assessment of Rice Production Systems in Mazandaran Province, Iran with Emergy Analysis and Fuzzy Logic. Sustain. Energy Technol. Assess. 2020, 40, 100744. [Google Scholar] [CrossRef]
- Yao, Z.; Zheng, X.; Liu, C.; Lin, S.; Zuo, Q.; Butterbach-Bahl, K. Improving Rice Production Sustainability by Reducing Water Demand and Greenhouse Gas Emissions with Biodegradable Films. Sci. Rep. 2017, 7, 39855. [Google Scholar] [CrossRef]
- Galli, A.; Antonelli, M.; Wambersie, L.; Bach-Faig, A.; Bartolini, F.; Caro, D.; Iha, K.; Lin, D.; Mancini, M.S.; Sonnino, R.; et al. EU-27 Ecological Footprint Was Primarily Driven by Food Consumption and Exceeded Regional Biocapacity from 2004 to 2014. Nat. Food 2023, 4, 810–822. [Google Scholar] [CrossRef]
- FAO. Global Food Losses and Food Waste—Extent, Causes and Prevention; FAO: Rome, Italy, 2011. [Google Scholar]
- Li, M.; Jia, N.; Lenzen, M.; Malik, A.; Wei, L.; Jin, Y.; Raubenheimer, D. Global Food-Miles Account for Nearly 20% of Total Food-Systems Emissions. Nat. Food 2022, 3, 445–453. [Google Scholar] [CrossRef]
- Noya, L.I.; Vasilaki, V.; Stojceska, V.; González-García, S.; Kleynhans, C.; Tassou, S.; Moreira, M.T.; Katsou, E. An Environmental Evaluation of Food Supply Chain Using Life Cycle Assessment: A Case Study on Gluten Free Biscuit Products. J. Clean. Prod. 2018, 170, 451–461. [Google Scholar] [CrossRef]
- Santana, K.D.; Cacas-Ledon, Y.; Salabarria, J.L.; Perez-Martinez, A.; Arteaga-Perez, L.E. A Life Cycle Assessment of Bread Production: A Cuban Case Study. J. Environ. Account. Manag. 2020, 8, 125–137. [Google Scholar]
- Oita, A.; Nagano, I.; Matsuda, H. Food Nitrogen Footprint Reductions Related to a Balanced Japanese Diet. Ambio 2018, 47, 318–326. [Google Scholar] [CrossRef] [PubMed]
- Alexander, P.; Brown, C.; Arneth, A.; Finnigan, J.; Rounsevell, M.D.A. Human Appropriation of Land for Food: The Role of Diet. Glob. Environ. Chang. 2016, 41, 88–98. [Google Scholar] [CrossRef]
- Kim, B.F.; Santo, R.E.; Scatterday, A.P.; Fry, J.P.; Synk, C.M.; Cebron, S.R.; Mekonnen, M.M.; Hoekstra, A.Y.; de Pee, S.; Bloem, M.W.; et al. Country-Specific Dietary Shifts to Mitigate Climate and Water Crises. Glob. Environ. Chang. 2019, 62, 101926. [Google Scholar] [CrossRef]
- Metson, G.S.; Bennett, E.M.; Elser, J.J. The Role of Diet in Phosphorus Demand. Environ. Res. Lett. 2012, 7, 44043. [Google Scholar] [CrossRef]
- Katz-Rosene, R.; Ortenzi, F.; McAuliffe, G.A.; Beal, T. Levelling Foods for Priority Micronutrient Value Can Provide More Meaningful Environmental Footprint Comparisons. Commun. Earth Environ. 2023, 4, 287. [Google Scholar] [CrossRef]
- Fernández-Lobato, L.; López-Sánchez, Y.; Blejman, G.; Jurado, F.; Moyano-Fuentes, J.; Vera, D. Life Cycle Assessment of the Spanish Virgin Olive Oil Production: A Case Study for Andalusian Region. J. Clean. Prod. 2021, 290, 125677. [Google Scholar] [CrossRef]
- United States Department of Agriculture (USDA). FoodData Central 2021. Available online: https://fdc.nal.usda.gov/ (accessed on 28 February 2023).
- Krattenmacher, J.; Casal, P.; Dutkiewicz, J.; Huchard, E.; Sanders, E.; Treich, N.; Wadiwel, D.; Williams, A.; Bègue, L.; Cardilini, A.P.A.; et al. Universities Should Lead on the Plant-Based Dietary Transition. Lancet Planet. Health 2023, 7, e354–e355. [Google Scholar] [CrossRef]
- Stiglitz, J. Towards a Better Measure of Well-Being. Financial Times, 13 September 2009. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caro, D.; Sporchia, F.; Antonelli, M.; Galli, A. Beyond the IPCC for Food: An Overarching Framework for Food Systems Sustainability Assessment. Sustainability 2023, 15, 14107. https://doi.org/10.3390/su151914107
Caro D, Sporchia F, Antonelli M, Galli A. Beyond the IPCC for Food: An Overarching Framework for Food Systems Sustainability Assessment. Sustainability. 2023; 15(19):14107. https://doi.org/10.3390/su151914107
Chicago/Turabian StyleCaro, Dario, Fabio Sporchia, Marta Antonelli, and Alessandro Galli. 2023. "Beyond the IPCC for Food: An Overarching Framework for Food Systems Sustainability Assessment" Sustainability 15, no. 19: 14107. https://doi.org/10.3390/su151914107
APA StyleCaro, D., Sporchia, F., Antonelli, M., & Galli, A. (2023). Beyond the IPCC for Food: An Overarching Framework for Food Systems Sustainability Assessment. Sustainability, 15(19), 14107. https://doi.org/10.3390/su151914107