Exploring International Perspective on Factors Affecting Urban Socio-Ecological Sustainability by Green Space Planning
Abstract
:1. Introduction
- How do UGSs’ planning and design enhance urban social and ecological sustainability?
- Which factors impact the social and ecological sustainability of urban areas with the planning and design of UGS?
- Which factors have the most important role in the social and ecological sustainability of urban areas with UGS planning and design?
2. Integrative Social–Ecological Approach and Urban Sustainability by UGS
3. Social and Ecological Sustainability Factors through UGS Planning
3.1. Social Sustainability Factors through UGS Planning
- Accessibility
- Socialisation
- Recreation, Health, and Well-Being
- Education and Management
- Multifunctionality and Suitability
3.2. Ecological Sustainability Factors through UGS Planning
- Ecological Landscape Design
- Biodiversity and Vegetation
- Protection
- Water Resources
- Ecological Network
4. Methodology
- First, based on a socio-ecological approach, content analysis was undertaken to understand the role of UGS in urban sustainability and explore the main social and ecological affecting factors.
- The identified factors were then divided into social and ecological categories to analyse their impacts separately.
- All the factors in the two categories were further categorised into ten domains (five social and five ecological domains).
- Second, an online survey was conducted with international experts involved in UGS development and sustainability to understand the importance of the influencing factors.
4.1. Content Analysis
4.2. International Experts’ Survey
5. Results
5.1. Reliability of the Survey
5.2. Findings of International Experts’ Survey
5.2.1. Participants’ General Characteristics
5.2.2. The Weighting of Influencing Factors
5.2.3. Analysing the Importance of the Domains
Social Domains
Ecological Domains
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Du, M.; Zhang, X. Urban greening: A new paradox of economic or social sustainability? Land Use Policy 2020, 92, 104487. [Google Scholar] [CrossRef]
- Zhao, S.M.; Ma, Y.F.; Wang, J.L.; You, X.Y. Landscape pattern analysis and ecological network planning of Tianjin City. Urban Urban Green 2019, 46, 126479. [Google Scholar] [CrossRef]
- Dewan, A.M.; Yamaguchi, Y. Land use and land cover change in Greater Dhaka, Bangladesh: Using remote sensing to promote sustainable urbanisation. Appl. Geogr. 2009, 29, 390–401. [Google Scholar] [CrossRef]
- Goonetilleke, A.; Yigitcanlar, T.; Ayoko, G.A.; Egodawatta, P. Sustainable Urban Water Environment: Climate, Pollution and Adaptation; Edward Elgar: Cheltenham, UK, 2014; pp. 245–346. [Google Scholar]
- Yigitcanlar, T.; Dur, F. Developing a sustainability assessment model: The sustainable infrastructure, land-use, environment and transport model. Sustainability 2010, 2, 321–340. [Google Scholar] [CrossRef]
- Csete, M.; Horváth, L. Sustainability and green development in urban policies and strategies. Appl. Ecol. Environ. Res. 2012, 10, 185–194. [Google Scholar] [CrossRef]
- Haq, S.M.A. Urban green spaces and an integrative approach to sustainable environment. J. Environ. Prot. 2011, 2, 601–608. [Google Scholar] [CrossRef]
- Kay, J.J.; Regier, H.A.; Boyle, M.; Francis, G. An ecosystem approach for sustainability: Addressing the challenge of complexity. Futures 1999, 31, 721–742. [Google Scholar] [CrossRef]
- Dempsey, N.; Bramley, G.; Power, S.; Brown, C. The social dimension of sustainable development: Defining urban social sustainability. Sustain. Dev. 2011, 19, 289–300. [Google Scholar] [CrossRef]
- Ziaesaeidi, P.; Cushing, D.F. The social sustainability of neighbourhood-schools: A qualitative study with Iranian children and youth about their neighbourhood perceptions. Local Environ. 2019, 24, 1178–1196. [Google Scholar] [CrossRef]
- Barbosa, O.; Tratalos, J.A.; Armsworth, P.R.; Davies, R.G.; Fuller, R.A.; Johnson, P.; Gaston, K.J. Who benefits from access to green space? A case study from Sheffield, UK. Landsc. Urban Plan. 2007, 83, 187–195. [Google Scholar] [CrossRef]
- Chiesura, A. The role of urban parks for the sustainable city. Landsc. Urban Plan. 2004, 68, 129–138. [Google Scholar] [CrossRef]
- Ignatieva, M.; Stewart, G.H.; Meurk, C. Planning and design of ecological networks in urban areas. Landsc. Ecol. Eng. 2011, 7, 17–25. [Google Scholar] [CrossRef]
- Zhu, Z.; Li, J.; Chen, Z. Green space equity: Spatial distribution of urban green spaces and correlation with urbanisation in Xiamen, China. Environ. Dev. Sustain. 2023, 25, 423–443. [Google Scholar] [CrossRef]
- World Health Organization. Regional Office for Europe, Urban Green Spaces: A Brief for Action; World Health Organization, Regional Office for Europe: Geneva, Switzerland, 2017. [Google Scholar]
- Davern, M.; Farrar, A.; Kendal, D.; Giles-Corti, B. Quality Green Space Supporting Health, Wellbeing and Biodiversity: A Literature Review; Heart Foundation of Australia: Adelaide, Australia, 2017. [Google Scholar]
- Zhou, X.; Rana, M.P. Social benefits of urban green space: A conceptual framework of valuation and accessibility measurements. Int. J. Manag. Environ. Qual. 2012, 23, 173–189. [Google Scholar] [CrossRef]
- Heidt, V.; Neef, M. Benefits of Urban Green Space for Improving Urban Climate, Ecology, Planning, and Management of Urban Forests; Springer: Berlin/Heidelberg, Germany, 2008; pp. 84–96. [Google Scholar]
- Tzoulas, K.; Korpela, K.; Venn, S.; Yli-Pelkonen, V.; Kaźmierczak, A.; Niemela, J.; James, P. Promoting ecosystem and human health in urban areas using Green Infrastructure: A literature review. Landsc. Urban Plan. 2007, 81, 167–178. [Google Scholar] [CrossRef]
- Chen, W.Y.; Jim, C.Y. Cost–benefit analysis of the leisure value of urban greening in the new Chinese city of Zhuhai. Cities 2008, 25, 298–309. [Google Scholar] [CrossRef]
- Costanza, R.; Andrade, F.; Antunes, P.; van den Belt, M.; Boesch, D.; Boersma, D.; Young, M. Ecological economics and sustainable governance of the oceans. Ecol. Econ. 1999, 31, 171–187. [Google Scholar] [CrossRef]
- Kittinger, J.N.; Finkbeiner, E.M.; Ban, N.C.; Broad, K.; Carr, M.H.; Cinner, J.E.; Crowder, L.B. Emerging frontiers in social-ecological systems research for sustainability of small-scale fisheries. Curr. Opin. Environ. Sustain. 2013, 5, 352–357. [Google Scholar] [CrossRef]
- Kabisch, N.; Qureshi, S.; Haase, D. Human–environment interactions in urban green spaces—A systematic review of contemporary issues and prospects for future research. Environ. Impact. Assess. Rev. 2015, 50, 25–34. [Google Scholar] [CrossRef]
- Vidal, D.G.; Dias, R.C.; Teixeira, C.P.; Fernandes, C.O.; Leal Filho, W.; Barros, N.; Maia, R.L. Clustering public urban green spaces through ecosystem services potential: A typology proposal for place-based interventions. Environ. Sci. Policy 2022, 132, 262–272. [Google Scholar] [CrossRef]
- Livesley, S.J.; Escobedo, F.J.; Morgenroth, J. The biodiversity of urban and peri-urban forests and the diverse ecosystem services they provide as socio-ecological systems. Forests 2016, 7, 291. [Google Scholar] [CrossRef]
- Liu, J.; Dietz, T.; Carpenter, S.R.; Alberti, M.; Folke, C.; Moran, E.; Taylor, W.W. Complexity of coupled human and natural systems. Science 2007, 317, 1513–1516. [Google Scholar] [CrossRef] [PubMed]
- Łaszkiewicz, E.; Wolff, M.; Andersson, E.; Kronenberg, J.; Barton, D.; Haase, D.; Langemeyer, J.; Baró, F.; McPhearson, T. Greenery in urban morphology: A comparative analysis of differences in urban green space accessibility for various urban structures across European cities. Ecol. Soc. 2022, 27, 3. [Google Scholar] [CrossRef]
- Stoia, N.L.; Niţă, M.R.; Popa, A.M.; Iojă, I.C. The green walk—An analysis for evaluating the accessibility of urban green spaces. Urban Urban Green 2022, 75, 127685. [Google Scholar] [CrossRef]
- Gebel, K.; Bauman, A.E.; Sugiyama, T.; Owen, N. Mismatch between perceived and objectively assessed neighborhood walkability attributes: Prospective relationships with walking and weight gain. Health Place 2011, 17, 519–524. [Google Scholar] [CrossRef]
- Gong, Y.; Gallacher, J.; Palmer, S.; Fone, D. Neighbourhood green space, physical function and participation in physical activities among elderly men: The Caerphilly Prospective study. Int. J. Behav. Nutr. Phys. Act. 2014, 11, 40. [Google Scholar] [CrossRef]
- Frank, L.; Kerr, J.; Chapman, J.; Sallis, J. Urban form relationships with walk trip frequency and distance among youth. Am. J. Health Promot. 2007, 21 (Suppl. 4), 305–311. [Google Scholar] [CrossRef]
- Giles-Corti, B.; Broomhall, M.H.; Knuiman, M.; Collins, C.; Douglas, K.; Ng, K.; Donovan, R.J. Increasing walking: How important is distance to, attractiveness, and size of public open space? Am. J. Prev. Med. 2005, 28, 169–176. [Google Scholar] [CrossRef]
- Chen, J.; Chang, Z. Rethinking urban green space accessibility: Evaluating and optimizing public transportation system through social network analysis in megacities. Landsc. Urban Plan. 2015, 143, 150–159. [Google Scholar] [CrossRef]
- Maas, J.; Verheij, R.A.; Groenewegen, P.P.; De Vries, S.; Spreeuwenberg, P. Green space, urbanity, and health: How strong is the relation? J. Epidemiol. Community Health 2006, 60, 587–592. [Google Scholar] [CrossRef]
- Sugiyama, T.; Thompson, C.W. Associations between characteristics of neighbourhood open space and older people’s walking. Urban Urban Green 2008, 7, 41–51. [Google Scholar] [CrossRef]
- Wolch, J.; Wilson, J.P.; Fehrenbach, J. Parks and park funding in Los Angeles: An equity-mapping analysis. Urban Geogr. 2005, 26, 4–35. [Google Scholar] [CrossRef]
- Maas, J.; Van Dillen, S.M.; Verheij, R.A.; Groenewegen, P.P. Social contacts as a possible mechanism behind the relation between green space and health. Health Place 2009, 15, 586–595. [Google Scholar] [CrossRef]
- Mitchell, R.; Popham, F. Greenspace, urbanity and health: Relationships in England. J. Epidemiol. Community Health 2007, 61, 681–683. [Google Scholar] [CrossRef] [PubMed]
- Jennings, V.; Larson, L.; Yun, J. Advancing sustainability through urban green space: Cultural ecosystem services, equity, and social determinants of health. Int. J. Environ. Res. Public Health 2016, 13, 196. [Google Scholar] [CrossRef] [PubMed]
- Voelker, S.; Kistemann, T. Reprint of: “I’m always entirely happy when I’m here!” Urban blue enhancing human health and well-being in Cologne and Düsseldorf, Germany. Soc. Sci. Med. 2013, 91, 141–152. [Google Scholar] [CrossRef]
- Hong, A.; Sallis, J.F.; King, A.C.; Conway, T.L.; Saelens, B.; Cain, K.L.; Frank, L.D. Linking green space to neighborhood social capital in older adults: The role of perceived safety. Soc. Sci. Med. 2018, 207, 38–45. [Google Scholar] [CrossRef] [PubMed]
- Seaman, P.J.; Jones, R.; Ellaway, A. It’s not just about the park, it’s about integration too: Why people choose to use or not use urban greenspaces. Int. J. Behav. Nutr. Phys. Act. 2010, 7, 78. [Google Scholar] [CrossRef]
- Yotti Kingsley, J.; Townsend, M. Dig in’to social capital: Community gardens as mechanisms for growing urban social connectedness. Urban Policy Res. 2006, 24, 525–537. [Google Scholar] [CrossRef]
- Svendsen, E.; Northridge, M.E.; Metcalf, S.S. Integrating grey and green infrastructure to improve the health and well-being of urban populations. Cities Environ. 2012, 5, 3. [Google Scholar] [CrossRef]
- White, M.P.; Alcock, I.; Wheeler, B.W.; Depledge, M.H. Would you be happier living in a greener urban area? A fixed-effects analysis of panel data. Psychol. Sci. 2013, 24, 920–928. [Google Scholar] [CrossRef]
- Coley, R.L.; Sullivan, W.C.; Kuo, F.E. Where does community grow? The social context created by nature in urban public housing. Environ. Behav. 1997, 29, 468–494. [Google Scholar] [CrossRef]
- Prezza, M.; Amici, M.; Roberti, T.; Tedeschi, G. Sense of community referred to the whole town: Its relations with neighboring, loneliness, life satisfaction, and area of residence. J. Community Psychol. 2001, 29, 29–52. [Google Scholar] [CrossRef]
- Hur, M.; Nasar, J.L.; Chun, B. Neighborhood satisfaction, physical and perceived naturalness and openness. J. Environ. Psychol. 2010, 30, 52–59. [Google Scholar] [CrossRef]
- Lachowycz, K.; Jones, A.P. Towards a better understanding of the relationship between greenspace and health: Development of a theoretical framework. Landsc. Urban Plan. 2013, 118, 62–69. [Google Scholar] [CrossRef]
- Lai, H.; Flies, E.J.; Weinstein, P.; Woodward, A. The impact of green space and biodiversity on health. Front. Ecol. Environ. 2019, 17, 383–390. [Google Scholar] [CrossRef]
- Li, X.; Li, X.; Ma, X. Spatial optimisation for urban green space (UGS) planning support using a heuristic approach. Appl. Geogr. 2022, 138, 102622. [Google Scholar] [CrossRef]
- Barton, J.; Pretty, J. What is the best dose of nature and green exercise for improving mental health? A multi-study analysis. Environ. Sci. Technol. 2010, 44, 3947–3955. [Google Scholar] [CrossRef]
- Kuo, F.E.; Sullivan, W.C. Environment and crime in the inner city: Does vegetation reduce crime? Environ. Behav. 2001, 33, 343–367. [Google Scholar] [CrossRef]
- Villanueva, K.; Badland, H.; Kvalsvig, A.; O’Connor, M.; Christian, H.; Woolcock, G.; Giles-Corti, B.; Goldfeld, S. Can the Neighborhood Built Environment Make a Difference in Children’s Development? Building the Research Agenda to Create Evidence for Place-Based Children’s Policy. Acad. Pediatr. 2016, 16, 10–19. [Google Scholar] [CrossRef]
- Wolsink, M. Environmental education excursions and proximity to urban green space–densification in a ‘compact city’. Environ. Educ. Res. 2016, 22, 1049–1071. [Google Scholar] [CrossRef]
- Irvine, K.N.; Warber, S.L.; Devine-Wright, P.; Gaston, K.J. Understanding urban green space as a health resource: A qualitative comparison of visit motivation and derived effects among park users in Sheffield, UK. Int. J. Environ. Res. Public Health 2013, 10, 417–442. [Google Scholar] [CrossRef] [PubMed]
- Joh, K.; Nguyen, M.T.; Boarnet, M.G. Can built and social environmental factors encourage walking among individuals with negative walking attitudes? J. Plan. Educ. Res. 2012, 32, 219–236. [Google Scholar] [CrossRef]
- Derr, V. Urban green spaces as participatory learning laboratories. Proc. Inst. Civ. Eng.-Urban Des. Plan. 2018, 171, 25–33. [Google Scholar] [CrossRef]
- Dennis, M.; James, P. Considerations in the valuation of urban green space: Accounting for user participation. Ecosyst. Serv. 2016, 21, 120–129. [Google Scholar] [CrossRef]
- Salvia, G.; Pluchinotta, I.; Tsoulou, I.; Moore, G.; Zimmermann, N. Understanding urban green space usage through systems thinking: A case study in Thamesmead, London. Sustainability 2022, 14, 2575. [Google Scholar] [CrossRef]
- King, A.; Shackleton, C.M. Maintenance of public and private urban green infrastructure provides significant employment in Eastern Cape towns, South Africa. Urban Urban Green 2020, 54, 126740. [Google Scholar] [CrossRef]
- Smith, C.R. Institutional determinants of collaboration: An empirical study of county open-space protection. J. Public Adm. Res. Theory 2009, 19, 1–21. [Google Scholar] [CrossRef]
- Seeland, K.; Nicolè, S. Public green space and disabled users. Urban Urban Green 2006, 5, 29–34. [Google Scholar] [CrossRef]
- Hansen, R.; Olafsson, A.S.; Van Der Jagt, A.P.; Rall, E.; Pauleit, S. Planning multifunctional green infrastructure for compact cities: What is the state of practice? Ecol. Indic. 2019, 96, 99–110. [Google Scholar] [CrossRef]
- Kambites, C.; Owen, S. Renewed prospects for green infrastructure planning in the UK. Plan. Pract. Res. 2006, 21, 483–496. [Google Scholar] [CrossRef]
- Cakir, S.; Hecht, R.; Krellenberg, K. Sensitivity analysis in multi-criteria evaluation of the suitability of urban green spaces for recreational activities. AGILE GIScience Ser. 2021, 2, 1–8. [Google Scholar] [CrossRef]
- Müller-Riemenschneider, F.; Pereira, G.; Villanueva, K.; Christian, H.; Knuiman, M.; Giles-Corti, B.; Bull, F.C. Neighborhood walkability and cardiometabolic risk factors in Australian adults: An observational study. BMC Public Health 2013, 13, 755. [Google Scholar] [CrossRef] [PubMed]
- Kendal, D.; Lee, K.; Ramalho, C.E.; Bowen, K.; Bush, J. Benefits of Urban Green Space in the Australian Context: A Synthesis Review, the Clean Air and Urban Landscapes Hub Report; School of Biological Sciences, the University of Western Australia: Perth, Australia, 2016. [Google Scholar]
- Sang, Å.O.; Knez, I.; Gunnarsson, B.; Hedblom, M. The effects of naturalness, gender, and age on how urban green space is perceived and used. Urban Urban Green 2016, 18, 268–276. [Google Scholar] [CrossRef]
- McCormick, R. Does access to green space impact the mental well-being of children: A systematic review. J. Pediatr. Nurs. 2017, 37, 3–7. [Google Scholar] [CrossRef]
- Bowler, D.E.; Buyung-Ali, L.M.; Knight, T.M.; Pullin, A.S. A systematic review of evidence for the added benefits to health of exposure to natural environments. BMC Public Health 2010, 10, 456. [Google Scholar] [CrossRef]
- Tian, Y.; Jim, C.Y.; Wang, H. Assessing the landscape and ecological quality of urban green spaces in a compact city. Landsc. Urban Plan. 2014, 121, 97–108. [Google Scholar] [CrossRef]
- Xu, X.; Duan, X.; Sun, H.; Sun, Q. Green space changes and planning in the capital region of China. Environ. Manag. 2011, 47, 456–467. [Google Scholar] [CrossRef]
- Caballero Espejo, J.; Messinger, M.; Román-Dañobeytia, F.; Ascorra, C.; Fernandez, L.E.; Silman, M. Deforestation and forest degradation due to gold mining in the Peruvian Amazon: A 34-year perspective. Remote Sens. 2018, 10, 1903. [Google Scholar] [CrossRef]
- King, R.S.; Baker, M.E.; Whigham, D.F.; Weller, D.E.; Jordan, T.E.; Kazyak, P.F.; Hurd, M.K. Spatial considerations for linking watershed land cover to ecological indicators in streams. Ecol. Appl. 2005, 15, 137–153. [Google Scholar] [CrossRef]
- Zhou, X.; Wang, Y.C. Spatial–temporal dynamics of urban green space in response to rapid urbanisation and greening policies. Landsc. Urban Plan. 2011, 100, 268–277. [Google Scholar] [CrossRef]
- Schebella, M.; Weber, D.; Brown, G.; Hatton MacDonald, D. The importance of irrigated urban green space: Health and recreational benefits perspectives. In Goyder Institute for Water Research, Technical Report Series (14/2); Goyder Institute for Water Research: Adelaide, Australia, 2012. [Google Scholar]
- Derkzen, M.L.; van Teeffelen, A.J.; Verburg, P.H. Quantifying urban ecosystem services based on high-resolution data of urban green space: An assessment for Rotterdam, The Netherlands. J. Appl. Ecol. 2015, 52, 1020–1032. [Google Scholar] [CrossRef]
- Armson, D.; Stringer, P.; Ennos, A.R. The effect of tree shade and grass on surface and globe temperatures in an urban area. Urban For. Urban Green. 2012, 11, 245–255. [Google Scholar] [CrossRef]
- Dickinson, D.C. Green Space Perth: A Social-Ecological Study of Urban Green Space in Perth, Western Australia. Ph.D. Thesis, University of Western Australia, Perth, Australia, 2018. [Google Scholar]
- Dizdaroglu, D.; Yigitcanlar, T.; Dawes, L. A micro-level indexing model for assessing urban ecosystem sustainability. Smart Sustain. Built Environ. 2012, 1, 291–315. [Google Scholar] [CrossRef]
- Tjallingii, S. Green and red: Enemies or allies? The Utrecht experience with green structure planning. Built Environ. 2003, 29, 107–116. [Google Scholar] [CrossRef]
- Dong, Y.; Ren, Z.; Fu, Y.; Miao, Z.; Yang, R.; Sun, Y.; He, X. Recording urban land dynamic and its effects during 2000–2019 at 15-m resolution by cloud computing with Landsat series. Remote Sens. 2020, 12, 2451. [Google Scholar] [CrossRef]
- Jutz, F.; Andanson, J.M.; Baiker, A. A green pathway for hydrogenations on ionic liquid-stabilized nanoparticles. J. Catal. 2009, 268, 356–366. [Google Scholar] [CrossRef]
- Verma, P. Awareness and introduction in Greenway, with benefit and planned greenway planning strategies. Int. J. Adv. Res. Ideas Innov. Technol. 2018, 4, 577–582. [Google Scholar]
- Chen, B.; Adimo, O.A.; Bao, Z. Assessment of aesthetic quality and multiple functions of urban green space from the users’ perspective: The case of Hangzhou Flower Garden, China. Landsc. Urban Plan. 2009, 93, 76–82. [Google Scholar] [CrossRef]
- Hayek, U.W.; Halatsch, J.; Kunze, A.; Schmitt, G.; Grêt-Regamey, A. Integrating Natural Resource Indicators into Procedural Visualisation for Sustainable Urban Green Space Design; Buhmann, E., Pietsch, M., Kretzler, E., Eds.; Anhalt University of Applied Sciences: Berlin, Germany, 2010; pp. 339–347. [Google Scholar]
- Nouri, H.; Beecham, S.; Kazemi, F.; Hassanli, A.M. A review of ET measurement techniques for estimating the water requirements of urban landscape vegetation. Urban Water J. 2013, 10, 247–259. [Google Scholar] [CrossRef]
- Cameron, R.W.; Brindley, P.; Mears, M.; McEwan, K.; Ferguson, F.; Sheffield, D.; Jorgensen, A.; Riley, J.; Goodrick, J.; Ballard, L.; et al. Where the wild things are! Do urban green spaces with greater avian biodiversity promote more positive emotions in humans? Urban Ecosyst. 2020, 23, 301–317. [Google Scholar] [CrossRef]
- Griffith, J.C. Green infrastructure: The imperative of open space preservation. Urb. Law. 2010, 43, 259. [Google Scholar]
- Li, H.; Chen, W.; He, W. Planning of green space ecological network in urban areas: An example of Nanchang, China. Int. J. Environ. Res. Public Health 2015, 12, 12889–12904. [Google Scholar] [CrossRef] [PubMed]
- Idris, I.; Hoque, M.E.; Susanto, P. Willingness to pay for the preservation of urban green space in Indonesia. Cogent Econ. Financ. 2022, 10, 2008588. [Google Scholar] [CrossRef]
- Elmqvist, T.; Fragkias, M.; Goodness, J.; Güneralp, B.; Marcotullio, P.J.; McDonald, R.I.; Wilkinson, C. Urbanisation, Biodiversity and Ecosystem Services: Challenges and Opportunities: A Global Assessment; Springer Nature: Berlin/Heidelberg, Germany, 2013; p. 755. [Google Scholar]
- Rodenburg, J.; Both, J.; Heitkönig, I.M.; Van Koppen, C.S.A.; Sinsin, B.; Van Mele, P.; Kiepe, P. Land use and biodiversity in unprotected landscapes: The case of noncultivated plant use and management by rural communities in Benin and Togo. Soc. Nat. Res. 2012, 25, 1221–1240. [Google Scholar] [CrossRef]
- Zhang, X.; Mi, F.; Lu, N.; Yan, N.; Kuglerova, L.; Yuan, S.; Ma, O.Z. Green space water use and its impact on water resources in the capital region of China. Phys. Chem. Earth. Parts A/B/C 2017, 101, 185–194. [Google Scholar] [CrossRef]
- Minelli, A.; Minelli, M.; Pasini, I. Green space irrigation: Reuse of rainwater and use of wastewaters-some Italian examples. Acta Hortic. 2010, 922, 75–82. [Google Scholar] [CrossRef]
- Saeedi, I.; Goodarzi, M. Rainwater harvesting system: A sustainable method for landscape development in semiarid regions, the case of Malayer University campus in Iran. Environ. Dev. Sustain. 2020, 22, 1579–1598. [Google Scholar] [CrossRef]
- Rahman, M.M.; Hagare, D.; Maheshwari, B. Use of recycled water for irrigation of open spaces: Benefits and risks. In Balanced Urban Development: Options and Strategies for Liveable Cities; Springer: Cham, Switzerland, 2016; pp. 261–288. [Google Scholar]
- Guo, J.; Niu, H.; Xiao, D.; Sun, X.; Fan, L. Urban green-space water-consumption characteristics and its driving factors in China. Ecol. Indic. 2021, 130, 108076. [Google Scholar] [CrossRef]
- Abd El Aziz, N.A. Water sensitive landscape case study: Public open green spaces in Naser City, Egypt. J. Landsc. Ecol. 2016, 9, 66–83. [Google Scholar] [CrossRef]
- Yu, D.; Xun, B.; Shi, P.; Shao, H.; Liu, Y. Ecological restoration planning based on connectivity in an urban area. Ecol. Eng. 2012, 46, 24–33. [Google Scholar] [CrossRef]
- Huang, B.X.; Chiou, S.C.; Li, W.Y. Landscape pattern and ecological network structure in urban green space planning: A case study of Fuzhou city. Land 2021, 10, 769. [Google Scholar] [CrossRef]
- Beatley, T. Preserving biodiversity: Challenges for planners. J. Am. Plan. Assoc. 2000, 66, 5–20. [Google Scholar] [CrossRef]
- Jongman, R. Ecological networks are an issue for all of us. J. Landsc. Ecol. 2008, 1, 7–13. [Google Scholar] [CrossRef]
- Kong, F.; Yin, H.; Nakagoshi, N.; Zong, Y. Urban green space network development for biodiversity conservation: Identification based on graph theory and gravity modelling. Landsc. Urban Plan. 2010, 95, 16–27. [Google Scholar] [CrossRef]
- Zhang, X.F.; Wang, Y.; Li, Z. Landscape pattern optimization based upon the concept of landscape functions network: A case study in Taiwan, China. Acta Ecologica. Sinica. 2005, 25, 1707–1713. [Google Scholar]
- Aronson, M.F.; Lepczyk, C.A.; Evans, K.L.; Goddard, M.A.; Lerman, S.B.; MacIvor, J.S.; Vargo, T. Biodiversity in the city: Key challenges for urban green space management. Front. Ecol. Environ. 2017, 15, 189–196. [Google Scholar] [CrossRef]
- Bramley, G.; Dempsey, N.; Power, S.; Brown, C.; Watkins, D. Social sustainability and urban form: Evidence from five British cities. Environ. Plan A 2009, 41, 2125–2142. [Google Scholar] [CrossRef]
- Fors, H.; Molin, J.F.; Murphy, M.A.; van den Bosch, C.K. User participation in urban green spaces–For the people or the parks? Urban Urban Green 2015, 14, 722–734. [Google Scholar] [CrossRef]
- Jennings, V.; Bamkole, O. The relationship between social cohesion and Landscape and ecological engineering urban green space: An avenue for health promotion. Int. J. Environ. Res. Public Health 2019, 16, 452. [Google Scholar] [CrossRef]
- Wikantiyoso, R.; Suhartono, T. The role of CSR in the revitalisation of urban open space for better sustainable urban development. Int. Rev. Spatial. Plan. Sustain. Dev. 2018, 6, 5–20. [Google Scholar] [CrossRef]
- Graça, M.; Cruz, S.; Monteiro, A.; Neset, T.S. Designing urban green spaces for climate adaptation: A critical review of research outputs. Urban Clim. 2022, 42, 101126. [Google Scholar] [CrossRef]
- Yang, G.; Yu, Z.; Jørgensen, G.; Vejre, H. How can urban blue-green space be planned for climate adaption in high-latitude cities? A Seas. Perspective. Sustain. Cities Soc. 2020, 53, 101932. [Google Scholar] [CrossRef]
- Burns, N.; Grove, S.K. The Practice of Nursing Research; Conduct, Critique, and Utilisation, 5th ed.; Elsevier Saunders: Philadelphia, PA, USA, 2005. [Google Scholar]
- Boswell, C.; Cannon, S. Introduction to Nursing Research, 3rd ed.; Jones & Bartlett Publishers: Burlington, MA, USA, 2012. [Google Scholar]
- Tavakol, M.; Dennick, R. Making sense of Cronbach’s alpha. Int. J. Med. Educ. 2011, 2, 53. [Google Scholar] [CrossRef] [PubMed]
- Park, H.M. Comparing Group Means: T-Tests and One-Way ANOVA Using Stata, SAS, R, and SPSS; 2009. Available online: https://hdl.handle.net/2022/19735, (accessed on 12 October 2022).
- Yu, Y.; Zhang, W.; Fu, P.; Huang, W.; Li, K.; Cao, K. The spatial optimisation and evaluation of the economic, ecological, and social value of urban green space in Shenzhen. Sustainability 2020, 12, 1844. [Google Scholar] [CrossRef]
- Zambrano, L.; Cano-Santana, Z.; Wegier, A.; Arroyo-Lambaer, D.; Zúñiga-Vega, J.J.; Suárez, A.; Bouchain, C.R.; Gual Sill, F.; Campo, J.; Ortega-Larrocea, P.; et al. Evaluating socio-ecological interactions for the management of protected urban green spaces. Front. Environ. Sci. 2019, 7, 144. [Google Scholar] [CrossRef]
- Mofrad, F.; Ignatieva, M. What is the future of the bush capital? A socio-ecological approach to enhancing Canberra’s green infrastructure. Land 2022, 12, 39. [Google Scholar] [CrossRef]
- Braubach, M.; Egorov, A.; Mudu, P.; Wolf, T.; Ward Thompson, C.; Martuzzi, M. Effects of urban green space on environmental health, equity and resilience. In Nature-Based Solutions to Climate Change Adaptation in Urban Areas; Springer: Berlin/Heidelberg, Germany, 2017; pp. 187–205. [Google Scholar]
- Aminzadeh, B.; Khansefid, M. A case study of urban ecological networks and a sustainable city: Tehran’s metropolitan area. Urban Ecosyst. 2010, 13, 23–36. [Google Scholar] [CrossRef]
Domains | Number of Factors | Reliability (Cronbach’s Alpha) |
---|---|---|
Factors in social domains | ||
Accessibility | 3 | 0.078 |
Socialisation | 5 | 0.583 |
Recreation, health, and wellbeing | 9 | 0.643 |
Multi-functionality and suitability | 8 | 0.692 |
Education and management | 10 | 0.722 |
All social factors’ reliability | 35 | 0.841 |
Factors in ecological domains | ||
Ecological landscape design | 15 | 0.720 |
Ecological network | 1 | - |
Protection | 3 | 0.422 |
Biodiversity and vegetation | 7 | 0.504 |
Water resources | 4 | 0.498 |
All ecological factors’ reliability | 30 | 0.825 |
Reliability of all social and ecological factors | 65 | 0.898 |
Number of the Variables | Mean a | Std. Deviation b | Std. Error Mean | |
---|---|---|---|---|
Accessibility | 3 | 4.6867 | 0.29195 | 0.16856 |
Socialisation | 5 | 4.1620 | 0.25616 | 0.11456 |
Recreation, health, and wellbeing | 9 | 4.1111 | 0.40170 | 0.13390 |
Multi-functionality and suitability | 8 | 4.1762 | 0.60863 | 0.21518 |
Education and management | 10 | 3.8150 | 0.46810 | 0.14803 |
Test Value = 3 | ||||||
---|---|---|---|---|---|---|
t a | df b | Significance (2-Tailed) | Mean Difference c | 95% Confidence Interval of the Difference | ||
Lower | Upper | |||||
Accessibility | 10.007 | 2 | 0.001 | 1.68667 | 0.9614 | 2.4119 |
Socialisation | 10.143 | 4 | 0.001 | 1.16200 | 0.8439 | 1.4801 |
Recreation, health, and wellbeing | 8.298 | 8 | 0.000 | 1.11111 | 0.8023 | 1.4199 |
Multi-functionality and suitability | 5.466 | 7 | 0.001 | 1.17625 | 0.6674 | 1.6851 |
Education and management | 5.506 | 9 | 0.000 | 0.81500 | 0.4801 | 1.1499 |
N | Mean a | Std. Deviation b | Std. Error Mean | |
---|---|---|---|---|
Ecological landscape design | 15 | 3.9393 | 0.49138 | 0.12687 |
Protection | 3 | 4.4400 | 0.27221 | 0.15716 |
Ecological networks | 1 c | 4.3300 | . | . |
Biodiversity and vegetation | 7 | 3.9443 | 0.44996 | 0.17007 |
Water resources | 3 | 4.0533 | 0.31342 | 0.18095 |
Test Value = 3 | ||||||
---|---|---|---|---|---|---|
t a | df b | Significance (2-tailed) | Mean Difference | 95% Confidence Interval of the Difference | ||
Lower | Upper | |||||
Ecological landscape design | 7.404 | 14 | 0.000 | 0.93933 | 0.6672 | 1.2114 |
Protection | 8.463 | 2 | 0.014 | 1.33000 | 0.6538 | 2.0062 |
Biodiversity and vegetation | 5.552 | 6 | 0.001 | 0.94429 | 0.5281 | 1.3604 |
Water resources | 5.821 | 2 | 0.028 | 1.05333 | 0.2747 | 1.8319 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Teimouri, R.; Karuppannan, S.; Sivam, A.; Gu, N.; Yenneti, K. Exploring International Perspective on Factors Affecting Urban Socio-Ecological Sustainability by Green Space Planning. Sustainability 2023, 15, 14169. https://doi.org/10.3390/su151914169
Teimouri R, Karuppannan S, Sivam A, Gu N, Yenneti K. Exploring International Perspective on Factors Affecting Urban Socio-Ecological Sustainability by Green Space Planning. Sustainability. 2023; 15(19):14169. https://doi.org/10.3390/su151914169
Chicago/Turabian StyleTeimouri, Raziyeh, Sadasivam Karuppannan, Alpana Sivam, Ning Gu, and Komali Yenneti. 2023. "Exploring International Perspective on Factors Affecting Urban Socio-Ecological Sustainability by Green Space Planning" Sustainability 15, no. 19: 14169. https://doi.org/10.3390/su151914169
APA StyleTeimouri, R., Karuppannan, S., Sivam, A., Gu, N., & Yenneti, K. (2023). Exploring International Perspective on Factors Affecting Urban Socio-Ecological Sustainability by Green Space Planning. Sustainability, 15(19), 14169. https://doi.org/10.3390/su151914169