Increasing Trends of Heat Waves and Tropical Nights in Coastal Regions (The Case Study of Lithuania Seaside Cities)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Data and Methods
3. Results
3.1. Long-Term Air Temperature Change in the Baltic Seaside Region
3.2. Heat Waves
3.3. Tropical Nights
3.4. Dangerous Heat and Severe Heat Waves
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Allen, M.R.; Dube, O.P.; Solecki, W.; Aragón-Durand, F.; Cramer, W.; Humphreys, S.; Kainuma, M.; Kala, J.; Mahowald, N.; Mulugetta, Y.; et al. Framing and Context. In Global Warming of 1.5 °C; An IPCC Special Report on the Impacts of Global Warming of 1.5 °C Above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty; Masson-Delmotte, V., Zhai, P., Pörtner, H.-O., Roberts, D., Skea, J., Shukla, P.R., Pirani, A., Moufouma-Okia, W., Péan, C., Pidcock, R., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2018; pp. 49–92. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2022. Impacts, Adaptation and Vulnerability. Summary for Policymakers, Technical Summary and Frequently Asked Questions. Working Group II Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. 2022. Available online: https://www.ipcc.ch/report/ar6/wg2/downloads/report/IPCC_AR6_WGII_SummaryVolume.pdf (accessed on 16 August 2023).
- Liu, X.; He, B.; Guo, L.; Huang, L.; Chen, D. Similarities and differences in the mechanisms causing the European summer heatwaves in 2003, 2010, and 2018. Earths Future 2020, 8, e2019EF001386. [Google Scholar] [CrossRef]
- Rutgersson, A.; Kjellström, E.; Haapala, J.; Stendel, M.; Danilovich, I.; Drews, M.; Jylhä, K.; Kujala, P.; Larsén, X.G.; Halsnæs, K.; et al. Natural hazards and extreme events in the Baltic Sea region. Earth Syst. Dyn. 2022, 13, 251–301. [Google Scholar] [CrossRef]
- Schär, C.; Vidale, P.L.; Lüthi, D.; Frei, C.; Häberli, C.; Mark, A.; Liniger, M.A.; Appenzeller, C. The role of increasing temperature variability in European summer heatwaves. Nature 2004, 427, 332–336. [Google Scholar] [CrossRef] [PubMed]
- Clark, R.T.; Brown, S.J.; Murphy, J.M. Modeling Northern Hemisphere summer heat extreme changes and their uncertainties using a physics ensemble of climate sensitivity experiments. J. Clim. 2006, 19, 4418–4435. [Google Scholar] [CrossRef]
- Chan, P.W.; Catto, J.L.; Collins, M. Heatwave–blocking relation change likely dominates over decrease in blocking frequency under global warming. NPJ Clim. Atmos. Sci. 2022, 5, 68. [Google Scholar] [CrossRef]
- Fischer, E.M.; Schär, C. Consistent geographical patterns of changes in high-impact European heatwaves. Nat. Geosci. 2010, 3, 398–403. [Google Scholar] [CrossRef]
- Meier, H.E.M.; Kniebusch, M.; Dieterich, C.; Gröger, M.; Zorita, E.; Elmgren, R.; Myrberg, K.; Ahola, M.P.; Bartosova, A.; Bonsdorff, E.; et al. Climate change in the Baltic Sea region: A summary. Earth Syst. Dyn. 2022, 13, 457–593. [Google Scholar] [CrossRef]
- Galvonaitė, A.; Valiukas, D.; Kilpys, J.; Kitrienė, Z.; Misiūnienė, M. Climate Atlas of Lithuania. Vilnius. Lithuanian Hydrometeorological Service under the Ministry of Environment. 2013; 175p. Available online: http://www.meteo.lt/documents/20181/102884/Klimato+Atlasas+smal.pdf/08c97c20-bd46-4e65-a069-3a0774e4b748 (accessed on 7 February 2023).
- Bierstedt, S.E.; Hünicke, B.; Zorita, E. Variability of wind direction statistics of mean and extreme wind events over the Baltic Sea region. Tellus A Dyn. Meteorol. Oceanogr. 2015, 67, 29073. [Google Scholar] [CrossRef]
- Hurrell, J. Decadal trends in the North Atlantic965Oscillation regional temperatures and precipitation. Science 1995, 269, 676–679. [Google Scholar] [CrossRef]
- HELCOM. State of the Baltic Sea–Second HELCOM Holistic Assessment 2011–2016; Baltic Sea Environment Proceedings No. 155; HELCOM: Helsinki, Finland, 2018; 155p, Available online: http://stateofthebalticsea.helcom.fi/wp-content/uploads/2018/07/HELCOM_State-of-the-Baltic-Sea_Second-HELCOM-holistic-assessment-2011-2016.pdf (accessed on 26 September 2023).
- BACC Author Team. Assessment of Climate Change for the Baltic Sea Basin. Regional Climate Studies; Springer: Berlin/Heidelberg, Germany, 2008; 473p. [Google Scholar] [CrossRef]
- BACC II Author Team. Second Assessment of Climate Change for the Baltic Sea Basin. Regional Climate Studies; Springer International Publishing: Berlin/Heidelberg, Germany, 2015; 515p, Available online: https://link.springer.com/book/10.1007/978-3-319-16006-1 (accessed on 19 March 2023).
- Junk, J.; Goergen, K.; Krein, A. Future Heat Waves in Different European Capitals Based on Climate Change Indicators. Int. J. Environ. Res. Public Health 2019, 16, 3959. [Google Scholar] [CrossRef]
- Perkins, S.E.; Alexander, L.V. On the Measurement of Heat Waves. J. Clim. 2013, 26, 4500–4517. [Google Scholar] [CrossRef]
- Shevchenko, O.; Snizhko, S.; Zapototskyi, S.; Matzarakis, A. Biometeorological Conditions during the August 2015 Mega-Heat Wave and the Summer 2010 Mega-Heat Wave in Ukraine. Atmosphere 2022, 13, 99. [Google Scholar] [CrossRef]
- Koppe, C.; Jendritzky, G. Inclusion of short-term adaptation to thermal stresses in a heat load warning procedure. Meteorol. Z. 2005, 14, 271–278. [Google Scholar] [CrossRef]
- Ruuhela, R.; Jylhä, K.; Lanki, T.; Tiittanen, P.; Matzarakis, A. Biometeorological Assessment of Mortality Related to Extreme Temperatures in Helsinki Region, Finland, 1972–2014. Int. J. Environ. Res. Public Health 2017, 14, 944. [Google Scholar] [CrossRef]
- Kirch, W.; Bertollini, R.; Menne, B. (Eds.) Extreme Weather Events and Public Health Responses; WHO, Regional Office for Europe: Geneva, Switzerland; Springer: Berlin/Heidelberg, Germany, 2005; 303p. [Google Scholar]
- Keatinge, W.R.; Donaldson, G.C.; Cordioli, E.; Martinelli, M.; Kunst, A.E.; Mackenbach, J.P.; Näyhä, S.; Vuori, I. Heat related mortality in warm and cold regions of Europe: Observational study. BMJ 2000, 321, 670–673. [Google Scholar] [CrossRef] [PubMed]
- Park, J.K.; Lu, R.Y.; Li, C.F.; Kim, E.B. Interannual variation of tropical night frequency in Beijing and associated large-scale circulation background. Adv. Atmos. Sci. 2012, 29, 295–306. [Google Scholar] [CrossRef]
- Liukaitytė, J. Quantitative Assessment of Biometeorological Conditions in Lithuania. Ph.D. Thesis, Physical Sciences, Geography, Vilnius, Lithuania, 2011; p. 168. (In Lithuanian). [Google Scholar]
- Błażejczyk, K.; Epstein, Y.; Jendritzky, G.; Staiger, H.; Tinz, B. Comparison of UTCI to selected thermal indices. Int. J. Biometeorol. 2012, 56, 515–535. [Google Scholar] [CrossRef]
- Roffe, S.J.; Walt, A.J.; Fitchett, J.M. Spatiotemporal characteristics of human thermal comfort across southern Africa: An analysis of the Universal Thermal Climate Index (UTCI) for 1971–2021. Int. J. Climatol. 2023, 43, 2930–2952. [Google Scholar] [CrossRef]
- IPCC. Sixth Assessment Report: Climate Change 2021. The Physical Sciences Basis. Summary for policymakers. Intergovernmental Panel on Climate Change. In Climate change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Eds.; Cambridge University Press: Cambridge, UK, 2021; Available online: https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_SPM_final.pdf (accessed on 24 January 2023).
- Pfeifer, K.; Oudin Åström, D.; Martinsone, Ž.; Kaļužnaja, D.; Oudin, A. Evaluating Mortality Response Associated with Two Different Nordic Heat Warning Systems in Riga, Latvia. Int. J. Environ. Res. Public Health 2020, 17, 7719. [Google Scholar] [CrossRef]
- Galvonaite, A.; Misiuniene, M.; Valiukas, D.; Buitkuviene, M.S. Climate of Lithuania; Institute of Geograpgy, Vilnius University: Vilnius, Lithuania, 2007; 207p, Lithuanian Hydrometeorological Service. (In Lithuanian) [Google Scholar]
- Bukantis, A. Lithuanian Climate. Heat Wave. Universal Lithuanian Encyclopedia. 2022. Available online: https://www.vle.lt/straipsnis/karscio-banga/ (accessed on 1 July 2023). (In Lithuanian).
- Bukantis, A.; Gulbinas, S.; Kazakevičius, K.; Kilkus, K.; Mikelinskienė, A.; Morkūnaitė, R.; Rimkus, E.; Samuila, M.; Stankūnavičius, G.; Valiuškevičius, G.; et al. Impact of Climate Change for Physical Geographical Processes in Lithuania; 2001; 280p. Available online: https://www.researchgate.net/profile/Gintaras-Valiuskevicius/publication/284662367_Impact_of_Climate_Change_for_Physical_Geographical_Processes_in_Lithuania/links/577b67ba08aece6c20fbf34a/Impact-of-Climate-Change-for-Physical-Geographical-Processes-in-Li (accessed on 21 August 2023). (In Lithuanian).
- Bukantis, A.; Valiuškevičienė, L. Change in extreme air temperature and precipitation indicators and the factors determining them in lithuania in the 20th century. Ann. Geogr. 2005, 38, 6–17. (In Lithuanian) [Google Scholar]
- Galvonaitė, A.; Valiukas, D.; Kitrienė, Z.; Kilpys, J. Climate of Lithuanian Resorts; Lithuanian hydrometeorological Service at the Ministry of Environment of the Republic of Lithuania: Vilnius, Lithuania, 2015; 104p. (In Lithuanian) [Google Scholar]
- Dailidė, R.; Dailidė, G.; Razbadauskaitė-Venskė, I.; Povilanskas, R.; Dailidienė, I. Sea-Breeze Front Research Based on Remote Sensing Methods in Coastal Baltic Sea Climate: Case of Lithuania. J. Mar. Sci. Eng. 2022, 10, 1779. [Google Scholar] [CrossRef]
- Žaromskis, R. Curonian Lagoon. Universal Lithuanian Encyclopedia. 2022. Available online: https://www.vle.lt/straipsnis/kursiu-marios/ (accessed on 10 July 2023). (In Lithuanian).
- WMO. Guidelines on the Calculation of Climate Normals. WMO-No. 1203. 2017; 18p. Available online: https://library.wmo.int/doc_num.php?explnum_id=4166 (accessed on 21 August 2023).
- Sreehari, E.; Ghantasala, G.S.P. Climate Changes Prediction Using Simple Linear Regression. J. Comput. Theor. Nano Sci. 2019, 16, 655–658. [Google Scholar] [CrossRef]
- Kim, S.J.; Bae, S.J.; Jang, M.W. Linear Regression Machine Learning Algorithms for Estimating Reference Evapotranspiration Using Limited Climate Data. Sustainability 2022, 14, 11674. [Google Scholar] [CrossRef]
- Wan, Z.; Hook, S.; Hulley, G. MYD11C3 MODIS/Aqua Land Surface Temperature/Emissivity Monthly L3 Global 0.05Deg CMG V006. 2015, Distributed by NASA EOSDIS Land Processes DAAC. 2015. Available online: https://lpdaac.usgs.gov/products/myd11c3v006/ (accessed on 18 February 2023).
- LHMS. Assessment of Climate Changes in Lithuania Comparing 1961–1990 and 1991–2020 Standard Climate Norms; Lithuanian Hydrometeorological Service (LHMS) under the Ministry of Environment Vilnius: Vilnius, Lithuania, 2021; 18p. (In Lithuanian) [Google Scholar]
- LHMS. August 2022 Overview. 2023. Available online: http://www.meteo.lt/lt/2022-rugpjutis (accessed on 25 May 2023).
- Copernicus. European State of the Climate 2022. Summer 2022 Europe’s Hottest on Record. 2022. Available online: https://climate.copernicus.eu/esotc/2022 (accessed on 25 August 2023).
- Jakimavičius, D.; Kriaučiūnienė, J.; Šarauskienė, D. Impact of climate change on the Curonian Lagoon water balance components, salinity and water temperature in the 21st century. Oceanologia 2018, 60, 378–389. [Google Scholar] [CrossRef]
- Masterton, J.; Richardson, F.A. Humidex, a Method of Quantifying Human Discomfort Due to Excessiveheat and Humidity; Environment Canada, Atmospheric Environment: Toronto, ON, Canada, 1979; 45p. [Google Scholar]
- Kažys, J. Biometeorology Practical Works; Educational Book: Vilnius, Lithuania, 2011; 72p. (In Lithuanian) [Google Scholar]
- Sinclair, V.A.; Mikkola, J.; Rantanen, M.; Räisänen, J. The summer 2018 heatwave in Finland. Weather 2019, 74, 403–409. [Google Scholar] [CrossRef]
- Wilcke, R.A.I.; Kjellström, E.; Lin, C.; Matei, D.; Moberg, A.; Tyrlis, E. The extremely warm summer of 2018 in Sweden—Set in a historical context. Earth Syst. Dyn. 2020, 11, 1107–1121. [Google Scholar] [CrossRef]
- Rutgersson, A.; Jaagus, J.; Schenk, F.; Stendel, M. Observed changes and variability of atmospheric parameters in the Baltic Sea region during the last 200 years. Clim. Res. 2014, 61, 177–190. [Google Scholar] [CrossRef]
- Jaagus, J.; Briede, A.; Rimkus, E.; Remm, K. Variability and trends in daily minimum and maximum temperatures and in the diurnal temperature range in Lithuania, Latvia and Estonia in 1951–2010. Theor. Appl. Climatol. 2014, 118, 57–68. [Google Scholar] [CrossRef]
- Coppini, G.; Pinardi, N.; Marullo, S.; Loewe, P. Sea Surface Temperature, Compiled for EEA by the Instituto Nazionale di Geofisica e Vulcanologia (INGV) Based on Datasets Made Available by the Hadley Center, HADISST1. 2007. Available online: http://hadobs.metoffice.com/hadisst/data/download.html (accessed on 23 February 2023).
- Ramis, C.; Amengual, A. Climate Change Effects on European Heat Waves and Human Health. Encycl. Antropocene 2018, 2, 209–216. [Google Scholar] [CrossRef]
- Stockmayer, V.; Lehmann, A. Variations of temperature, salinity and oxygen of the Baltic Sea for the period 1950 to 2020. Oceanologia 2023, 65, 466–483. [Google Scholar] [CrossRef]
- Dailidienė, I.; Davulienė, L.; Kelpšaitė, L.; Razinkovas, A. Analysis of the Climate Change in Lithuanian Coastal Areas of the Baltic Sea. J. Coast. Res. 2012, 28, 557–569. [Google Scholar] [CrossRef]
- Dailidiene, I.; Baudler, H.; Chubarenko, B.; Navarotskaya, S. Long term water level and surface temperature changes in the lagoons of the southern and eastern Baltic. J. Oceanol. 2011, 53, 293–308. [Google Scholar] [CrossRef]
- Rukšėnienė, V.; Dailidienė, I.; Kelpšaitė-Rimkienė, L.; Soomere, T. Sea surface temperature variations in the south-eastern Baltic Sea in 1960–2015. Baltica 2017, 30, 75–85. [Google Scholar] [CrossRef]
- Meier, H.E.M.; Dieterich, C.; Gröger, M.; Dutheil, C.; Börgel, F.; Safonova, K.; Christensen, O.B.; Kjellström, E. Oceanographic regional climate projections for the Baltic Sea until 2100. Earth Syst. Dyn. 2022, 13, 159–199. [Google Scholar] [CrossRef]
- Hobday, A.; Oliver, E.; Sen Gupta, A.; Benthuysen, J.; Burrows, M.; Donat, M.; Holbrook, N.; Moore, P.; Thomsen, M.; Wernberg, T.; et al. Categorizing and naming marine heatwaves. Oceanography 2018, 31, 27. [Google Scholar] [CrossRef]
- Rutgersson, A.; Jaagus, J.; Schenk, F.; Stendel, M.; Bärring, L.; Briede, A.; ClaremarInger, B.; Hanssen-Bauer, I.; Holopainen, J.; Moberg, A.; et al. Recent Change—Atmosphere. In Second Assessment of Climate Change for the Baltic Sea Basin; BACC II Author Team, Regional Climate Studies, Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 69–97. [Google Scholar] [CrossRef]
- Kniebusch, M.; Markus Meier, H.E.; Neumann, T.; Börgel, F. Temperature Variability of the Baltic Sea Since 1850 and Attribution to Atmospheric Forcing Variables. J. Geophys. Res.-Ocean. 2019, 124, 4168–4187. [Google Scholar] [CrossRef]
- Belkin, I.M. Rapid warming of large marine ecosystems. Prog. Oceanogr. 2009, 81, 207–213. [Google Scholar] [CrossRef]
- Agarin, T.; Jetzkowitz, J.; Matzarakis, A. Climate change and tourism in the eastern Baltic Sea region. In Tourism and the Implications of Climate Change: Issues and Actions; Schott, C., Ed.; Emerald: Bingley, UK, 2010; pp. 261–281. [Google Scholar] [CrossRef]
- Jacobsen, P.B. (Ed.) State of the Tourism Industry in the Baltic Sea Region, 2018th ed.; BSTC Baltic Sea Tourism Center: Rostock, Germany, 2018; 48p, Available online: https://bstc.eu/fileadmin/bstc.eu/Downloads/Final_Report_Tourism_Industry_in_BSR_2018.pdf (accessed on 26 January 2023).
- Smith, M. Baltic Health Tourism: Uniqueness and Commonalities. Scand. J. Hosp. Tour. 2015, 15, 357–379. [Google Scholar] [CrossRef]
- Marando, F.; Heris, M.P.; Zulian, G.; Udías, A.; Mentaschi, L.; Chrysoulakis, N.; David Parastatidis, D.; Maes, J. Urban heat island mitigation by green infrastructure in European Functional Urban Areas. Sustain. Cities Soc. 2022, 7, 103564. [Google Scholar] [CrossRef]
- WHO. Health and Climate Change Global Survey Report; World Health Organization: Geneva, Switzerland, 2021. [Google Scholar]
- Founda, D.; Katavoutas, G.; Pierros, F.; Mihalopoulos, N. Centennial changes in heat waves characteristics in Athens (Greece) from multiple definitions based on climatic and bioclimatic indices. Glob. Planet. Change 2022, 212, 103807. [Google Scholar] [CrossRef]
- Watts, N.; Amann, M.; Arnell, N.; Ayeb-Karlsson, S.; Belesova, K.; Berry, H.; Bouley, T.; Boykoff, M.; Byass, P.; Cai, W.; et al. The 2018 report of the Lancet Countdown on health and climate change: Shaping the health of nations for centuries to come. Lancet 2018, 392, 2479–2514. Available online: https://pubmed.ncbi.nlm.nih.gov/30503045/ (accessed on 24 August 2023). [CrossRef] [PubMed]
- Ballester, J.; Quijal-Zamorano, M.; Méndez Turrubiates, R.F.; Pegenaute, F.; Herrmann, F.R.; Robine, J.M.; Basagaña, X.; Tonne, C.; Antó, J.M.; Achebak, H. Heat-related mortality in Europe during the summer of 2022. Nat. Med. 2023, 29, 1857–1866. [Google Scholar] [CrossRef] [PubMed]
- Hackenbruch, J.; Kunz-Plapp, T.; Müller, S.; Schipper, J.W. Tailoring Climate Parameters to Information Needs for Local Adaptation to Climate Change. Climate 2017, 5, 25. [Google Scholar] [CrossRef]
Heat Criterion | The Heatwaves Warning Systems | Resource | |
---|---|---|---|
Latvia | Tmax | 1st level: 27 °C < Tmax < = 32 °C, duration ≥ 2 days 2nd level: Tmax ≥ 33 °C, duration 1 days | [28] |
Lithuania | Tmax | 1st level: Tmax ≥ 25 °C, duration ≥ 3 days (HWs-heat waves) 2nd level: Tmax ≥ 30 °C, duration 1, 2 days (EHWs-Dangerous heat) 3rd level: Tmax ≥ 30 °C, duration ≥ 3 days (SHWs- Severe heat waves) | [10,29] |
Lithuania | Humidex index | 0 till 27 °C–heat does not cause discomfort 27–34 °C–mild discomfort 35–39 °C–strong discomfort 40–45 °C–health hazards 46–53 °C–very high risk to health ≥54 °C–deadly danger. | [24] |
SCN | 01 | 02 | 03 | 04 | 05 | 06 | 07 | 08 | 09 | 10 | 11 | 12 | Year |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1931–1960 (X1) | −3.1 | −3.4 | −0.8 | 4.8 | 10.4 | 14.1 | 17.2 | 17.3 | 13.8 | 8.4 | 3.5 | −0.2 | 6.8 |
1961–1990 (X2) | −2.8 | −2.6 | 0.4 | 5.0 | 10.7 | 14.2 | 16.6 | 16.7 | 13.3 | 9.0 | 3.9 | −0.1 | 7.0 |
1971–2000 (X3) | −1.4 | −1.5 | 1.1 | 5.6 | 10.9 | 14.3 | 16.9 | 17.1 | 13.1 | 8.7 | 3.7 | 0.5 | 7.4 |
1981–2010 (X4) | −1.1 | −1.4 | 1.3 | 6.2 | 11.4 | 14.5 | 17.7 | 17.8 | 13.6 | 9.0 | 3.8 | 0.5 | 7.8 |
1991–2020 (X5) | −0.9 | −0.9 | 1.7 | 6.7 | 11.6 | 15.3 | 18.3 | 18.3 | 14.2 | 8.9 | 4.4 | 1.1 | 8.2 |
(X4–X5) | +0.2 | +0.5 | +0.4 | +0.5 | +0.2 | +0.8 | +0.6 | +0.5 | +0.6 | −0.1 | +0.6 | +0.6 | +0.4 |
(X2–X5) | +1.9 | +1.7 | +1.3 | +1.7 | +0.9 | +1.1 | +1.7 | +1.6 | +0.9 | −0.1 | +0.5 | +1.2 | +1.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dailidienė, I.; Servaitė, I.; Dailidė, R.; Vasiliauskienė, E.; Rapolienė, L.; Povilanskas, R.; Valiukas, D. Increasing Trends of Heat Waves and Tropical Nights in Coastal Regions (The Case Study of Lithuania Seaside Cities). Sustainability 2023, 15, 14281. https://doi.org/10.3390/su151914281
Dailidienė I, Servaitė I, Dailidė R, Vasiliauskienė E, Rapolienė L, Povilanskas R, Valiukas D. Increasing Trends of Heat Waves and Tropical Nights in Coastal Regions (The Case Study of Lithuania Seaside Cities). Sustainability. 2023; 15(19):14281. https://doi.org/10.3390/su151914281
Chicago/Turabian StyleDailidienė, Inga, Inesa Servaitė, Remigijus Dailidė, Erika Vasiliauskienė, Lolita Rapolienė, Ramūnas Povilanskas, and Donatas Valiukas. 2023. "Increasing Trends of Heat Waves and Tropical Nights in Coastal Regions (The Case Study of Lithuania Seaside Cities)" Sustainability 15, no. 19: 14281. https://doi.org/10.3390/su151914281
APA StyleDailidienė, I., Servaitė, I., Dailidė, R., Vasiliauskienė, E., Rapolienė, L., Povilanskas, R., & Valiukas, D. (2023). Increasing Trends of Heat Waves and Tropical Nights in Coastal Regions (The Case Study of Lithuania Seaside Cities). Sustainability, 15(19), 14281. https://doi.org/10.3390/su151914281