Field Evaluation of Slow-Release Wax Formulations: A Novel Approach for Managing Bactrocera zonata (Saunders) (Diptera: Tephritidae)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Slow-Release Formulations of Biodegradable Waxes
2.2. Experiment-I: Evaluation of Trapping Efficiency of Slow-Release Formulations Prepared in Different Types of Biodegradable Waxes
2.3. Experiment-II: Evaluation of Comparative Trapping Efficiency of a Highly Attractive Combination of Slow-Release Formulations Prepared in Different Types of Biodegradable Waxes
2.4. Experiment-III: Evaluation of Trapping Efficiency of the Highly Attractive Slow-Release Formulation by Different Implementation Techniques
2.4.1. Simple Bottle Trap
2.4.2. Simple Bottle Trap with Water
2.4.3. Yellow Sticky Trap
2.4.4. Jute Piece with Sticky Material
2.5. Data Analyses
3. Results
3.1. Trapping Efficiency of Slow-Release Formulations Prepared in Different Types of Biodegradable Waxes
3.1.1. Lanolin Wax
3.1.2. Candelilla Wax
3.1.3. Bees Wax
3.1.4. Carnauba Wax
3.1.5. Paraffin Wax
3.2. Comparative Trapping Efficiency of a Highly Attractive Combination of Slow-Release Formulations Prepared in Different Types of Biodegradable Waxes
3.3. Trapping Efficiency of the Highly Attractive Slow-Release Formulation by Different Implementation Techniques
3.3.1. Candelilla Wax 10% + Methyl Eugenol 90%
3.3.2. Bees Wax 20% + Methyl Eugenol 80%
3.3.3. Carnauba Wax 10% + Methyl Eugenol 90%
3.3.4. Paraffin Wax 10% + Methyl Eugenol 90%
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gogi, M.D.; Ashfaq, M.; Arif, M.J.; Khan, M.A. Screening of bitter gourd (Momordica charantia) germplasm for sources of resistance against melon fruit fly (Bactrocera cucurbitae) in Pakistan. Int. J. Agric. Biol. 2009, 11, 746–750. [Google Scholar]
- El-Gendy, I. Host preference of the peach fruit fly, Bactrocera zonata (Saunders) (Diptera: Tephritidae), under laboratory conditions. J. Entomol. 2017, 14, 160–167. [Google Scholar] [CrossRef]
- Choudhary, J.S.; Mali, S.S.; Naaz, N.; Mukherjee, D.; Moanaro, L.; Das, B.; Singh, A.; Rao, M.S.; Bhatt, B. Predicting the population growth potential of Bactrocera zonata (Saunders) (Diptera: Tephritidae) using temperature development growth models and their validation in fluctuating temperature condition. Phytoparasitica 2020, 48, 100277. [Google Scholar] [CrossRef]
- Sookar, P.; Alleck, M.; Ahseek, N.; Bhagwant, S. Sterile male peach fruit flies, Bactrocera zonata (Saunders) (Diptera: Tephritidae), as a potential vector of the entomopathogen Beauveria bassiana (Balsamo) Vuillemin in a SIT programme. Afr. Entomol. 2014, 22, 488–498. [Google Scholar] [CrossRef]
- Khan, R.A.; Naveed, M. Occurrence and seasonal abundance of fruit fly, Bactrocera zonata Saunders (Diptera: Tephritidae) in relation to meteorological factors. Pak. J. Zool. 2017, 49, 999–1003. [Google Scholar] [CrossRef]
- Khosravi, M.; Sahebzadeh, N.; Kolyaie, R.; Mokhtari, A. Field evalution of controling methods of mango fruit flies Bactrocera zonata (Diptera: Tephritidae) in the southern part of Iran. Trakia J. Sci. 2018, 1, 62–69. [Google Scholar] [CrossRef]
- Coelho, J.B.; Uchoa, M.A. Fruit flies (Diptera: Tephritoidea) and parasitoids (Hymenoptera) associated with native fruit trees in the Chaco Biome. Neotrop. Entomol. 2023, 52, 629–641. [Google Scholar] [CrossRef]
- Badii, K.B.; Billah, M.K.; Afreh-Nuamah, K.; Obeng-Ofori, D.; Nyarko, G. Review of the pest status, economic impact and management of fruit-infesting flies (Diptera: Tephritidae) in Africa. Afr. J. Agric. Res. 2015, 10, 1488–1498. [Google Scholar] [CrossRef]
- Mahmoud, M.E.; Mohamed, S.A.; Ndlela, S.; Azrag, A.G.; Khamis, F.M.; Bashir, M.A.; Ekesi, S. Distribution, relative abundance, and level of infestation of the invasive peach fruit fly Bactrocera zonata (Saunders) (Diptera: Tephritidae) and its associated natural enemies in Sudan. Phytoparasitica 2020, 48, 589–605. [Google Scholar] [CrossRef]
- Kawashita, T.; Rajapakse, G.; Tsuruta, K. Population surveys of Bactrocera fruit flies by lure trap in Sri Lanka. Res. Bull. Plant Prot. Serv. 2004, 40, 297–299. [Google Scholar]
- Kunprom, C.; Sopaladawan, P.N.; Pramual, P. Population genetics and demographic history of guava fruit fly Bactrocera correcta (Diptera: Tephritidae) in northeastern Thailand. Eur. J. Entomol. 2015, 112, 227. [Google Scholar] [CrossRef]
- Hossain, M.; Momen, M.; Uddin, M.; Khan, S.; Howlader, A. Abundance of peach fruit fly, Bactrocera zonata (Saunders) in mango orchard. Bangladesh J. Entomol. 2017, 27, 25–34. [Google Scholar]
- Al-Eryan, M.; El-Minshawy, A.; Awad, A. Suppression program of the peach fruit fly, Bactrocera zonata (Saunders)(Diptera: Tephritidae) depend on male annihilation and bait application techniques in northern coast of Egypt. Acta Sci. Agric. 2018, 2, 92–98. [Google Scholar]
- Nisar, M.J.; Gogi, M.D.; Arif, M.J.; Sahi, S.T. Attraction and retention-period of different stuffs and stuffing techniques with their active food baits for the management of peach fruit fly, Bactrocera zonata (Diptera: Tephritidae). Int. J. Trop. Insect Sci. 2020, 40, 599–610. [Google Scholar] [CrossRef]
- Kakar, M.Q.; Ullah, F.; Saljoqi, A.; Ahmad, S.; Ali, I. Determination of fruit flies (Diptera: Tephritidae) infestation in guava, peach and bitter gourd orchards in Khyber Pakhtunkhwa. Sarhad J. Agric. 2014, 30, 241–246. [Google Scholar]
- Kwasi, W. Assessment of fruit fly damage and implications for the dissemination of management practices for mango production in the upper west region of Ghana. J. Dev. Sustain. Agric. 2009, 3, 117–134. [Google Scholar]
- Mugure, C.M. Economic Assessment of Losses Due to Fruit Fly Infestation in Mango and the Willingness to Pay for an Integrated Pest Management Package in Embu District, Kenya; University of Nairobi: Nairobi, Kenya, 2012. [Google Scholar]
- Quinlan, M. Trends in international phytosanitary standards: Potential impact on fruit fly Control. In Proceedings of the 6th International Fruit Fly Symposium, Stellenbosch, South Africa, 6–10 May 2002; pp. 6–10. [Google Scholar]
- Chen, P.; Ye, H. Population dynamics of Bactrocera dorsalis (Diptera: Tephritidae) and analysis of factors influencing populations in Baoshanba, Yunnan, China. Entomol. Sci. 2007, 10, 141–147. [Google Scholar] [CrossRef]
- Blaser, S.; Heusser, C.; Diem, H.; Von Felten, A.; Gueuning, M.; Andreou, M.; Boonham, N.; Tomlinson, J.; Müller, P.; Utzinger, J. Dispersal of harmful fruit fly pests by international trade and a loop-mediated isothermal amplification assay to prevent their introduction. Geospat. Health 2018, 13. [Google Scholar] [CrossRef]
- Kibira, M.; Affognon, H.; Njehia, B.; Muriithi, B.; Mohamed, S.; Ekesi, S. Economic evaluation of integrated management of fruit fly in mango production in Embu County, Kenya. Afr. J. Agric. Resour. Econ. 2015, 10, 343–353. [Google Scholar]
- Manrakhan, A. Pre-harvest management of the oriental fruit fly. CAB Rev. 2020, 15, 1–13. [Google Scholar] [CrossRef]
- FAO. Systems approach for pest risk management of fruit flies (Tephritidae). IPPC 2012, 35, 1–9. [Google Scholar]
- Böckmann, E.; Köppler, K.; Hummel, E.; Vogt, H. Bait spray for control of European cherry fruit fly: An appraisal based on semi-field and field studies. Pest Manag. Sci. 2014, 70, 502–509. [Google Scholar] [CrossRef] [PubMed]
- Dias, N.P.; Zotti, M.J.; Montoya, P.; Carvalho, I.R.; Nava, D.E. Fruit fly management research: A systematic review of monitoring and control tactics in the world. Crop Prot. 2018, 112, 187–200. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, J.; Richards, M.; Pham, B.; Roe, P.; Clarke, A. Towards continuous surveillance of fruit flies using sensor networks and machine vision. In Proceedings of the 2009 5th International Conference on Wireless Communications, Networking and Mobile Computing, Beijing, China, 24–26 September 2009; pp. 1–5. [Google Scholar]
- Stringer, L.D.; Soopaya, R.; Butler, R.C.; Vargas, R.I.; Souder, S.K.; Jessup, A.J.; Woods, B.; Cook, P.J.; Suckling, D.M. Effect of lure combination on fruit fly surveillance sensitivity. Sci. Rep. 2019, 9, 2653. [Google Scholar] [CrossRef] [PubMed]
- Drew, R.A.; Prokopy, R.J.; Romig, M.C. Attraction of fruit flies of the genus Bactrocera to colored mimics of host fruit. Entomol. Exp. Et Appl. 2003, 107, 39–45. [Google Scholar] [CrossRef]
- Siddiqi, A.; Jilani, G.; Kanvil, S. Effect of turmeric extracts on settling response and fecundity of peach fruit fly (Diptera: Tephritidae). Pak. J. Zool. 2006, 38, 131–135. [Google Scholar]
- Pereira, R.; Yuval, B.; Liedo, P.; Teal, P.; Shelly, T.; McInnis, D.; Hendrichs, J. Improving sterile male performance in support of programmes integrating the sterile insect technique against fruit flies. J. Appl. Entomol. 2013, 137, 178–190. [Google Scholar] [CrossRef]
- Gogi, M.D.; Arif, M.J.; Arshad, M.; Khan, M.A.; Bashir, M.H.; Zia, K. Impact of Sowing Times, Plant-to-Plant Distances, Sowing Methods and Sanitation on Infestation of Melon Fruit Fly (Bactrocera cucurbitae) and Yield Components of Bitter Gourd (Momordica charantia). Int. J. Agric. Biol. 2014, 16, 521–528. [Google Scholar]
- Iqbal, M.; Gogi, M.D.; Arif, M.J.; Javed, N. Attraction of melon fruit flies, Bactrocera cucurbitae (Diptera: Tephritidae) to various protein and ammonia sources under laboratory and field conditions. Pak. J. Agric. Sci. 2020, 57, 1107–1116. [Google Scholar]
- Nisar, M.J.; Gogi, M.D.; Arif, M.J.; Sahi, S.T. Toxicity and chemosterility impact of insect growth regulators baited diet on adult peach fruit fly, Bactrocera zonata (Saunders) (Diptera: Tephritidae). Pak. J. Agric. Sci. 2020, 57, 1089–1099. [Google Scholar]
- Haider, S.A.H.; Khan, R.R. Determination of level of insecticide resistance in fruit fly, Bactrocera zonata (Saunders) (Diptera: Tephritidae) by bait bioassay. Int. J. Agric. Biol. 2011, 5, 815–818. [Google Scholar]
- Nadeem, M.K.; Ahmed, S.; Ashfaq, M.; Sahi, S.T. Evaluation of resistance to different insecticides against field populations of Bactrocera zonata (Saunders)(Diptera: Tephritidae) in Multan, Pakistan. Pak. J. Zool. 2012, 44, 495–501. [Google Scholar]
- El-Gendy, I.; Nasr, H.; Badawy, M.; Rabea, E. Toxic and biochemical effects for certain natural compounds on the peach fruit fly, Bactrocera zonata (Diptera, Tephritidae). Am. J. Biochem. Mol. Biol. 2014, 4, 112–121. [Google Scholar] [CrossRef]
- Carvalho, F.P. Agriculture, pesticides, food security and food safety. Environ. Sci. Policy 2006, 9, 685–692. [Google Scholar] [CrossRef]
- Gogi, M.D.; Ashfaq, M.; Arif, M.J.; Khan, M.A.; Ahmad, F. Coadministration of insecticides and butanone acetate for its efficacy against melon fruit flies, Bactrocera cucurbitae (Insects: Diptera: Tephritidae). Pak. Entomol. 2007, 29, 111–116. [Google Scholar]
- Aktar, M.W.; Sengupta, D.; Chowdhury, A. Impact of pesticides use in agriculture: Their benefits and hazards. Interdiscip. Toxicol. 2009, 2, 1. [Google Scholar]
- Jin, T.; Zeng, L.; Lin, Y.; Lu, Y.; Liang, G. Insecticide resistance of the oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae), in mainland China. Pest Manag. Sci. 2011, 67, 370–376. [Google Scholar] [CrossRef]
- Craddock, H.A.; Huang, D.; Turner, P.C.; Quirós-Alcalá, L.; Payne-Sturges, D.C. Trends in neonicotinoid pesticide residues in food and water in the United States, 1999–2015. Environ. Health 2019, 18, 1–16. [Google Scholar] [CrossRef]
- Khoo, C.C.-H.; Yuen, K.-H.; Tan, K.-H. Attraction of female Bactrocera papayae to sex pheromone components with two different release devices. J. Chem. Ecol. 2000, 26, 2487–2496. [Google Scholar] [CrossRef]
- Tan, K.-h. Sex pheromone components in defense of melon fly, Bactrocera cucurbitae against Asian house gecko, Hemidactylus frenatus. J. Chem. Ecol. 2000, 26, 697–704. [Google Scholar] [CrossRef]
- Welter, S.; Pickel, C.; Millar, J.; Cave, F.; Van Steenwyk, R.; Dunley, J. Pheromone mating disruption offers selective management options for key pests. Calif. Agric. 2005, 59, 16–22. [Google Scholar] [CrossRef]
- Hummel, H.E.; Langner, S.; Breuer, M. Electrospun Mesofibers, A novel biodegradable pheromone dispenser technology, are combined with mechanical deployment for efficient IPM of Lobesia botrana in vineyards. Commun. Agric. Appl. Biol. Sci. 2015, 80, 331–341. [Google Scholar]
- Wyatt, T.D. Pheromones: Stink Fights in Lemurs. Curr. Biol. 2020, 30, R1373–R1375. [Google Scholar] [CrossRef] [PubMed]
- Lucchi, A.; Ladurner, E.; Iodice, A.; Savino, F.; Ricciardi, R.; Cosci, F.; Conte, G.; Benelli, G. Eco-friendly pheromone dispensers—A green route to manage the European grapevine moth? Environ. Sci. Pollut. Res. 2018, 25, 9426–9442. [Google Scholar] [CrossRef] [PubMed]
- Knodel, J.J.; Petzoldt, C.P.; Hoffmann, M.P. Pheromone Traps–Effective Tools for Monitoring Lepidopterous Insect Pests of Sweet Corn; New York State IPM Program: Ithaca, NY, USA, 1995; Available online: http://hdl.handle.net/1813/43288 (accessed on 11 September 2023).
- Wyatt, T.D. Pheromones and behavior. In Chemical Communication in Crustaceans; Springer: Berlin/Heidelberg, Germany, 2010; pp. 23–38. [Google Scholar]
- Kovanci, O.B.; Schal, C.; Walgenbach, F.; Kennedy, G.G. Effects of pheromone loading, dispenser age, and trap height on pheromone trap catches of the oriental fruit moth in apple orchards. Phytoparasitica 2006, 34, 252–260. [Google Scholar] [CrossRef]
- Hasnain, M.; Babar, T.K.; Karar, H.; Nadeem, M.K.; Nadeem, S.; Ahmad, S.F.; Ishfaq, M. Changes in Height of Pheromone Traps Affect the Capture of Male Fruit fly, Bactrocera spp. (Diptera: Tephritidae). J. Environ. Agric. Sci. 2017, 10, 33–39. [Google Scholar]
- Suheri, M.; Haneda, N.; Jung, Y.; Sukeno, S.; Moon, H. Effectiveness of pheromone traps for monitoring Zeuzera sp. (Lepidoptera: Cossidae) population on Eucalyptus pellita plantation. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Changchun, China, 21–23 August 2020; p. 012016. [Google Scholar]
- Atterholt, C.; Delwiche, M.; Rice, R.; Krochta, J. Study of biopolymers and paraffin as potential controlled-release carriers for insect pheromones. J. Agric. Food Chem. 1998, 46, 4429–4434. [Google Scholar] [CrossRef]
- Heath, R.R.; Lavallee, S.G.; Schnell, E.; Midgarden, D.G.; Epsky, N.D. Laboratory and field cage studies on female-targeted attract-and-kill bait stations for Anastrepha suspensa (Diptera: Tephritidae). Pest Manag. Sci. Former. Pestic. Sci. 2009, 65, 672–677. [Google Scholar] [CrossRef]
- White, I.M.; Elson-Harris, M.M. Fruit Flies of Economic Significance: Their Identification and Bionomics; CAB International: Wallingford, UK, 1992. [Google Scholar]
- Beroza, M.; Green, N. Materials Tested as Insect Attractants. USDA-ARS Agriculture Handbook No. 239; US Department of Agriculture: Washington, DC, USA, 1963. [Google Scholar]
- Cork, A. Pheromone Manual; Natural Resources Institute: Gillingham, UK, 2004. [Google Scholar]
- Heuskin, S.; Verheggen, F.J.; Haubruge, E.; Wathelet, J.-P.; Lognay, G. The use of semiochemical slow-release devices in integrated pest management strategies. Biotechnol. Agron. Soc. Environ. 2011, 15, 459–470. [Google Scholar]
- Zisopoulou, S.A.; Chatzinikolaou, C.K.; Gallos, J.K.; Ofrydopoulou, A.; Lambropoulou, D.A.; Psochia, E.; Bikiaris, D.N.; Nanaki, S.G. Synthesis of Dacus Pheromone, 1, 7-Dioxaspiro [5.5] Undecane and Its Encapsulation in PLLA Microspheres for Their Potential Use as Controlled Release Devices. Agronomy 2020, 10, 1053. [Google Scholar] [CrossRef]
- Cardé, R.T.; Bell, W.J. Chemical Ecology of Insects; Springer Science & Business Media: Berlin/Heidelberg, Germany, 1995; Volume 2. [Google Scholar]
- Allison, J.D.; CardŽ, R.T. Pheromone Communication in Moths: Evolution, Behavior, and Application; University of California Press: Berkeley, CA, USA, 2016. [Google Scholar]
- Blomquist, G.J.; Vogt, R.G. Biosynthesis and detection of pheromones and plant volatiles—Introduction and overview. In Insect Pheromone Biochemistry and Molecular Biology; Academic Press: Cambridge, MA, USA, 2003; pp. 3–18. [Google Scholar]
- Damos, P.; Colomar, L.A.E.; Ioriatti, C. Integrated Fruit Production and Pest Management in Europe: The Apple Case Study and How Far We Are From the Original Concept? Insects 2015, 6, 626–657. [Google Scholar] [CrossRef] [PubMed]
- Amiri, S.; Rezazadeh-Bari, M.; Alizadeh-Khaledabad, M. New formulation of vitamin C encapsulation by nanoliposomes: Production and evaluation of particle size, stability and control release. Food Sci. Biotechnol. 2019, 28, 423–432. [Google Scholar] [CrossRef] [PubMed]
- Đorđević, V.; Balanč, B.; Belščak-Cvitanović, A.; Lević, S.; Trifković, K.; Kalušević, A.; Kostić, I.; Komes, D.; Bugarski, B.; Nedović, V. Trends in encapsulation technologies for delivery of food bioactive compounds. Food Eng. Rev. 2015, 7, 452–490. [Google Scholar] [CrossRef]
- Prasad, S.; Cody, V.; Saucier-Sawyer, J.K.; Fadel, T.R.; Edelson, R.L.; Birchall, M.A.; Hanlon, D.J. Optimization of stability, encapsulation, release, and cross-priming of tumor antigen-containing PLGA nanoparticles. Pharm. Res. 2012, 29, 2565–2577. [Google Scholar] [CrossRef] [PubMed]
- Jang, E.B. Physiology of mating behavior in mediterranean fruit fly (Diptera: Tephritidae): Chemoreception and male accessory gland fluids in female post-mating behavior. Fla. Entomol. 2002, 85, 89–93. [Google Scholar] [CrossRef]
- Abu-Ragheef, A.H.; Al-Jassany, R.F. Study some biological aspects of peach fruit fly Bactrocera zonata (Saunders) (Diptera: Tephritidae) in laboratory and field. J. Biol. Agric. Healthc. 2018, 8, 67–74. [Google Scholar]
- Pérez-Staples, D.; Abraham, S. Postcopulatory behavior of tephritid flies. Annu. Rev. Entomol. 2023, 68, 89–108. [Google Scholar] [CrossRef]
- Benelli, G.; Giunti, G.; Canale, A.; Messing, R.H. Lek dynamics and cues evoking mating behavior in tephritid flies infesting soft fruits: Implications for behavior-based control tools. Appl. Entomol. Zool. 2014, 49, 363–373. [Google Scholar] [CrossRef]
- Epsky, N.D.; Midgarden, D.; Rendón, P.; Villatoro, D.; Heath, R.R. Efficacy of wax matrix bait stations for Mediterranean fruit flies (Diptera: Tephritidae). J. Econ. Entomol. 2012, 105, 471–479. [Google Scholar] [CrossRef]
- Zada, A.; Falach, L.; Byers, J.A. Development of sol–gel formulations for slow release of pheromones. Chemoecology 2009, 19, 37–45. [Google Scholar] [CrossRef]
- Mishra, A.; Saini, R.K.; Bajpai, A.K. Polymer Formulations for Pesticide Release. In Controlled Release of Pesticides for Sustainable Agriculture; K. R., R., Thomas, S., Volova, T., K., J., Eds.; Springer: Berlin/Heidelberg, Germany, 2020. [Google Scholar] [CrossRef]
- Segura, D.F.; Belliard, S.A.; Vera, M.T.; Bachmann, G.E.; Ruiz, M.J.; Jofre-Barud, F.; Fernández, P.C.; López, M.L.; Shelly, T.E. Plant chemicals and the sexual behavior of male tephritid fruit flies. Ann. Entomol. Soc. Am. 2018, 111, 239–264. [Google Scholar] [CrossRef]
- Gomez, L.E.; Coen, C.E. Insect Attractant Formulations and Insect Control; International Application Published under the Patent Cooperation Treaty (PCT): Washington, UK, 2013. [Google Scholar]
- Atterholt, C.; Delwiche, M.; Rice, R.; Krochta, J. Controlled release of insect sex pheromones from paraffin wax and emulsions. J. Control Release 1999, 57, 233–247. [Google Scholar] [CrossRef] [PubMed]
- Yoon, J.Y.; Kim, D.E.; Im, U.; Lee, J.S.; Yang, C.Y.; Kim, J.-D. Efficacy test of mating disruptors against peach fruit moth, Grapholita molesta, using polypropylene dispenser containing ester wax. Korean J. Appl. Entomol. 2015, 54, 369–374. [Google Scholar] [CrossRef]
- Yoon, J.Y.; Yang, C.Y.; Kim, J.-D. Sustainable delivery of a sex pheromone with an ester wax to disrupt Grapholita molesta mating. Macromol. Res. 2017, 25, 374–380. [Google Scholar] [CrossRef]
- Wiseman, P.M. Surface Property Modification Via Wax Emulsions. Surface Phenomena and Fine Particles in Water-Based Coatings and Printing Technology; Springer: Berlin/Heidelberg, Germany, 1991; pp. 109–116. [Google Scholar]
- Navarro, S. Modified atmospheres for the control of stored-product insects and mites. In Insect Management for Food Storage and Processing; AACC International: St. Paul, MN, USA, 2006; pp. 105–146. [Google Scholar]
Treatments | LW | CanW | BW | CarW | PW |
---|---|---|---|---|---|
SRF-1 | LW 90% + ME 10% | CanW 90% + ME 10% | BW 90% + ME 10% | CarW 90% + ME 10% | PW 90% + ME 10% |
SRF-2 | LW 80% + ME 20% | CanW 80% + ME 20% | BW 80% + ME 20% | CarW 80% + ME 20% | PW 80% + ME 20% |
SRF-3 | LW 70% + ME 30% | CanW 70% + ME 30% | BW 70% + ME 30% | CarW 70% + ME 30% | PW 70% + ME 30% |
SRF-4 | LW 60% + ME 40% | CanW 60% + ME 40% | BW 60% + ME 40% | CarW 60% + ME 40% | PW 60% + ME 40% |
SRF-5 | LW 50% + ME 50% | CanW 50% + ME 50% | BW 50% + ME 50% | CarW 50% + ME 50% | PW 50% + ME 50% |
SRF-6 | LW 40% + ME 60% | CanW 40% + ME 60% | BW 40% + ME 60% | CarW 40% + ME 60% | PW 40% + ME 60% |
SRF-7 | LW 30% + ME 70% | CanW 30% + ME 70% | BW 30% + ME 70% | CarW 30% + ME 70% | PW 30% + ME 70% |
SRF-8 | LW 20% + ME 80% | CanW 20% + ME 80% | BW 20% + ME 80% | CarW 20% + ME 80% | PW 20% + ME 80% |
SRF-9 | LW 10% + ME 90% | CanW 10% + ME 90% | BW 10% + ME 90% | CarW 10% + ME 90% | PW 10% + ME 90% |
Class | Male B. zonata |
---|---|
I | >11 |
II | 11–50 |
III | <50 |
Treatments | LW | CanW | BW | CarW | PW | |||||
---|---|---|---|---|---|---|---|---|---|---|
Attractive Index | Class | Attractive Index | Class | Attractive Index | Class | Attractive Index | Class | Attractive Index | Class | |
SRF-1 | 0.71 | I | −66.67 | I | −52.17 | I | −70.73 | I | −66.67 | I |
SRF-2 | 20.54 | II | −11.11 | I | −42.86 | I | −37.26 | I | −70.73 | I |
SRF-3 | 41.03 | II | −55.56 | I | −27.27 | I | −55.56 | I | −62.79 | I |
SRF-4 | 26.00 | II | −29.63 | I | −6.06 | I | −48.94 | I | −55.56 | I |
SRF-5 | 34.15 | II | 1.41 | I | −2.94 | I | −34.62 | I | 11.39 | II |
SRF-6 | 43.50 | II | 0.00 | I | −20.69 | I | 1.41 | I | 6.67 | I |
SRF-7 | 49.71 | III | 15.66 | II | 18.60 | II | −9.38 | I | −40.00 | I |
SRF-8 | 51.86 | II | −12.90 | I | 49.27 | II | 10.25 | I | 22.22 | II |
SRF-9 | 46.07 | II | 57.57 | III | 44.88 | II | 50.35 | III | 32.04 | II |
Treatments | Formulation | Attractive Index | Class |
---|---|---|---|
SRF-1 | LW 30% + ME 70% | −61.868 | I |
SRF-2 | CanW 10% + ME 90% | 41.428 | II |
SRF-3 | BW 20% + ME 80% | 20.986 | II |
SRF-4 | CarW 10% + ME 90% | 12.878 | II |
SRF-5 | PW 10% + ME 90% | 32.052 | II |
Application Technique | CanW 10% + ME 90% | BW 20% + ME 80% | CarW 10% + ME 90% | PW 10% + ME 90% | ||||
---|---|---|---|---|---|---|---|---|
Attractive Index | Class | Attractive Index | Class | Attractive Index | Class | Attractive Index | Class | |
SBT | 27.4166 | II | −21.4798 | I | 38.8889 | II | −11.562 | I |
SBTW | −17.3959 | I | 6.700594 | I | 50.11 | III | 53.6549 | III |
YST | 32.2868 | II | 61.27442 | III | 69.7553 | III | −4.0681 | I |
JPSM | −10.331 | I | −19.6953 | I | −36.392 | I | −38.278 | I |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gogi, M.D.; Naveed, W.A.; Abbasi, A.; Atta, B.; Farooq, M.A.; Subhan, M.; Haq, I.U.; Asrar, M.; Bukhari, N.A.; Hatamleh, A.A.; et al. Field Evaluation of Slow-Release Wax Formulations: A Novel Approach for Managing Bactrocera zonata (Saunders) (Diptera: Tephritidae). Sustainability 2023, 15, 14470. https://doi.org/10.3390/su151914470
Gogi MD, Naveed WA, Abbasi A, Atta B, Farooq MA, Subhan M, Haq IU, Asrar M, Bukhari NA, Hatamleh AA, et al. Field Evaluation of Slow-Release Wax Formulations: A Novel Approach for Managing Bactrocera zonata (Saunders) (Diptera: Tephritidae). Sustainability. 2023; 15(19):14470. https://doi.org/10.3390/su151914470
Chicago/Turabian StyleGogi, Muhammad Dildar, Waleed Afzal Naveed, Asim Abbasi, Bilal Atta, Muhammad Asif Farooq, Mishal Subhan, Inzamam Ul Haq, Muhammad Asrar, Najat A. Bukhari, Ashraf Atef Hatamleh, and et al. 2023. "Field Evaluation of Slow-Release Wax Formulations: A Novel Approach for Managing Bactrocera zonata (Saunders) (Diptera: Tephritidae)" Sustainability 15, no. 19: 14470. https://doi.org/10.3390/su151914470
APA StyleGogi, M. D., Naveed, W. A., Abbasi, A., Atta, B., Farooq, M. A., Subhan, M., Haq, I. U., Asrar, M., Bukhari, N. A., Hatamleh, A. A., & Ahmed, M. A. A. (2023). Field Evaluation of Slow-Release Wax Formulations: A Novel Approach for Managing Bactrocera zonata (Saunders) (Diptera: Tephritidae). Sustainability, 15(19), 14470. https://doi.org/10.3390/su151914470