Engineering the Tensile Response of Glass Textile Reinforced Concrete for Thin Elements
Abstract
:1. Introduction
2. Materials Used
2.1. Textiles
2.2. Cementitious Matrices
3. Experimental Programme
3.1. Specimen Preparation
3.2. Experimental Setup
4. Results and Discussions
4.1. Effect of Textile Geometry on Stress-Response and Crack Formation
4.2. Efficiency Factor
5. Transition in Tensile Response from Tri-Linear to Bi-Linear
6. Summary and Conclusions
- The first crack in the composite develops mostly in the vicinity of the cross-yarn, especially at lower reinforcement ratios. However, at higher reinforcement ratios, cracks were observed to develop between the cross yarns.
- Though the first-crack strength depends mainly on the matrix properties, it was observed that it could be enhanced by the geometry of the fabric. A closer yarn configuration at a higher reinforcement volume was seen to result in higher first-crack stress than the matrix tensile strength.
- For the textiles used in the study, the tensile response of the composite changes from strain-softening to strain-hardening as the number of layers increases, with a transition from a tri-linear to a bi-linear response.
- The effectiveness of the textiles in the composite is influenced significantly by the type and extent of the penetration of the coating material into the yarns.
- An efficiency factor has been defined as the ratio between the nominal tensile stress in the textile at the failure of the composite and its tensile strength. This seems to be independent of the matrix strength or the volume fraction of the particular textile used in the TRC composite.
- From the present study, an effective volume fraction or cross-sectional area of textiles was identified based on the efficiency factor for predicting the threshold for the tri-linear to bi-linear transition.
- A simple model for the bi-linear response of TRC was developed for possible use in design methods, based on the efficiency factor, the volume fraction of the textile used, tensile strength and modulus of elasticity of the matrix, and the modulus of elasticity and strength of the textile. The prediction model compares satisfactorily with the experimental results. This approach would aid in the design for appropriate functionality of these elements with low material usage, leading to better sustainability.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brameshuber, W. (Ed.) Textile Reinforced Concrete: State-of-the-Art Report of RILEM Technical Committee 201-TRC; RILEM Publications: Bagneux, France, 2006; Volume 36. [Google Scholar]
- Mobasher, B. Mechanics of Fiber and Textile Reinforced Cement Composites; CRC Press: Boca Raton, FL, USA, 2011. [Google Scholar]
- Mechtcherine, V.; Slowik, V.; Kabele, P. (Eds.) Strain-Hardening Cement-Based Composites, SHCC4; Springer: Berlin/Heidelberg, Germany, 2017; Volume 15. [Google Scholar]
- Peled, A.; Bentur, A.; Mobasher, B. Textile Reinforced Concrete; CRC Press: Boca Raton, FL, USA, 2017; Volume 19. [Google Scholar]
- Tomoscheit, S.; Gries, T.; Horstmann, M.; Hegger, J. Project life INSUSHELL: Reducing the carbon footprint in concrete construction. Int. J. Sustain. Build. Technol. Urban Dev. 2011, 2, 162–169. [Google Scholar] [CrossRef]
- Williams Portal, N.; Lundgren, K.; Wallbaum, H.; Malaga, K. Sustainable potential of textile-reinforced concrete. J. Mater. Civ. Eng. 2015, 27, 04014207. [Google Scholar] [CrossRef]
- Peled, A.; Mobasher, B. Pultruded fabric-cement composites. ACI Mater. J. 2005, 102, 15–23. [Google Scholar]
- Peled, A.; Mobasher, B.; Cohen, Z. Mechanical properties of hybrid fabrics in pultruded cement composites. Cem. Concr. Compos. 2009, 31, 647–657. [Google Scholar] [CrossRef]
- Häußler-Combe, U.; Jesse, F.; Curbach, M. Textile reinforced concrete-overview, experimental and theoretical investigations. In Fracture Mechanics of Concrete Structures, Proceedings of the Fifth International Conference on Fracture Mechanics of Concrete and Concrete Structures, Ia-FraMCos, Vail, CO, USA, 12–16 April 2004; AEDIFICATIO Publications: Freiburg, Germany, 2004; Volume 204, pp. 12–16. [Google Scholar]
- Jesse, F.; Will, N.; Curbach, M.; Hegger, J. Load-bearing behavior of textile-reinforced concrete. Spec. Publ. 2008, 250, 59–68. [Google Scholar]
- Colombo, I.G.; Magri, A.; Zani, G.; Colombo, M.; Di Prisco, M. Erratum to: Textile Reinforced Concrete: Experimental investigation on design parameters. Mater. Struct. 2013, 46, 1953–1971. [Google Scholar] [CrossRef]
- Rambo, D.A.S.; de Andrade Silva, F.; Toledo Filho, R.D.; Gomes, O.D.F.M. Effect of elevated temperatures on the mechanical behavior of basalt textile reinforced refractory concrete. Mater. Des. (1980–2015) 2015, 65, 24–33. [Google Scholar] [CrossRef]
- Peled, A.; Bentur, A. Fabric structure and its reinforcing efficiency in textile reinforced cement composites. Compos. Part A Appl. Sci. Manuf. 2003, 34, 107–118. [Google Scholar] [CrossRef]
- D’Antino, T.; Papanicolaou, C. Mechanical characterization of textile reinforced inorganic-matrix composites. Compos. Part B Eng. 2017, 127, 78–91. [Google Scholar] [CrossRef]
- Hartig, J.; Häußler-Combe, U.; Schicktanz, K. Influence of bond properties on the tensile behaviour of textile reinforced concrete. Cem. Concr. Compos. 2018, 30, 898–906. [Google Scholar] [CrossRef]
- Häußler-Combe, U.; Hartig, J. Bond and failure mechanisms of textile reinforced concrete (TRC) under uniaxial tensile loading. Cem. Concr. Compos. 2007, 29, 279–289. [Google Scholar] [CrossRef]
- Arboleda, D.; Carozzi, F.G.; Nanni, A.; Poggi, C. Testing procedures for the uniaxial tensile characterization of fabric reinforced cementitious matrix (FRCM) composites. J. Compos. Constr. 2016, 20, 04015063. [Google Scholar] [CrossRef]
- Peled, A.; Zaguri, E.; Marom, G. Bonding characteristics of multifilament polymer yarns and cement matrices. Compos. Part A Appl. Sci. Manuf. 2008, 39, 930–939. [Google Scholar] [CrossRef]
- Messori, M.; Nobili, A.; Signorini, C.; Sola, A. Mechanical performance of epoxy coated AR-glass fabric Textile Reinforced Mortar: Influence of coating thickness and formulation. Compos. Part B Eng. 2018, 149, 135–143. [Google Scholar] [CrossRef]
- Bentur, A.; Tirosh, R.; Yardimci, M.; Puterman, M.; Peled, A. Controlling bond characteristics by impregnation. In Proceedings of the International RILEM Conference on Material Science, Aachen, Germany, 6–9 September 2010; RILEM Publications SARL: Paris, France, 2010; pp. 23–33. [Google Scholar]
- Valeri, P.; Ruiz, M.F.; Muttoni, A. Tensile response of textile reinforced concrete. Constr. Build. Mater. 2020, 258, 119517. [Google Scholar] [CrossRef]
- Donnini, J.; Corinaldesi, V.; Nanni, A. Mechanical properties of FRCM using carbon fabrics with different coating treatments. Compos. Part B Eng. 2016, 88, 220–228. [Google Scholar] [CrossRef]
- Hegger, J.; Will, N.; Bruckermann, O.; Voss, S. Load–bearing behaviour and simulation of textile reinforced concrete. Mater. Struct. 2006, 39, 765–776. [Google Scholar] [CrossRef]
- Raupach, M.; Orlowsky, J.; Büttner, T.; Dilthey, U.; Schleser, M.; Hegger, J. Epoxy-impregnated textiles in concrete-load bearing capacity and durability. In Proceedings of the 1st International RILEM Conference, Aachen, Germany, 6 September 2006; RILEM Publications SARL: Paris, France, 2006; pp. 77–88. [Google Scholar]
- Paul, S.; Gettu, R.; Arnepalli, D.N.; Samanthula, R. Experimental evaluation of the durability of glass Textile-Reinforced Concrete. Constr. Build. Mater. 2023, 406, 133390. [Google Scholar] [CrossRef]
- Butler, M.; Mechtcherine, V.; Hempel, S. Experimental investigations on the durability of fibre–matrix interfaces in textile-reinforced concrete. Cem. Concr. Compos. 2009, 31, 221–231. [Google Scholar] [CrossRef]
- Kong, K.; Mesticou, Z.; Michel, M.; Larbi, A.S.; Junes, A. Comparative characterization of the durability behaviour of textile-reinforced concrete (TRC) under tension and bending. Compos. Struct. 2017, 179, 107–123. [Google Scholar] [CrossRef]
- Caggegi, C.; Carozzi, F.G.; De Santis, S.; Fabbrocino, F.; Focacci, F.; Hojdys, Ł.; Lanoye, E.; Zuccarino, L. Experimental analysis on tensile and bond properties of PBO and aramid fabric reinforced cementitious matrix for strengthening masonry structures. Compos. Part B Eng. 2017, 127, 175–195. [Google Scholar] [CrossRef]
- Mobasher, B.; Peled, A.; Pahilajani, J. Distributed cracking and stiffness degradation in fabric-cement composites. Mater. Struct. 2006, 39, 317–331. [Google Scholar] [CrossRef]
- Bentur, A.; Yardımcı, M.Y.; Tirosh, R. Preservation of telescopic bonding upon aging of bundled glass filaments by treatments with nano-particles. Cem. Concr. Res. 2013, 47, 69–77. [Google Scholar] [CrossRef]
- Barhum, R.; Mechtcherine, V. Effect of short fibers on fracture behaviour of textile reinforced concrete. Carbon 2010, 7, 3950. [Google Scholar]
- Barhum, R.; Mechtcherine, V. Influence of short dispersed and short integral glass fibers on the mechanical behaviour of textile-reinforced concrete. Mater. Struct. 2013, 46, 557–572. [Google Scholar] [CrossRef]
- RILEM Technical Committee 232-TDT (Chair: W. Brameshuber). Recommendation of RILEM TC 232-TDT: Test methods and design of textile reinforced concrete: Uniaxial tensile test: Test method to determine the load bearing behavior of tensile specimens made of textile reinforced concrete. Mater. Struct. 2016, 49, 4923–4927. [Google Scholar] [CrossRef]
- Hegger, J.; Voss, S. Investigations on the bearing behaviour and application potential of textile reinforced concrete. Eng. Struct. 2008, 30, 2050–2056. [Google Scholar] [CrossRef]
- De Santis, S.; Carozzi, F.G.; de Felice, G.; Poggi, C. Test methods for Textile Reinforced Mortar systems. Compos. Part B Eng. 2017, 127, 121–132. [Google Scholar] [CrossRef]
- Hartig, J.; Jesse, F.; Schicktanz, K.; Häußler-Combe, U. Influence of experimental setups on the apparent uniaxial tensile load-bearing capacity of Textile Reinforced Concrete specimens. Mater. Struct. 2012, 45, 433–446. [Google Scholar] [CrossRef]
- Leone, M.; Aiello, M.A.; Balsamo, A.; Carozzi, F.G.; Ceroni, F.; Corradi, M.; Gams, M.; Garbin, E.; Gattesco, N.; Krajewski, P.; et al. Glass fabric reinforced cementitious matrix: Tensile properties and bond performance on masonry substrate. Compos. Part B Eng. 2017, 127, 196–214. [Google Scholar] [CrossRef]
- Contamine, R.; Larbi, A.S.; Hamelin, P. Contribution to direct tensile testing of textile reinforced concrete (TRC) composites. Mater. Sci. Eng. A 2011, 528, 8589–8598. [Google Scholar] [CrossRef]
- Aveston, J.; Kelly, A. Theory of multiple fracture of fibrous composites. J. Mater. Sci. 1973, 8, 352–362. [Google Scholar] [CrossRef]
- Cuypers, H.; Wastiels, J. A stochastic cracking theory for the introduction of matrix multiple cracking in textile reinforced concrete under tensile loading. In Finds and Results from the Swedish Cyprus Expedition: A Gender Perspective at the Medelhavsmuseet; RILEM: Stockholm, Sweden, 2006; pp. 193–202. [Google Scholar]
- Li, B.; Xiong, H.; Jiang, J.; Dou, X. Tensile behavior of basalt textile grid reinforced Engineering Cementitious Composite. Compos. Part B Eng. 2019, 156, 185–200. [Google Scholar] [CrossRef]
- Deng, M.; Dong, Z.; Zhang, C. Experimental investigation on tensile behavior of carbon textile reinforced mortar (TRM) added with short polyvinyl alcohol (PVA) fibers. Constr. Build. Mater. 2020, 235, 117801. [Google Scholar] [CrossRef]
- Saidi, M.; Gabor, A. Iterative analytical modelling of the global behaviour of textile-reinforced cementitious matrix composites subjected to tensile loading. Constr. Build. Mater. 2020, 263, 120130. [Google Scholar] [CrossRef]
- ASTM D6637; Standard Test Method for Determining Tensile Properties of Geogrids by the Single or Multi-Rib Tensile Method. American Society for Testing and Materials: West Conshohocken, PA, USA, 2015.
- Soranakom, C.; Mobasher, B. Correlation of tensile and flexural responses of strain softening and strain hardening cement composites. Cem. Concr. Compos. 2008, 30, 465–477. [Google Scholar] [CrossRef]
- Mobasher, B.; Dey, V.; Cohen, Z.; Peled, A. Correlation of constitutive response of hybrid textile reinforced concrete from tensile and flexural tests. Cem. Concr. Compos. 2014, 53, 148–161. [Google Scholar] [CrossRef]
Textile | Coating Material a | Opening Size c [mm × mm] | Mass per Unit Textile Area with the Coating c [g/m2] | Nominal Cross-Section Area of a Single Weft Yarn b [mm2] | Measured Weft Yarn Tensile Strength [MPa] |
---|---|---|---|---|---|
F1 | SBR | 8.5 × 6.5 | 267 | 0.79 | 1168 ± 103 |
F2 | Acrylic | 25.0 × 25.0 | 180 | 0.92 | 1040 ± 102 |
F3 | SBR | 15.7 × 10.1 | 280 | 0.92 | 1144 ± 133 |
F4 | SBR | 8.0 × 8.0 | 178 | 0.31 | 1367 ± 86 |
F5 | SBR | 9.0 × 10.0 | 118 | 0.31 | 1393 ± 76 |
F6 | SBR | 4.0 × 4.5 | 117 | 0.13 | 1483 ± 12 |
Materials/Properties | Mix M1 | Mix M2 |
---|---|---|
Cement (kg/m3) | 583 | 674 |
Fly ash (kg/m3) | 208 | 114 |
Silica fume (kg/m3) | 42 | 79 |
Quartz sand, 0.2–1.1 mm (kg/m3) | 595 | 1037 |
Quartz powder, 20–160 µm (kg/m3) | 357 | 207 |
Water/binder | 0.40 | 0.24 |
PCE superplasticizer (% solids/binder by weight) | 0.15 | 1.30 |
VMA (% solids/binder by weight of binder) | - | 0.08 |
28-day cube compressive strength (MPa) | 60.2 ± 2.7 | 104.1 ± 4.2 |
28-day flexural strength (MPa) | 7.2 ± 0.1 | 11.8 ± 0.2 |
28-day tensile strength (MPa) | 3.9 ± 0.2 | 5.8 ± 0.3 |
Modulus of elasticity (GPa) | 27.1 ± 1.8 | 34.6 ± 1.7 |
Specimen | First Peak | Intermediate Stress at Different Strains | Ultimate Peak | Number of Cracks | |||||
---|---|---|---|---|---|---|---|---|---|
Stress | Strain | 0.2% | 0.4% | 0.8% | 1.2% | Stress | Strain | ||
F1M1-1L | 3.38 ± 0.51 | 0.013 ± 0.0014 | 3.73 ± 0.21 | 3.47 ± 0.73 | 1.75 ± 0.78 | - | 4.08 ± 0.23 | 0.31 ± 0.11 | 1 |
F1M1-2L | 3.4 ± 0.65 | 0.0126 ± 0.0015 | 3.66 ± 0.37 | 3.89 ± 0.47 | 5.49 ± 0.41 | 6.46 ± 0.44 | 6.84 ± 0.36 | 1.33 ± 0.15 | 7 |
F1M1-3L | 4.03 ± 0.75 | 0.0164 ± 0.0052 | 5.092 ± 0.60 | 6.704 ± 0.45 | 10.12 ± 0.44 | - | 11.37 ± 0.44 | 1.10 ± 0.041 | 10 |
F1M1-4L | 5.15 ± 0.41 | 0.0198 ± 0.0026 | 7.84 ± 0.24 | 10.51 ± 0.77 | 15.31 ± 0.25 | - | 15.80 ± 0.36 | 0.91 ± 0.054 | 15 |
F2M1-1L | 3.11 ± 0.62 | 0.0114 ± 0.0025 | 2.8 ± 0.30 | 2.5 ± 0.76 | 1.37 ± 1.30 | - | 3.14 ± 0.30 | 0.63 ± 0.23 | 1 |
F2M1-2L | 3.86 ± 0.426 | 0.0142 ± 0.003 | 3.67 ± 0.34 | 4.42 ± 0.4 | 4.88 ± 1.00 | 3.98 ± 1.6 | 5.62 ± 0.9 | 0.99 ± 0.22 | 7 |
F2M1-3L | 3.51 ± 0.26 | 0.0126 ± 0.0005 | 4.17 ± 0.66 | 4.47 ± 0.53 | 6.02 ± 0.13 | 7.96 ± 0.15 | 8.45 ± 0.10 | 1.40 ± 0.10 | 7 |
F2M1-4L | 4.05 ± 0.20 | 0.0142 ± 0.0014 | 4.53 ± 0.28 | 5.78 ± 0.55 | 9.04 ± 1.02 | 11.99 ± 0.90 | 12.26 ± 0.91 | 1.26 ± 0.04 | 10 |
F2M1-5L | 4.39 ± 0.28 | 0.0165 ± 0.002 | 6.24 ± 0.5 | 9.56 ± 0.86 | 14.67 ± 0.47 | - | 15.13 ± 0.54 | 1.09 ± 0.03 | 15 |
F3M1-4L | 3.83 ± 0.37 | 0.013 ± 0.002 | 4.02 ± 0.43 | 6.03 ± 0.36 | 10.53 ± 0.42 | 12.21 ± 0.86 | 12.58 ± 1.03 | 1.23 ± 0.13 | 13 |
F3M1-5L | 4.32 ± 0.52 | 0.016 ± 0.006 | 6.83 ± 0.38 | 9.43 ± 0.92 | 15.32 ± 1.12 | - | 16.63 ± 0.86 | 1.06 ± 0.09 | 17 |
F4M1-4L | 3.32 ± 0.61 | 0.0118 ± 0.0025 | 3.52 ± 0.36 | 3.88 ± 0.73 | 5.43 ± 1.30 | - | 7.35 ± 0.35 | 1.13 ± 0.048 | 9 |
F4M1-5L | 3.46 ± 0.43 | 0.0124 ± 0.0018 | 3.72 ± 0.24 | 4.13 ± 0.23 | 6.96 ± 0.83 | - | 9.34 ± 0.56 | 1.15 ± 0.032 | 13 |
F1M2-3L | 5.62 ± 0.45 | 0.016 ± 0.0012 | 5.96 ± 0.52 | 7.68 ± 1.01 | 10.54 ± 1.31 | - | 11.13 ± 0.76 | 0.816 ± 0.016 | 10 |
F1M2-4L | 5.67 ± 0.38 | 0.0168 ± 0.0026 | 7.67 ± 0.24 | 10.56 ± 0.77 | - | - | 15.32 ± 0.36 | 0.789 ± 0.034 | 14 |
F2M2-4L | 5.23 ± 0.23 | 0.0152 ± 0.0018 | 5.82 ± 0.27 | 6.96 ± 0.32 | 11.56 ± 52 | - | 11.63 ± 0.36 | 0.802 ± 0.05 | |
F2M2-5L | 5.63 ± 0.34 | 0.0171 ± 0.002 | 8.93 ± 0.42 | 11.32 ± 0.86 | - | - | 15.03 ± 0.54 | 0.74 ± 0.02 | 15 |
F3M1-4L | 5.33 ± 0.42 | 0.016 ± 0.003 | 5.86 ± 0.46 | 7.56 ± 0.58 | - | - | 11.03 ± 1.03 | 0.89 ± 0.16 | 11 |
F3M2-5L | 5.16 ± 0.18 | 0.015 ± 0.003 | 7.96 ± 0.36 | 10.86 ± 0.75 | 15.83 ± 1.36 | - | 16.13 ± 1.43 | 0.88 ± 0.12 | 16 |
Composite | Volume Fraction (Vt) | Average Efficiency Factor (k) | Average Effective Volume Fraction | Behavior |
---|---|---|---|---|
F1M1-3L | 2.38 | 0.43 | 1.02 | tri-linear |
F1M1-4L | 3.17 | 0.41 | 1.30 | bi-linear |
F2M1-4L | 1.85 | 0.64 | 1.18 | tri-linear |
F2M1-5L | 2.31 | 0.63 | 1.46 | bi-linear |
F3M1-4L | 2.46 | 0.45 | 1.11 | tri-linear |
F3M1-5L | 3.08 | 0.47 | 1.45 | bi-linear |
F4M1-4L | 1.23 | 0.42 | 0.52 | tri-linear |
F4M1-5L | 1.54 | 0.43 | 0.66 | tri-linear |
F1M2-3L | 2.38 | 0.42 | 1.00 | tri-linear |
F1M2-4L | 3.17 | 0.41 | 1.30 | bi-linear |
F2M2-4L | 1.85 | 0.63 | 1.17 | bi-linear |
F2M2-5L | 2.31 | 0.61 | 1.41 | bi-linear |
F3M1-4L | 2.46 | 0.46 | 1.13 | tri-linear |
F3M2-5L | 3.08 | 0.44 | 1.36 | bi-linear |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paul, S.; Gettu, R. Engineering the Tensile Response of Glass Textile Reinforced Concrete for Thin Elements. Sustainability 2023, 15, 14502. https://doi.org/10.3390/su151914502
Paul S, Gettu R. Engineering the Tensile Response of Glass Textile Reinforced Concrete for Thin Elements. Sustainability. 2023; 15(19):14502. https://doi.org/10.3390/su151914502
Chicago/Turabian StylePaul, Sachin, and Ravindra Gettu. 2023. "Engineering the Tensile Response of Glass Textile Reinforced Concrete for Thin Elements" Sustainability 15, no. 19: 14502. https://doi.org/10.3390/su151914502
APA StylePaul, S., & Gettu, R. (2023). Engineering the Tensile Response of Glass Textile Reinforced Concrete for Thin Elements. Sustainability, 15(19), 14502. https://doi.org/10.3390/su151914502