Foraging Routine of Two Common Urban Birds on Berries of Exotic Livistona chinensis: A Winter Supplement in an Urban Landscape
Abstract
:1. Introduction
2. Methodology
2.1. Observations Made on Foraging Routine of the Birds
2.2. Nutrient Contents in the Pulp
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Global Invasive Species Database Species Profile: Livistona Chinensis. 2023. Available online: http://www.iucngisd.org/gisd/species.php?sc=1645 (accessed on 8 August 2023).
- Wagner, W.L.; Herbts, D.R.; Sohmer, S.H. Manual of the Flowering Plants of Hawaii; Bishop Museum Special Publication; University of Hawaii Press: Honolulu, HI, USA, 1999; Volume 2. [Google Scholar]
- Zeng, X.; Wang, Y.; Qiu, Q.; Jiang, C.; Jing, Y.; Qiu, G.; He, X. Bioactive phenolics from the fruits of Livistona chinensis. Fitoterapia 2012, 83, 104–109. [Google Scholar] [CrossRef]
- Sandström, U.G.; Angelstam, P.; Mikusiński, G. Ecological diversity of birds in relation to the structure of urban green space. Landsc. Urban. Plan. 2006, 77, 39–53. [Google Scholar] [CrossRef]
- Siebert, S.J. Livistona chinensis, a semi-naturalized palm of swamp forest in subtropical South Africa. Palms 2009, 53, 193–196. [Google Scholar]
- Siebert, S.J.; Zobolo, A.M.; Dowe, J.L. Livistona chinensis, a first record of a naturalized palm in South Africa. Bothalia Afr. Biodivers. Conserv. 2010, 40, 55–57. [Google Scholar] [CrossRef]
- Dad, F.P.; Hasnain, R. Annual Biomass Carbon and Nutrient Production of Livistona Chinensis Berries in Lahore. Bachelor’s Dissertation, Government College University Lahore, Lahore, Pakistan, 2017. [Google Scholar]
- Zhao, G.P.; Dai, S.; Chen, E.S. Dictionary of Traditional Chinese Medicine; Shanghai Science and Technology Press: Shanghai, China, 2001. [Google Scholar]
- Singh, R.P.; Kaur, G. Hemolytic activity of aqueous extract of Livistona chinensis fruits. Food Cosmet. Toxicol. 2008, 46, 553–556. [Google Scholar] [CrossRef]
- Wang, H.; Dong, X.P.; Li, A.; Pan, X.L. Determination of fatty acids in Livistona chinensis R. Br. J. Cheng Uni Tradit. Chin. Med. 2008, 31, 43–44. [Google Scholar]
- Kadry, H.; Shoala, S.E.l.; Gindi, O.; Sleem, A.A.; Mosharrafa, S.; Kassem, M. Chemical characterization of the lipophilic fraction of Livistona decipiens and Livistona chinensis fruit pulps (Palmae) and assessment of their anti-hyperlipidemic and anti-ulcer activities. Nat. Prod. Commun. 2009, 4, 265–270. [Google Scholar] [CrossRef] [PubMed]
- Yao, H.; Chen, Y.; Shi, P.; Hu, J.; Li, S.; Huang, L.; Lin, J.; Lin, X. Screening and quantitative analysis of antioxidants in the fruits of Livistona chinensis R. Br using HPLC-DAD–ESI/MS coupled with pre-column DPPH assay. Food Chem. 2012, 135, 2802–2807. [Google Scholar] [CrossRef]
- Lin, W.; Zhao, J.; Cao, Z.; Zhuang, Q.; Zheng, L.; Cai, Q.; Chen, D.; Wang, L.; Hong, Z.; Peng, J. Livistona chinensis seed suppresses hepatocellular carcinoma growth through promotion of mitochondrial-dependent apoptosis. Oncol. Rep. 2013, 29, 1859–1866. [Google Scholar] [CrossRef]
- Lin, W.; Zhao, J.; Cao, Z.; Zhuang, Q.; Zheng, L.; Zeng, J.; Hong, Z.; Peng, J. Livistona chinensis seeds inhibit hepatocellular carcinoma angiogenesis in vivo via suppression of the Notch pathway. Oncol. Rep. 2014, 31, 1723–1728. [Google Scholar] [CrossRef]
- Essien, E.E.; Antia, B.S.; Etuk, E.I. Phytoconstituents, Antioxidant and Antimicrobial Activities of Livistona chinensis (Jacquin), Saribus rotundifolius (Lam.) Blume and Areca catechu Linnaeus Nuts. Pharm. Biosci. J. 2017, 5, 59–67. [Google Scholar] [CrossRef]
- Corlett, R.T. Flowers visitors and pollination in the Oriental (Indomalayan) Region. Biol. Rev. 2004, 79, 497–532. [Google Scholar] [CrossRef] [PubMed]
- Corlett, R.T. Interactions between birds, fruit bats and exotic plants in urban Hong Kong, South China. Urban Ecosyst. 2005, 8, 275–283. [Google Scholar] [CrossRef]
- Khan, A.U.; Sharif, F.; Hamza, A. Establishing a baseline on the distribution and pattern of occurrence of Salvadora persica L. with meteorological data and assessing its adaptation in the adjacent warmed-up zones. Int. J. Biometeorol. 2016, 60, 1897–1906. [Google Scholar] [CrossRef]
- Khan, A.U. A report on increasing number of two common urban birds feeding on berries of L. chinensis with decreasing temperatures. Society for conservation of indigenous vegetation. Bulletin 2014. manuscript in preparation. [Google Scholar]
- Kier, T.K.; Vash, N.; Kumar, M. Bird composition in urban landscape of Punjab. Int. J. Adv. Res. 2015, 3, 1113–1118. [Google Scholar]
- Khan, A.U. History of decline and present status of natural tropical thorn forest in Punjab. Biol. Conserv. 1994, 67, 205–210. [Google Scholar] [CrossRef]
- Khan, A.U.; Rashid, A. Trends of displacement of native species by invasive exotics in Lahore: A case study. Biologia 1994, 40, 1. [Google Scholar]
- Bhatt, D.; Kumar, A. Foraging ecology of Red-vented Bulbul Pycnonotus cafer in Haridwar, India. Forktail 2001, 17, 109–110. [Google Scholar]
- Jayapal, R. Urbanisation Biggest Culprit for Decline in India’s Bird Population. 2020. Available online: https://www.downtoearth.org.in/interviews/wildlife-and-biodiversity/-urbanisation-biggest-culprit-for-decline-in-india-s-bird-population--69395 (accessed on 5 June 2020).
- Nyari, A.; Ryall, C.; Peterson, A.T. Global invasive potential of the house crow Corvus splendens based on ecological niche modeling. J. Avian Biol. 2006, 37, 306–311. [Google Scholar] [CrossRef]
- Kambli, A.J. Geophagy by three species of crows near carcass dumping ground at Jodhpur, Rajasthan. Newsl. Ornithol. 2004, 1, 71. [Google Scholar]
- Pain, D.J.; Bowden, C.G.; Cunningham, A.A.; Cuthbert, R.; Das, D.; Gilbert, M.; Jakati, R.D.; Jhala, Y.; Khan, A.A.; Naidoo, V.; et al. The race to prevent the extinction of South Asian vultures. Bird Conserv. Int. 2008, 18, S30–S48. [Google Scholar] [CrossRef]
- Professors Concerned over Disappearance of Crows. The Hindu. 2017. Available online: https://www.thehindu.com/news/national/karnataka/professor-concerned-over-disappearance-of-crows/article18196117.ece (accessed on 24 June 2019).
- Thompson, J.N.; Willson, M.F. Evolution of temperate fruit/bird interactions: Phenological strategies. Evology 1979, 33, 973–982. [Google Scholar] [CrossRef]
- Fuentes, M. Diets of fruit-eating birds: What are the causes of interspecific differences? Oecologia 1994, 97, 134–142. [Google Scholar] [CrossRef] [PubMed]
- Kopij, G. Winter diet of frugivorous birds in the suburbs of Bloemfontein, South Africa. S. Afr. J. Wildl. Res. 2000, 30, 163–165. [Google Scholar]
- Habitat Network Winter Berries for Winter Birds. 2017. Available online: https://blog.nwf.org/2014/12/winter-berries-for-birds/ (accessed on 22 December 2019).
- Marzluff, J.M. Worldwide urbanization and its effects on birds. In Avian Ecology and Conservation in an Urbanizing World; Springer: Boston, MA, USA, 2001; pp. 19–47. [Google Scholar]
- Kendal, D.; Williams, N.S.; Williams, K.J. Drivers of diversity and tree cover in gardens, parks and streetscapes in an Australian city. Urban For. Urban Green. 2012, 11, 257–265. [Google Scholar] [CrossRef]
- Daniels, G.D.; Kirkpatrick, J.B. Does variation in garden characteristics influence the conservation of birds in suburbia? Biol. Conserv. 2006, 133, 326–335. [Google Scholar] [CrossRef]
- Dudgeon, D.; Corlett, R.T. The Ecology and Biodiversity of Hong Kong; Joint Publishing Hong Kong: Hong Kong, China, 2004; Available online: https://portals.iucn.org/library/node/27835 (accessed on 1 February 2020).
- Green, R.J.; Catterall, C.R.; Jones, D.N. Foraging and other behaviour of birds in subtropical and temperate suburban habitats. Emu 1989, 89, 216–222. [Google Scholar] [CrossRef]
- Catterall, C.P.; Green, R.J.; Jones, D.N. Occurrence of birds in relation to plants in a sub-tropical city. Wildl. Res. 1989, 16, 289–305. [Google Scholar] [CrossRef]
- Aslan, C.E.; Rejmanek, M. Avian use of introduced plants: Ornithologist records illuminate interspecific associations and research needs. Ecol. Appl. 2010, 20, 1005–1020. [Google Scholar] [CrossRef]
- Mackenzie, J.A.; Hinsley, S.A.; Harrison, N.M. Parid foraging choices in urban habitat and their consequences for fitness. Ibis 2014, 156, 591–605. [Google Scholar] [CrossRef]
- Gray, E.R.; van Heezik, Y. Exotic trees can sustain native birds in urban woodlands. Urban Ecosyst. 2016, 19, 315–329. [Google Scholar] [CrossRef]
- Walther, G.R.; Roques, A.; Hulme, P.E.; Sykes, M.T.; Pyšek, P.; Kühn, I.; Zobel, M.; Bacher, S.; Botta-Dukát, Z.; Bugmann, H.; et al. Alien species in a warmer world: Risks and opportunities. Trends Ecol. Evol. 2009, 24, 686–693. [Google Scholar] [CrossRef]
- Davis, M.A.; Chew, M.K.; Hobbs, R.J.; Lugo, A.E.; Ewel, J.J.; Vermeij, G.J.; Brown, J.H.; Rosenzweig, M.L.; Gardener, M.R.; Carroll, S.P.; et al. Don’t judge species on their origins. Nature 2011, 474, 153–154. [Google Scholar] [CrossRef] [PubMed]
- Schlaepfer, M.A.; Sax, D.F.; Olden, J.D. The potential conservation value of non-native species. Conserv. Biol. 2011, 25, 428–437. [Google Scholar] [CrossRef]
- Gleditsch, J.M.; Carlo, T.A. Fruit quantity of invasive shrubs predicts the abundance of common native avian frugivores in central Pennsylvania. Divers. Distrib. 2011, 17, 244–253. [Google Scholar] [CrossRef]
- Reise, K.; Olenin, S.; Thieltges, D.W. Are aliens threatening European aquatic coastal ecosystems? Helgol. Mar. Res. 2006, 60, 77. [Google Scholar] [CrossRef]
- Del Tredici, P.; Pickett, S.T. Wild Urban Plants of the Northeast: A Field Guide; Cornell University Press: Ithaca, NY, USA, 2020. [Google Scholar]
- Brändle, M.; Kühn, I.; Klotz, S.; Belle, C.; Brandl, R. Species richness of herbivores on exotic host plants increases with time since introduction of the host. Divers. Distrib. 2008, 14, 905–912. [Google Scholar] [CrossRef]
- Richards, L.A. Diagnosis and Improvement of Saline and Alkali Soils; USDA Agriculture Handbook 60; US Government Printing Office: Washington, DC, USA, 1954.
- Jones, J.J.B.; Wolf, B.; Mills, H.A. Plant Analysis Handbook; Micro-Macro Publishing Inc.: Athens, GA, USA, 1991. [Google Scholar]
- Gaines, T.P.; Mitchell, G.A. Boron determination in plant tissue by the azomethine H method. Commun. Soil. Sci. Plan. Anal. 1979, 10, 1099–1108. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis; Association of Official Analytical Chemist 19th Edition; AOAC: Washington, DC, USA, 2012. [Google Scholar]
- Gutierrez, C.; Last, R.; Chang, C.; Jander, G.; Kliebenstein, D.; McClung, R.; Millar, H. The Arabidopsis Book; The American Society of Plant Biologists: Rockville, MD, USA, 2009; pp. 1–19. [Google Scholar]
- Bonter, D.N.; Zuckerberg, B.; Sedgwick, C.W.; Hochachka, W.M. Daily foraging patterns in free-living birds: Exploring the predation–starvation trade-off. Proc. R. Soc. B Biol. Sci. 2013, 280, 20123087. [Google Scholar] [CrossRef]
- Bednekoff, P.A.; Houston, A.I. Avian daily foraging patterns: Effects of digestive constraints and variability. Evol. Ecol. 1994, 8, 36–52. [Google Scholar] [CrossRef]
- Khan, A.U.; Iqbal, S. Observation on the spread of Broussonetia papyrifera L. in Lahore. Biologia 2004, 50, 203–209. [Google Scholar]
- Al-Shahib, W.; Marshall, R.J. The fruit of the date palm: Its possible use as the best food for the future? Int. J. Food Sci. Nutr. 2003, 54, 247–259. [Google Scholar] [CrossRef]
- Serce, S.; Ercisli, S.; Sengul, M.; Gunduz, K.; Orhan, E. Antioxidant activities and fatty acid composition of wild grown myrtle (Myrtus communis L.) fruits. Pharmacogn. Mag. 2010, 6, 9. [Google Scholar] [CrossRef] [PubMed]
- Dulf, F.V.; Andrei, S.; Bunea, A.; Socaciu, C. Fatty acid and phytosterol contents of some Romanian wild and cultivated berry pomaces. Chem. Pap. 2012, 66, 925–934. [Google Scholar] [CrossRef]
- Akoto, O.; Borquaye, L.S.; Howard, A.S.; Konwuruk, N. Nutritional and mineral composition of the fruits of Solanum torvum from Ghana. Int. J. Mol. Sci. 2015, 4, 222–226. [Google Scholar]
- Klavins, L.; Kviesis, J.; Steinberga, I.; Klavina, L.; Klavins, M. Gas chromatography-mass spectrometry study of lipids in northern berries. Agron. Res. 2016, 14, 1328–1346. [Google Scholar]
- Llorent-Martínez, E.J.; Spínola, V.; Castilho, P.C. Evaluation of the inorganic content of six underused wild berries from Portugal: Potential new sources of essential minerals. J. Food Compost. Anal. 2017, 59, 153–160. [Google Scholar] [CrossRef]
- Ben Mrid, R.; Bouchmaa, N.; Bouargalne, Y.; Ramdan, B.; Karrouchi, K.; Kabach, I.; El Karbane, M.; Idir, A.; Zyad, A.; Nhiri, M. Phytochemical Characterization, Antioxidant and In Vitro Cytotoxic Activity Evaluation of Juniperus oxycedrus Subsp. oxycedrus Needles and Berries. Molecules 2019, 24, 502. [Google Scholar] [CrossRef]
- Vaitkeviciene, N.; Danilcenko, H.; Mažeika, R.; Jariene, E.; Kulaitienė, J.; Hallmann, E.; Blinstrubienė, A. Comparison of mineral and fatty acid composition of wild and cultivated sea buckthorn berries from Lithuania. J. Elem. 2018, 24, 3. [Google Scholar] [CrossRef]
- Soetan, K.O.; Olaiya, C.O.; Oyewole, O.E. The importance of mineral elements for humans, domestic animals and plants—A review. Afr. J. Food Sci. 2010, 4, 200–222. [Google Scholar]
- Preedy, V.R.; Watson, R.R. (Eds.) Nuts and Seeds in Health and Disease Prevention; Academic Press: Cambridge, MA, USA, 2011. [Google Scholar]
- Quinn, J.L.; Cole, E.F.; Bates, J.; Payne, R.W.; Cresswell, W. Personality predicts individual responsiveness to the risks of starvation and predation. Proc. R. Soc. B 2012, 279, 1919–1926. [Google Scholar] [CrossRef] [PubMed]
- Allen, R.; Lee, W. Fruit selection by birds in relation to fruit abundance and appearance in the naturalised shrub Berberis darwinii. N. Z. J. Bot. 1992, 30, 121–124. [Google Scholar] [CrossRef]
- Stiles, E.W. The influence of pulp lipids on fruit preference by birds. In Frugivory and Seed Dispersal: Ecological and Evolutionary Aspects; Springer: Dordrecht, The Netherlands, 1993; pp. 227–235. [Google Scholar]
- Moegenburg, S.M.; Levey, D.J. Do frugivores respond to fruit harvest? An experimental study of short-term responses. Ecology 2003, 84, 2600–2612. [Google Scholar] [CrossRef]
- Hole, D.G.; Whittingham, M.J.; Bradbury, R.B.; Anderson, G.Q.A.; Lee, P.L.M.; Wilson, J.D.; Kerbs, J.R. Widespread local house sparrow extinctions. Nature 2002, 418, 931–932. [Google Scholar] [CrossRef] [PubMed]
- Kekkonen, J. Pollutants in Urbanized Areas: Direct and Indirect Effects on Bird Populations. In Ecology and Conservation of Birds in Urban Environments; Murgui, E., Hedblom, M., Eds.; Springer International Publishing: Cham, Switzerland, 2017. [Google Scholar]
- Crain, R. The Power of the Palette: A Tool to Guide Planting Decisions. 2017. Available online: https://content.yardmap.org/learn/planting-palettes/ (accessed on 22 March 2020).
Observation | House Crow | Red Vented Bulbul | ||
---|---|---|---|---|
Forenoon | Afternoon | Forenoon | Afternoon | |
28 November–5 December | 2.83 ± 0.57 | 2.66 ± 0.62 | 2.16 ± 0.67 | 3.33 ± 0.33 |
30 December–6 January | 4.83 ± 0.70 | 7.16 ± 0.98 | 4.16 ± 0.87 | 4.83 ± 0.70 |
1–7 February | 6.5 ± 0.76 | 9.9 ± 1.25 * | 5.03 ± 0.70 | 7.03 ± 0.49 * |
25 February–3 March | 2.67 ± 0.61 | 4.5 ± 0.66 | 0.83 ± 0.30 | 0.67 ± 0.33 |
Observation | Category A | Category B | Category C | Total |
---|---|---|---|---|
Percentage of L. chinensis Fruit Pulp Consumed by Bird | 0–5% | 6–50% | 51–99% | |
28 November–5 December | 29 | 99 | 22 | 150 |
30 December–6 January | 60 | 165 | 178 | 413 |
1–7 February | 95 | 191 | 219 | 505 |
25 February–3 March | 198 | 91 | 101 | 380 |
Observation | House Crow Droppings (Mean ± S. E) |
---|---|
28 November–5 December | 3.6 ± 0.59 |
30 December–6 January | 8.4 ± 0.50 |
1–7 February | 14.8 ± 1.06 |
25 February–3 March | 17.4 ± 1.02 |
20 March–27 March | 7.8 ± 0.73 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, A.U.; Dad, F.P.; Hasnain, R.; Sharif, F.; Mansoor, A. Foraging Routine of Two Common Urban Birds on Berries of Exotic Livistona chinensis: A Winter Supplement in an Urban Landscape. Sustainability 2023, 15, 14521. https://doi.org/10.3390/su151914521
Khan AU, Dad FP, Hasnain R, Sharif F, Mansoor A. Foraging Routine of Two Common Urban Birds on Berries of Exotic Livistona chinensis: A Winter Supplement in an Urban Landscape. Sustainability. 2023; 15(19):14521. https://doi.org/10.3390/su151914521
Chicago/Turabian StyleKhan, Amin U., Fiza Pir Dad, Ramla Hasnain, Faiza Sharif, and Asma Mansoor. 2023. "Foraging Routine of Two Common Urban Birds on Berries of Exotic Livistona chinensis: A Winter Supplement in an Urban Landscape" Sustainability 15, no. 19: 14521. https://doi.org/10.3390/su151914521
APA StyleKhan, A. U., Dad, F. P., Hasnain, R., Sharif, F., & Mansoor, A. (2023). Foraging Routine of Two Common Urban Birds on Berries of Exotic Livistona chinensis: A Winter Supplement in an Urban Landscape. Sustainability, 15(19), 14521. https://doi.org/10.3390/su151914521