Multivariate Analysis of Harvested Rainwater Quality Utilizing Sustainable Solar-Energy-Driven Water Treatment
Abstract
:1. Introduction
2. Methodology
2.1. Design of the Proposed UETWPP
- Rooftop surfaces of different buildings within the campus of UET to harvest rainwater and connected to a conveyance system of gutters and downpipes,
- A rainwater storage tank to collect and store rainwater runoff from rooftops and other surfaces to ensure a constant supply of water during dry periods,
- The aeration process unit to improve water quality by removing dissolved gases (such as carbon dioxide) and volatile organic compounds (VOCs). Aeration also helps prevent the growth of anaerobic bacteria, which can produce unpleasant odors and affect water quality,
- The absorption and sediment filtrations, refering to the use of materials like zeolite to remove contaminants such as heavy metals, organic matter, and some chemicals from the rainwater. Zeolites are crystalline aluminosilicate minerals with a porous structure. Common types of zeolites used in water filtration include clinoptilolite. The specific type of zeolite used in rainwater filtration is based on factors such as availability, cost, and performance characteristics [41]. Clinoptilolite is a type of zeolite with unique properties, and its effectiveness in treating rainwater can vary depending on the circumstances. The clinoptilolite type is selected because it is known for its ability to adsorb ammonium ions and its advantages in removing heavy metals [42,43,44]. This process also helps to prevent the clogging of pipes and filters downstream and ensures that the water is clear and free from visible contaminants,
- UV (Ultraviolet) disinfection to kill or inactivate harmful microorganisms, including bacteria, viruses, and protozoa, present in rainwater. The wavelength used for UV disinfection in rainwater treatment is around 254 nm, because this is particularly effective at damaging the DNA of microorganisms, rendering them unable to reproduce or cause infections.
2.2. Sampling Collection
2.3. Water Quality Assessment
3. Results and Discussion
3.1. Untreated Rainwater Quality
3.1.1. Descriptive Analysis
3.1.2. Principal Component Analysis (PCA)
3.2. Treated Rainwater Quality
Descriptive Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Richards, S.; Rao, L.; Connelly, S.; Raj, A.; Raveendran, L.; Shirin, S.; Jamwal, P.; Helliwell, R. Sustainable water resources through harvesting rainwater and the effectiveness of a low-cost water treatment. J. Environ. Manag. 2021, 286, 112223. [Google Scholar]
- Ertop, H.; Kocięcka, J.; Atilgan, A.; Liberacki, D.; Niemiec, M.; Rolbiecki, R. The Importance of Rainwater Harvesting and Its Usage Possibilities: Antalya Example (Turkey). Water 2023, 15, 2194. [Google Scholar]
- Bañas, K.; Robles, M.E.; Maniquiz-Redillas, M. Stormwater Harvesting from Roof Catchments: A Review of Design, Efficiency, and Sustainability. Water 2023, 15, 1774. [Google Scholar]
- Rubio-Arias, H.; Contreras-Caraveo, M.; Quintana, R.M.; Saucedo-Teran, R.A.; Pinales-Munguia, A. An overall water quality index (WQI) for a man-made aquatic reservoir in Mexico. Int. J. Environ. Res. Public Health 2012, 9, 1687–1698. [Google Scholar] [CrossRef] [PubMed]
- Grant, S.B.; Saphores, J.-D.; Feldman, D.L.; Hamilton, A.J.; Fletcher, T.D.; Cook, P.L.; Stewardson, M.; Sanders, B.F.; Levin, L.A.; Ambrose, R.F. Taking the “waste” out of “wastewater” for human water security and ecosystem sustainability. Science 2012, 337, 681–686. [Google Scholar]
- Chu, H.-J.; Liu, C.-Y.; Wang, C.-K. Identifying the relationships between water quality and land cover changes in the tseng-wen reservoir watershed of Taiwan. Int. J. Environ. Res. Public Health 2013, 10, 478–489. [Google Scholar] [CrossRef]
- Llopart-Mascaró, A.; Ruiz, R.; Martínez, M.; Malgrat, P.; Rusiñol, M.; Gil, A.; Suárez, J.; Puertas, J.; del Rio, H.; Paraira, M. Analysis of rainwater quality. Towards a sustainable rainwater management in urban environments-Sostaqua Project. In Proceedings of the Novatech 2010-7ème Conférence Internationale sur les Techniques et Stratégies Durables pour la Gestion des eaux Urbaines par Temps de pluie/7th International Conference on Sustainable Techniques and Strategies for Urban Water Management, Lyon, France, 27 June–1 July 2010; pp. 1–10. [Google Scholar]
- Ashraf, I.; Li, R.; Chen, B.; Al-Ansari, N.; Rizwan Aslam, M.; Altaf, A.R.; Elbeltagi, A. Nanoarchitectonics and Kinetics Insights into Fluoride Removal from Drinking Water Using Magnetic Tea Biochar. Int. J. Environ. Res. Public Health 2022, 19, 13092. [Google Scholar] [CrossRef]
- Teng, H.; Altaf, A.R. Elemental mercury (Hg0) emission, hazards, and control: A brief review. J. Hazard. Mater. Adv. 2022, 5, 100049. [Google Scholar]
- Altaf, A.R.; Teng, H.; Zheng, M.; Ashraf, I.; Arsalan, M.; Rehman, A.U.; Gang, L.; Pengjie, W.; Yongqiang, R.; Xiaoyu, L. One-step synthesis of renewable magnetic tea-biochar derived from waste tea leaves for the removal of Hg0 from coal-syngas. J. Environ. Chem. Eng. 2021, 9, 105313. [Google Scholar]
- Birhanu, B.Z.; Tabo, R. Shallow wells, the untapped resource with a potential to improve agriculture and food security in southern Mali. Agric. Food Secur. 2016, 5, 5. [Google Scholar]
- Rockström, J.; Karlberg, L.; Wani, S.P.; Barron, J.; Hatibu, N.; Oweis, T.; Bruggeman, A.; Farahani, J.; Qiang, Z. Managing water in rainfed agriculture—The need for a paradigm shift. Agric. Water Manag. 2010, 97, 543–550. [Google Scholar]
- Wu, Y.-Y.; Ma, Y.-Z.; Cui, H.-X.; Liu, J.-X.; Sun, Y.-R.; Shang, B.; Su, X. Radon concentrations in drinking water in Beijing City, China and contribution to radiation dose. Int. J. Environ. Res. Public Health 2014, 11, 11121–11131. [Google Scholar] [CrossRef] [PubMed]
- Boers, T.M.; Ben-Asher, J. A review of rainwater harvesting. Agric. Water Manag. 1982, 5, 145–158. [Google Scholar]
- Li, Z.; Boyle, F.; Reynolds, A. Rainwater harvesting and greywater treatment systems for domestic application in Ireland. Desalination 2010, 260, 1–8. [Google Scholar] [CrossRef]
- Rahman, S.; Khan, M.; Akib, S.; Din, N.B.C.; Biswas, S.; Shirazi, S. Sustainability of rainwater harvesting system in terms of water quality. Sci. World J. 2014, 2014, 721357. [Google Scholar] [CrossRef]
- Makropoulos, C.K.; Butler, D. Distributed water infrastructure for sustainable communities. Water Resour. Manag. 2010, 24, 2795–2816. [Google Scholar] [CrossRef]
- Piro, P.; Turco, M.; Palermo, S.A.; Principato, F.; Brunetti, G. A comprehensive approach to stormwater management problems in the next generation drainage networks. In The Internet of Things for Smart Urban Ecosystems; Spring: Berlin/Heidelberg, Germany, 2019; pp. 275–304. [Google Scholar]
- Hashemi, S.S.G.; Mahmud, H.B.; Ashraf, M.A. Performance of green roofs with respect to water quality and reduction of energy consumption in tropics: A review. Renew. Sustain. Energy Rev. 2015, 52, 669–679. [Google Scholar]
- Jury, W.A.; Vaux, H., Jr. The role of science in solving the world’s emerging water problems. Proc. Natl. Acad. Sci. USA 2005, 102, 15715–15720. [Google Scholar] [CrossRef]
- Sizirici, B.; Fseha, Y.; Cho, C.-S.; Yildiz, I.; Byon, Y.-J. A review of carbon footprint reduction in construction industry, from design to operation. Materials 2021, 14, 6094. [Google Scholar]
- Parece, T.E.; Grossman, L.; Geller, E.S. Reducing carbon footprint of water consumption: A case study of water conservation at a university campus. Clim. Change Water Resour. 2013, 25, 199–218. [Google Scholar]
- Cosgrove, W.J.; Loucks, D.P. Water management: Current and future challenges and research directions. Water Resour. Res. 2015, 51, 4823–4839. [Google Scholar] [CrossRef]
- Helmreich, B.; Horn, H. Opportunities in rainwater harvesting. Desalination 2009, 248, 118–124. [Google Scholar] [CrossRef]
- Ya’acob, M.E.; Zulkifli, S.A.; Zulkifli, N.; Iskandar, A.N.; Othman, M.H.; Zaidi, M.L.A. GIS Mapping for Rainwater Harvesting in Ground-mounted Large Scale Solar PV Farms. In Proceedings of the 2022 IEEE International Conference in Power Engineering Application (ICPEA), Shah Alam, Malaysia, 7–8 March 2022; pp. 1–6. [Google Scholar]
- Kaya, M. Evaluation of the existing solar energy and rainwater potential in the Total roof area of buildings: Izmit District example. Adv. Mater. Sci. Eng. 2020, 2020, 8167402. [Google Scholar]
- Elasaad, H.; Bilton, A.; Kelley, L.; Duayhe, O.; Dubowsky, S. Field evaluation of a community scale solar powered water purification technology: A case study of a remote Mexican community application. Desalination 2015, 375, 71–80. [Google Scholar] [CrossRef]
- Kumar, K.R.; Kulgod, S.P.; Surendran, A. Simulation and analysis of energy harvesting from Grey water and rain water in high rises. In Proceedings of the 2016 IEEE Region 10 Symposium (TENSYMP), Bali, Indonesia, 9–11 May 2016; pp. 404–409. [Google Scholar]
- Levallois, P.; Villanueva, C.M. Drinking water quality and human health: An editorial. Int. J. Environ. Res. Public Health 2019, 16, 631. [Google Scholar] [CrossRef]
- Davies, G.I.; McIver, L.; Kim, Y.; Hashizume, M.; Iddings, S.; Chan, V. Water-borne diseases and extreme weather events in Cambodia: Review of impacts and implications of climate change. Int. J. Environ. Res. Public Health 2015, 12, 191–213. [Google Scholar] [CrossRef] [PubMed]
- Praveen, P.K.; Ganguly, S.; Wakchaure, R.; Para, P.A.; Mahajan, T.; Qadri, K.; Kamble, S.; Sharma, R.; Shekhar, S.; Dalai, N. Water-borne diseases and its effect on domestic animals and human health: A Review. Int. J. Emerg. Technol. Adv. Eng. 2016, 6, 242–245. [Google Scholar]
- World Health Organization. Guidelines for Drinking-Water Quality; World Health Organization: Geneva, Switzerland, 2004; Volume 1. [Google Scholar]
- Karanis, P.; Kourenti, C.; Smith, H. Waterborne transmission of protozoan parasites: A worldwide review of outbreaks and lessons learnt. J. Water Health 2007, 5, 1–38. [Google Scholar] [CrossRef]
- Edition, F. Guidelines for drinking-water quality. WHO Chron. 2011, 38, 104–108. [Google Scholar]
- Sanders, K.T.; King, C.W.; Stillwell, A.S.; Webber, M.E. Clean energy and water: Assessment of Mexico for improved water services and renewable energy. Environ. Dev. Sustain. 2013, 15, 1303–1321. [Google Scholar]
- Chiu, Y.-R.; Tsai, Y.-L.; Chiang, Y.-C. Designing rainwater harvesting systems cost-effectively in a urban water-energy saving scheme by using a GIS-simulation based design system. Water 2015, 7, 6285–6300. [Google Scholar] [CrossRef]
- Dobrowsky, P.; Carstens, M.; De Villiers, J.; Cloete, T.; Khan, W. Efficiency of a closed-coupled solar pasteurization system in treating roof harvested rainwater. Sci. Total Environ. 2015, 536, 206–214. [Google Scholar] [CrossRef] [PubMed]
- Amin, M.T.; Han, M. Roof-harvested rainwater for potable purposes: Application of solar disinfection (SODIS) and limitations. Water Sci. Technol. 2009, 60, 419–431. [Google Scholar] [CrossRef] [PubMed]
- Patange, S.D.; Nimbkar, N.; Rajvanshi, A.K. Low cost drinking water technology–rainwater harvesting with solar purification. Curr. Sci. 2020, 118, 872. [Google Scholar] [CrossRef]
- Chen, S.; Wang, H.; Yang, W.; Zhang, D. Research on City Energy Conservation Basing Rainwater Utilization. Procedia Environ. Sci. 2012, 12, 72–78. [Google Scholar] [CrossRef]
- Palanivell, P.; Ahmed, O.H.; Susilawati, K.; Ab Majid, N.M. Mitigating ammonia volatilization from urea in waterlogged condition using clinoptilolite zeolite. Int. J. Agric. Biol. 2015, 17, 149–155. [Google Scholar]
- Vassileva, P.; Voikova, D. Investigation on natural and pretreated Bulgarian clinoptilolite for ammonium ions removal from aqueous solutions. J. Hazard. Mater. 2009, 170, 948–953. [Google Scholar] [CrossRef]
- Sprynskyy, M.; Buszewski, B.; Terzyk, A.P.; Namieśnik, J. Study of the selection mechanism of heavy metal (Pb2+, Cu2+, Ni2+, and Cd2+) adsorption on clinoptilolite. J. Colloid Interface Sci. 2006, 304, 21–28. [Google Scholar] [CrossRef]
- Zendelska, A.; Golomeova, M.; Jakupi, S.; Lisichkov, K.; Kuvendziev, S.; Marinkovski, M. Characterization and application of clinoptilolite for removal of heavy metal ions from water resources. Geol. Maced. 2018, 32, 21–32. [Google Scholar]
- Alam, A.; Singh, A. Groundwater quality assessment using SPSS based on multivariate statistics and water quality index of Gaya, Bihar (India). Environ. Monit. Assess. 2023, 195, 687. [Google Scholar] [CrossRef]
- Fan, X.; Cui, B.; Zhao, H.; Zhang, Z.; Zhang, H. Assessment of river water quality in Pearl River Delta using multivariate statistical techniques. Procedia Environ. Sci. 2010, 2, 1220–1234. [Google Scholar] [CrossRef]
- Zhang, Y.; Guo, F.; Meng, W.; Wang, X.-Q. Water quality assessment and source identification of Daliao river basin using multivariate statistical methods. Environ. Monit. Assess. 2009, 152, 105–121. [Google Scholar] [CrossRef] [PubMed]
- Jia, C.; Altaf, A.R.; Li, F.; Ashraf, I.; Zafar, Z.; Nadeem, A.A. Comprehensive assessment on groundwater quality, pollution characteristics, and ecological health risks under seasonal thaws: Spatial insights with Monte Carlo simulations. Groundw. Sustain. Dev. 2023, 22, 100952. [Google Scholar]
- Ashraf, I.; Ahmad, F.; Sharif, A.; Altaf, A.R.; Teng, H. Heavy metals assessment in water, soil, vegetables and their associated health risks via consumption of vegetables, District Kasur, Pakistan. SN Appl. Sci. 2021, 3, 552. [Google Scholar] [CrossRef]
- Naddeo, V.; Scannapieco, D.; Belgiorno, V. Enhanced drinking water supply through harvested rainwater treatment. J. Hydrol. 2013, 498, 287–291. [Google Scholar] [CrossRef]
- Santos, F.d.R.; Urbanetz Junior, J. Rain Water Treatment by Ultraviolet Radiation Using Photovoltaic Energy. Braz. Arch. Biol. Technol. 2022, 65. [Google Scholar] [CrossRef]
- Pineda, E.; Guaya, D.; Rivera, G.; García-Ruiz, M.; Osorio, F. Rainwater treatment: An approach for drinking water provision to indigenous people in Ecuadorian Amazon. Int. J. Environ. Sci. Technol. 2022, 19, 8769–8782. [Google Scholar] [CrossRef]
- Wu, Z.; Ye, Y.; Cai, T.; Jiang, W.; Ren, Y.; Liu, D.; Zhang, T.; Zhang, Y. Synergistic Effect of Self-Doped TiO2 Nanotube Arrays and Ultraviolet (UV) on Enhanced Disinfection of Rainwater. Water Air Soil Pollut. 2022, 233, 416. [Google Scholar] [CrossRef]
- Do Couto, E.d.A.; Calijuri, M.L.; Assemany, P.P.; da Fonseca Santiago, A.; Lopes, L.S. Greywater treatment in airports using anaerobic filter followed by UV disinfection: An efficient and low cost alternative. J. Clean. Prod. 2015, 106, 372–379. [Google Scholar] [CrossRef]
Operation Unit | Specifications |
---|---|
Aeration unit | Height: 950 mm |
Consumption of power: 55 W | |
Volume: 190 L | |
Retention time: 75 min | |
Width: 360 mm | |
Filtration unit | Height: 450 mm |
Diameter of particle: 1.3–1.5 mm | |
Width: 350 mm | |
Filter: Zeolite (clinoptilolite) | |
Surface area of filter media: 350–400 m2/g | |
Supplier: Lahore industrial filters supplier | |
Nature: Mild acidic | |
Weight: 41.5 kg | |
Sedimentation unit | Temperature: 0–45 °C |
Rating of micron: 3 micron | |
Height: 230 mm | |
Width: 80 mm | |
Disinfection unit of UV | Temperature: 5–40 °C |
Flow rate: 2 L/min | |
Consumption of power: 25 W Wavelength: 254 nm |
Minimum Statistic | Maximum Statistic | Mean | Std. Deviation Statistic | Variance Statistic | ||
---|---|---|---|---|---|---|
Statistic | Std. Error | |||||
Ammoniacal nitrogen (mg L−1) | 0.04 | 0.87 | 0.4692 | 0.06890 | 0.23869 | 0.057 |
Selenium (mg L−1) | 0.001 | 0.001 | 0.00100 | 0.000000 | 0.000000 | 0.000 |
Potential hydrogen (pH) | 7.1 | 8.4 | 7.708 | 0.1145 | 0.3965 | 0.157 |
Iron (mg L−1) | 0.02 | 0.08 | 0.0525 | 0.00538 | 0.01865 | 0.000 |
Odor | 3 | 7 | 6 | 0.0045 | 0.00541 | 0.000 |
Chromium (mg L−1) | 0.001 | 0.001 | 0.00100 | 0.000000 | 0.000000 | 0.000 |
Lead (mg L−1) | 0.001 | 0.004 | 0.00200 | 0.000369 | 0.001279 | 0.000 |
Total dissolved solids (TDS) (mg L−1) | 28.2 | 409.7 | 132.192 | 35.3146 | 122.3334 | 14,965.455 |
Amount of N in nitrite (mg L−1) | 0.046 | 1.407 | 0.41392 | 0.111271 | 0.385456 | 0.149 |
Hardness (mg L−1 CaCO3) | 7 | 21 | 15.92 | 1.104 | 3.825 | 14.629 |
Nickel (mg L−1) | 0.001 | 0.001 | 0.00100 | 0.000000 | 0.000000 | 0.000 |
Mercury (mg L−1) | 0.0001 | 0.0003 | 0.000200 | 0.0000213 | 0.0000739 | 0.000 |
Zinc (mg L−1) | 0.04 | 1.51 | 0.4125 | 0.15761 | 0.54598 | 0.298 |
Amount of N in nitrate (mg L−1) | 0.30 | 8.30 | 3.0992 | 0.83389 | 2.88867 | 8.344 |
Arsenic (mg L−1) | 0.0000 | 0.0050 | 0.000942 | 0.0005478 | 0.0018976 | 0.000 |
Turbidity (NTU) | 0.49 | 1.41 | 1.1 | 0.0138 | 0.3145 | 0.139 |
Cadmium (mg L−1) | 0.0003 | 0.0003 | 0.000300 | 0.0000000 | 0.0000000 | 0.000 |
Manganese (mg L−1) | 0.001 | 0.023 | 0.01075 | 0.002975 | 0.010306 | 0.000 |
Sulfur (mg L−1) | 0.02 | 0.04 | 0.0250 | 0.00230 | 0.00798 | 0.000 |
Coliform (CFU/100 mL) | 130 | 9800 | 1684.17 | 829.417 | 2873.185 | 8,255,190.152 |
Sulfate (mg L−1) | 0.00001 | 0.00002 | 0.00001 | 0.0000341 | 0.0112 | 0.000 |
E. coli (CFU/100 mL) | 6.00 | 2900.00 | 456.0833 | 249.96956 | 865.91995 | 749,817.356 |
Component | Initial Eigenvalues | Extraction Sums of Squared Loadings | ||||
---|---|---|---|---|---|---|
Total | % of Variance | Cumulative % | Total | % of Variance | Cumulative % | |
1 | 5.861 | 39.075 | 39.075 | 5.861 | 39.075 | 39.075 |
2 | 2.394 | 15.963 | 55.038 | 2.394 | 15.963 | 55.038 |
3 | 1.817 | 12.112 | 77.150 | 1.817 | 12.112 | 67.150 |
4 | 1.449 | 9.660 | 86.810 | 1.449 | 9.660 | 76.810 |
5 | 1.083 | 7.219 | 87.028 | |||
6 | 0.885 | 5.903 | 89.931 | |||
7 | 0.656 | 4.373 | 94.304 | |||
8 | 0.487 | 3.247 | 97.551 | |||
9 | 0.209 | 1.396 | 98.947 | |||
10 | 0.133 | 0.886 | 99.833 | |||
11 | 0.025 | 0.167 | 100.000 | |||
12 | 4.937 × 10−16 | 3.291 × 10−15 | 100.000 | |||
13 | 3.842 × 10−16 | 2.561 × 10−15 | 100.000 | |||
14 | −2.715 × 10−16 | −2.030 × 10−15 | 100.000 | |||
15 | −1.895 × 10−16 | −1.870 × 10−15 | 100.000 | |||
16 | −1.755 × 10−16 | −1.170 × 10−15 | 100.000 | |||
17 | −1.623 × 10−16 | −1.618 × 10−15 | 100.000 | |||
18 | −1.371 × 10−16 | −1.351 × 10−15 | 100.000 | |||
19 | −1.355 × 10−16 | −1.370 × 10−15 | 100.000 | |||
20 | −1.229 × 10−17 | −1.519 × 10−16 | 100.000 | |||
21 | −1.156 × 10−16 | −1.170 × 10−15 | 100.000 | |||
22 | −1.008 × 10−16 | −1.016 × 10−15 | 100.000 |
Component | Uniqueness | |||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
1 | Zinc | 0.830 | 0.0855 | |||
2 | Ammoniacal nitrogen | 0.819 | 0.1583 | |||
3 | Amount of N in nitrite | 0.765 | 0.2439 | |||
4 | Sulfur | 0.764 | 0.3136 | |||
5 | Amount of N in nitrate | 0.763 | 0.2590 | |||
6 | Iron | 0.690 | 0.3077 | |||
7 | Lead | 0.516 | 0.2912 | |||
8 | Arsenic | 0.514 | 0.2344 | |||
9 | Manganese | 0.511 | 0.2819 | |||
10 | Mercury | 0.507 | 0.2911 | |||
11 | Cadmium | 0.505 | 0.3123 | |||
12 | Selenium | 0.504 | 0.2983 | |||
13 | Chromium | 0.503 | 0.2136 | |||
14 | Nickel | 0.503 | 0.2482 | |||
15 | Sulfate | 0.501 | 0.2889 | |||
16 | Total dissolved solids | 0.860 | 0.2256 | |||
17 | Potential hydrogen | 0.807 | 0.1607 | |||
18 | Hardness | 0.793 | 0.2148 | |||
19 | Turbidity | 0.541 | 0.3585 | |||
20 | Coliform | 0.764 | 0.2535 | |||
21 | E.coli | 0.705 | 0.3894 | |||
22 | Odor | 0.605 | 0.3466 |
Minimum Statistic | Maximum Statistic | Mean | Std. Deviation Statistic | Variance Statistic | ||
---|---|---|---|---|---|---|
Statistic | Std. Error | |||||
Ammoniacal nitrogen (mg L−1) | 0.02 | 0.46 | 0.1333 | 0.04115 | 0.14253 | 0.020 |
Selenium (mg L−1) | 0.001 | 0.003 | 0.00167 | 0.000188 | 0.000651 | 0.000 |
Potential hydrogen | 6.4 | 7.6 | 7.092 | 0.0839 | 0.2906 | 0.084 |
Iron (mg L−1) | 0.01 | 0.04 | 0.0225 | 0.00305 | 0.01055 | 0.000 |
Odor | No odor | No odor | No odor | - | - | - |
Chromium (mg L−1) | 0.001 | 0.001 | 0.00100 | 0.000000 | 0.000000 | 0.000 |
Lead (mg L−1) | 0.001 | 0.002 | 0.00133 | 0.000142 | 0.000492 | 0.000 |
Total dissolved solids (mg L−1) | 14.0 | 38.0 | 25.167 | 2.4116 | 8.3539 | 69.788 |
Amount of N in nitrite (mg L−1) | 0.012 | 0.287 | 0.11358 | 0.027103 | 0.093889 | 0.009 |
Hardness (mg L−1 CaCO3) | 9 | 17 | 13.33 | 0.711 | 2.462 | 6.061 |
Nickel (mg L−1) | 0.0001 | 0.0003 | 0.000217 | 0.0000297 | 0.0001030 | 0.000 |
Mercury (mg L−1) | 0.0001 | 0.0003 | 0.000200 | 0.0000213 | 0.0000739 | 0.000 |
Zinc (mg L−1) | 0.01 | 0.04 | 0.0275 | 0.00329 | 0.01138 | 0.000 |
Amount of N in nitrate (mg L−1) | 0.09 | 2.14 | 1.3943 | 0.23101 | 0.80024 | 0.640 |
Arsenic (mg L−1) | 0.0004 | 0.0080 | 0.002900 | 0.0008191 | 0.0028374 | 0.000 |
Turbidity (NTU) | 0.24 | 0.74 | 0.4917 | 0.05405 | 0.18722 | 0.035 |
Cadmium (mg L−1) | 0.0001 | 0.0002 | 0.000133 | 0.0000142 | 0.0000492 | 0.000 |
Manganese (mg L−1) | 0.001 | 0.023 | 0.01075 | 0.002975 | 0.010306 | 0.000 |
Sulfur (mg L−1) | 0.02 | 0.03 | 0.0225 | 0.00131 | 0.00452 | 0.000 |
Coliform (CFU/100 mL) | 0 | 0 | 0.00 | 0.000 | 0.000 | 0.000 |
Sulfate (mg L−1) | 0.20 | 0.80 | 0.3333 | 0.06435 | 0.22293 | 0.050 |
E.coli (CFU/100 mL) | 0.00 | 0.00 | 0.0000 | 0.00000 | 0.00000 | 0.000 |
Standards | Requirements Met According to Pakistan Standards | Requirements Met According to WHO Standards | ||
---|---|---|---|---|
Pakistan (PCRWR) | WHO | |||
Metals | ||||
Zinc (mg L−1) | 3 | - | ✓ | - |
Ammoniacal nitrogen (mg L−1) | 3 | - | ✓ | - |
Amount of N in nitrite (mg L−1) | 1 | 3 | ✓ | ✓ |
Sulfur (mg L−1) | 0.05 | - | ✓ | - |
Amount of N in nitrate (mg L−1) | 50 | 50 | ✓ | ✓ |
Iron (mg L−1) | 0.3 | 0.1 | ✓ | ✓ |
Lead (mg L−1) | 0.02 | 0.01 | ✓ | ✓ |
Arsenic (mg L−1) | 0.01 | 0.01 | ✓ | ✓ |
Manganese (mg L−1) | 0.3 | 0.05 | ✓ | ✓ |
Mercury (mg L−1) | 0.005 | 0.006 | ✓ | ✓ |
Cadmium (mg L−1) | 0.003 | 0.003 | ✓ | ✓ |
Selenium (mg L−1) | 0.01 | 0.01 | ✓ | ✓ |
Chromium (mg L−1) | 0.05 | 0.05 | ✓ | ✓ |
Nickel (mg L−1) | 0.05 | 0.07 | ✓ | ✓ |
Sulfate (mg L−1) | 250 | - | ✓ | - |
Inorganic miscellaneous | ||||
Total dissolved solids (mg L−1) | 500 | - | ✓ | - |
Potential hydrogen | 6.5–8.5 | 8.2–8.8 | ✓ | ✓ |
Hardness (mg L−1 CaCO3) | 200 | - | ✓ | - |
Turbidity (NTU) | 2 | 1.5 | ✓ | ✓ |
Microbiological elements | ||||
Coliform (CFU/100 mL) | 0 | 0 | ✓ | ✓ |
E.coli (CFU/100 mL) | 0 | 0 | ✓ | ✓ |
Secondary parameters | ||||
Odor | No odor | - | ✓ | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khalid, B.; Alodah, A. Multivariate Analysis of Harvested Rainwater Quality Utilizing Sustainable Solar-Energy-Driven Water Treatment. Sustainability 2023, 15, 14568. https://doi.org/10.3390/su151914568
Khalid B, Alodah A. Multivariate Analysis of Harvested Rainwater Quality Utilizing Sustainable Solar-Energy-Driven Water Treatment. Sustainability. 2023; 15(19):14568. https://doi.org/10.3390/su151914568
Chicago/Turabian StyleKhalid, Bisma, and Abdullah Alodah. 2023. "Multivariate Analysis of Harvested Rainwater Quality Utilizing Sustainable Solar-Energy-Driven Water Treatment" Sustainability 15, no. 19: 14568. https://doi.org/10.3390/su151914568
APA StyleKhalid, B., & Alodah, A. (2023). Multivariate Analysis of Harvested Rainwater Quality Utilizing Sustainable Solar-Energy-Driven Water Treatment. Sustainability, 15(19), 14568. https://doi.org/10.3390/su151914568