The Effect of Plant and Row Configuration on the Growth and Yield of Multiple Cropping of Soybeans in Southern Xinjiang, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Experimental Design
2.3. Determination and Methods
2.3.1. Agronomic Traits
2.3.2. Leaf Area Index (LAI) and Leaf Area Duration (LAD)
2.3.3. Photosynthetic Characteristics
2.3.4. Dry Matter Accumulation
2.3.5. Yield and Yield Components
2.4. Data Analysis
3. Results
3.1. Soybean Plant Traits
3.1.1. The Plant Height Characteristics
3.1.2. The Stem Diameter Characteristics
3.1.3. The Nodes Number of Main Stem Characteristics
3.1.4. The Leaf Shape Index Characteristics
3.2. LAI and LAD Characteristics
3.3. Photosynthetic Characteristics of Soybean
3.3.1. The Net Photosynthetic Rate (Pn)
3.3.2. The Stomatal Conductance (Gs)
3.3.3. The Transpiration Rate (Tr)
3.3.4. The Intercellular CO2 Concentration of Soybean (Ci)
3.4. Characteristics of Total Dry Matter Accumulation of Soybean
3.5. Characteristics of Yield and Yield Components of Soybean
4. Discussion
4.1. Effects of Plant Row Configuration on Soybean Plant Traits
4.2. Effects of Plant Row Configuration on LAI and LAD
4.3. Effects of Plant Row Configuration on Photosynthetic Characteristics
4.4. Effects of Plant Row Configuration on Dry Matter Accumulation
4.5. Effects of Plant Row Configuration on Yield and Yield Components
4.6. Correlation Analysis between Soybean Plant Traits, Photosynthetic Parameters, and Yield Components
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Osman, M.S.; Badawy, A.A.; Osman, A.I.; Abdel Latef, A.A.H. Ameliorative Impact of an Extract of the Halophyte Arthrocnemum macrostachyum on Growth and Biochemical Parameters of Soybean Under Salinity Stress. J. Plant Growth Regul. 2021, 40, 1245–1256. [Google Scholar] [CrossRef]
- Hwang, S.; Ray, J.D.; Cregan, P.B.; King, C.A.; Davies, M.K.; Purcell, L.C. Genetics and mapping of quantitative traits for nodule number, weight, and size in soybean (Glycine max L. Merr.). Euphytica 2014, 195, 419–434. [Google Scholar] [CrossRef]
- Kocira, A.; Czerwińska, E.; Tomkiewicz, D.; Kornas, R. Microbiological evaluation of three soybean cultivars seeds after biostimulant application. Annu. Set Environ. Prot. 2018, 20, 1710–1726. [Google Scholar]
- Dei, H. Soybean as a feed ingredient for livestock and poultry. In Recent Trends for Enhancing the Diversity and Quality of Soybean Products; InTech: London, UK, 2011; Volume 10, pp. 215–226. [Google Scholar]
- Guzeler, N.; Yildirim, C. The utilization and processing of soybean and soybean products. J. Agric. Facult. Uludag Univ. 2016, 30, 546–553. [Google Scholar]
- United Nations. UN Comtrade Database; United Nations: New York, NY, USA, 2021; Available online: https://comtrade.un.org/data/ (accessed on 15 May 2021).
- Food and Agriculture Organization (FAO). FAOSTAT Statistics Database of the Food and Agricultural Organization of the United Nations (FAO); Food and Agriculture Organization (FAO): Rome, Italy, 2021; Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 15 May 2021).
- Wang, L.W. Analysis of China’s soybean supply and demand structure and long-term forecast. Soybean Sci. Technol. 2021, 173, 11–14. [Google Scholar]
- Gay, S.; Egli, D.B.; Reicosky, D.A. Physiological aspects of yield improvement in soybeans. Agron. J. 1980, 72, 387–391. [Google Scholar] [CrossRef]
- Wu, T.; Sun, S.; Wang, C.; Lu, W.; Sun, B.; Song, X.; Han, X.; Guo, T.; Man, W.; Cheng, Y.; et al. Characterizing changes from acentury of genetic improvement of soybean cultivars in Northeast China. Crops Sci. 2015, 55, 2056–2067. [Google Scholar] [CrossRef]
- Wang, C.; Wu, T.; Sun, S.; Xu, R.; Ren, J.; Wu, C.; Jiang, B.; Hou, W.; Han, T. Seventy-five years of improvement of yield and agronomic traits of soybean cultivars released in the Yellow-Huai-Hai River Valley. Crops Sci. 2016, 56, 2354–2364. [Google Scholar] [CrossRef]
- Xu, C.; Li, R.; Song, W.; Wu, T.; Sun, S.; Hu, S.; Han, T.; Wu, C. Responses of branch number and yield component of soybean cultivars tested in different planting densities. Agriculture 2021, 11, 69. [Google Scholar] [CrossRef]
- Can, Y.; Stulen, I.; Van Keulen, H.; Kuiper, P.J.C. Physiological response of soybean genotypes to plant density. Field Crops Res. 2002, 74, 231–241. [Google Scholar]
- Purcell, L.C.; Ball, R.A.; Reaper, J.D.; Vories, E.D. Radiation use efficiency and biomass production in soybean at different plant population densities. Crops Sci. 2002, 42, 172–177. [Google Scholar] [CrossRef] [PubMed]
- Sun, H. The new soybean record yield of 10414 kg ha-1-Meet Kip Cullers, the high yield record holder. Soybean Sci. Technol. 2010, 1–4. [Google Scholar]
- Zu, Y. Soybean yield of 6803 kg ha−1 in Xinxiang Set a National High Yield Record. Farmer’s Daily. 2020. Available online: https://szb.farmer.com.cn/2020/20201027/20201027_007/20201027_007_1.htm (accessed on 27 October 2020).
- Suhre, J.J.; Weidenbenner, N.H.; Rowntree, S.C.; Wilson, E.W.; Naeve, S.L.; Conley, S.P.; Casteel, S.; Diers, B.; Esker, P.; Specht, J.; et al. Soybean yield partitioning changes revealed by genetic gain and seeding rate interactions. Agron. J. 2014, 106, 1631–1642. [Google Scholar] [CrossRef]
- Ciampitti, I.A.; Vyn, T.J. Physiological perspectives of changes over time in maize yield dependency on nitrogen uptake and associated nitrogen efficiencies: A review. Field Crops Res. 2012, 133, 48–67. [Google Scholar]
- Xu, C.; Gao, Y.; Tian, B.; Ren, J.; Meng, Q.; Wang, P. Effects of EDAH, a novel plant growth regulator, on mechanicalstrength, stalk vascular bundles and grain yield of summer maize at high densities. Field Crops Res. 2017, 200, 71–79. [Google Scholar] [CrossRef]
- Benjamin, L.R. Variation in time of seedling emergence within populations: A feature that determines individual growth and development. Adv. Agron. 1990, 44, 1–25. [Google Scholar]
- Xu, C.; Li, R.; Song, W.; Wu, T.; Sun, S.; Han, T.; Wu, C. High Density and Uniform Plant Distribution Improve Soybean Yield by Regulating Population Uniformity and Canopy Light Interception. Agronomy 2021, 11, 1880. [Google Scholar] [CrossRef]
- Tourino, M.C.C.; Rezende, P.M.; Salvador, N. Row spacing, plant density and intrarow plant spacing uniformity effect on soybean yield and agronomics characteristics. Pesq. Agrop. Bras. 2002, 37, 1071–1077. [Google Scholar] [CrossRef]
- Rossini, M.; Maddonni, G.; Otegui, M. Inter-plant variability in maize crops grown under contrasting N × stand density combinations: Links between development, growth and kernel set. Field Crops Res. 2012, 133, 90–100. [Google Scholar] [CrossRef]
- Yang, F.; Huang, S.; Gao, R.C.; Liu, W.G.; Yong, T.W.; Wang, X.C.; Wu, X.L.; Yang, W.Y. Growth of soybean seedlings in relay strip intercropping systems in relation to light quantity and red: Far-red ratio. Field Crops Res. 2014, 155, 245–253. [Google Scholar] [CrossRef]
- Peng, G.X.; Tan, Z.Y.; Wang, E.T.; Reinhold-Hurek, B.; Chen, W.F.; Chen, W.X. Identification of isolates from soybean nodules in Xinjiang region as Sinorhizobium xinjiangense and genetic differentiation of S. xinjiangense from Sinorhizobium fredii. Int. J. Syst. Evol. Microbiol. 2002, 52, 457–462. [Google Scholar] [CrossRef] [PubMed]
- Isoda, A.; Mori, M.; Matsumoto, S.; Li, Z.; Wang, P. High Yielding Performance of Soybean in Northern Xinjiang, China. Plant Prod. Sci. 2006, 9, 401–407. [Google Scholar] [CrossRef]
- Han, L.L.; Wang, E.T.; Han, T.X.; Liu, J.; Sui, X.H.; Chen, W.F.; Chen, W.X. Unique community structure and biogeography of soybean rhizobia in the saline-alkaline soils of Xinjiang, China. Plant Soil 2009, 324, 291–305. [Google Scholar] [CrossRef]
- Cao, W.X. Pandect of Crop Culivation Science, 3rd ed.; Science Press: Beijing, China, 2019. [Google Scholar]
- Geng, W.; Sun, Z.; Ren, B.; Ren, H.; Zhao, B.; Liu, P.; Zhang, J. Spraying Ethephon Effectively Increased Canopy Light Transmittance of Densely Planted Summer Maize, Thus Achieving Synergistic Improvement in Stalk Lodging Resistance and Grain Yield. Plants 2022, 11, 2219. [Google Scholar] [CrossRef] [PubMed]
- TeKrony, D.M. A visual indicator of physiological maturity in soybean plants. Agron. J. 1981, 73, 553–556. [Google Scholar] [CrossRef]
- Abdelfattah, N.A.H.; Yousef, M.A.; Badawy, A.A.; Salem, S.S. Influence of biosynthesized magnesium oxide nanoparticles on growth and physiological aspects of cowpea (Vigna unguiculata L.) plant, cowpea beetle, and cytotoxicity. Biotechnol. J. 2023, e2300301. [Google Scholar] [CrossRef]
- Fehr, W.R.; Caviness, C.E.; Burmood, D.T.; Pennington, J.S. Stage of development descriptions for soybean. Crops Sci. 1971, 11, 929–931. [Google Scholar] [CrossRef]
- Cui, X.F.; Huang, H. Recent Progress in Genetic Control of Leaf Development. Plant Physiol. J. 2011, 47, 631–640. [Google Scholar]
- Li, J.H.; Feng, M.; Li, Z.J. Carbohydrate, Soluble Protein and Morphometric Changes of Leaves of Populus euphratica Oliv. Individuals under Different Developmental Stages. Bull. Bot. Res. 2015, 35, 521–527. [Google Scholar]
- Wang, T.; Pang, T.; Du, Q. Effects of Different Field Collocation Patterns on Photosynthetic Characteristics and Dry Matter Accumulation and Yield in Intercropping Soybean. Acta Agric. Boreali-Sin. 2020, 35, 107–116. [Google Scholar]
- Wang, L.Z.; Hua, F.J.; Cao, P.P.; Gao, F.J. Effect of sowing date and climatic factor on yield and photosynthetic characteristics summer soybean. Chin. J. Oil Crop Sci. 2019, 41, 750–757. [Google Scholar]
- Hussein, H.-A.A.; Alshammari, S.O.; Abd El-Sadek, M.E.; Kenawy, S.K.M.; Badawy, A.A. The Promotive Effect of Putrescine on Growth, Biochemical Constituents, and Yield of Wheat (Triticum aestivum L.) Plants under Water Stress. Agriculture 2023, 13, 587. [Google Scholar] [CrossRef]
- Hussein, H.-A.A.; Alshammari, S.O.; Kenawy, S.K.M.; Elkady, F.M.; Badawy, A.A. Grain-Priming with L-Arginine Improves the Growth Performance of Wheat (Triticum aestivum L.) Plants under Drought Stress. Plants 2022, 11, 1219. [Google Scholar] [CrossRef] [PubMed]
- Badawy, A.A.; Abdelfattah, N.A.H.; Salem, S.S.; Awad, M.F.; Fouda, A. Efficacy Assessment of Biosynthesized Copper Oxide Nanoparticles (CuO-NPs) on Stored Grain Insects and Their Impacts on Morphological and Physiological Traits of Wheat (Triticum aestivum L.) Plant. Biology 2021, 10, 233. [Google Scholar] [CrossRef]
- Wang, C.; Liu, B.; Jin, J. Influences of Planting Density on Agronomic Traits and Spatial Distribution of Yield Components Across Main Stem in Soybean. Soybean Sci. 2008, 27, 936–942. [Google Scholar]
- Abbas, T.; Balal, R.M.; Shahid, M.A.; Pervez, M.A.; Ayyub, C.M.; Aqueel, M.A.; Javaid, M.M. Silicon-induced alleviation of NaCl toxicity in okra (Abelmoschus esculentus) is associated with enhanced photosynthesis, osmoprotectants and antioxidant metabolism. Acta Physiol. Plant. 2015, 37, 6. [Google Scholar] [CrossRef]
- Mateos-Naranjo, L.E.; Andrades-Moreno, A.J. Davy Silicon alleviates deleterious effects of high salinity on the halophytic grass Spartina densiflora. Plant Physiol. Biochem. 2013, 63, 115–121. [Google Scholar] [CrossRef]
- Shen, X.; Li, Z.; Duan, L.; Eneji, A.E.; Li, J. Silicon mitigates ultraviolet-b radiation stress on soybean by enhancing chlorophyll and photosynthesis and reducing transpiration. J. Plant Nutr. 2014, 37, 837–849. [Google Scholar] [CrossRef]
- Beaver, J.S.; Cooper, R.L.; Martin, R.J. Dry Matter Accumulation and Seed Yield of Determinate and Indeterminate Soybeans. Agron. J. 1985, 77, 675–679. [Google Scholar] [CrossRef]
- Beaver, J.S.; Cooper, R.L. Dry Matter Accumulation Patterns and Seed Yield Components of Two Indeterminate Soybean Cultivars. Agron. J. 1982, 74, 380–383. [Google Scholar] [CrossRef]
- Board, J.E.; Modali, H. Dry Matter Accumulation Predictors for Optimal Yield in Soybean. Agron. J. 2005, 45, 1790–1799. [Google Scholar] [CrossRef]
- Liu, G.H.; Liu, X.L.; Dong, L.J.; Chen, Y.Q. Studies on the Relationship Between Yield and Dry Matter Accumulation in High Yield Potential Soybean. Soybean Sci. 2002, 21, 199–202. [Google Scholar]
- Cui, S.Y.; Yu, D.Y. Estimates of relative contribution of biomass, harvest index and yield components to soybean yield improvements in China. Plant Breed. 2005, 124, 473–476. [Google Scholar] [CrossRef]
- Zheng, W.; Xie, F.T.; Guo, T. Effect of Planting Density on Characteristics of Soybean Cultivars with Different Density Tolerance. Soybean Sci. 2015, 34, 255–259. [Google Scholar]
- Yu, X.B.; Liang, J.Q.; He, Z.M.; Wu, H.Y.; Zhang, M.R. Effects of Different Spacing Configurations on Soybean Agronomic Traits and Yield. Soybean Sci. 2021, 40, 482–489. [Google Scholar]
- Zhang, J.X.; Zhai, Y.L.; Xue, L.H. Effect of Plant Density on Growth Tendency, Dry Matter Accumulation and Distribution in High Yield Spring Soybean. Soybean Sci. 2006, 25, 1–5. [Google Scholar]
- Mathew, J.P.; Herbert, S.J.; Zhang, S.; Rautenkranz, A.A.; Litchfield, G.V. Differential Response of Soybean Yield Components to the Timing of Light Enrichment. Agron. J. 2000, 92, 1156–1161. [Google Scholar] [CrossRef]
- Stivers, R.K.; Swearingin, M.L. Soybean Yield Compensation with Different Populations and Missing Plant Patterns. Agron. J. 1980, 72, 98–102. [Google Scholar] [CrossRef]
Fertilizer Type | Bottom Fertilizer | Complete Flowering Stage | Entire Pod Stage | Seed Filling Stage |
---|---|---|---|---|
Nitrogen (kg/hm2) | 13.80 | 23.28 | 28.35 | 16.05 |
Phosphorus (kg/hm2) | 16.2 | 23.16 | 44.03 | 17.00 |
Potassium (kg/hm2) | 20.25 | 20.25 | 20.25 | 6.75 |
Row Space | Density | Pod Number per Plant | Seed Number per Plant | Seed Weight per Plant (g) | 100-Seed Weight (g) | Yield (kg·hm−2) |
---|---|---|---|---|---|---|
H1 | M1 | 34.7 ± 0.2 bB | 80.0 ± 0.6 aA | 15.4 ± 0.8 aA | 18.6 ± 0.3 bB | 5650.0 ± 104.9 aAB |
M2 | 33.1 ± 0.4 cC | 67.0 ± 1.0 bB | 13.2 ± 0.4 bA | 18.1 ± 0.3 cB | 5074.3 ± 83.0 bB | |
M3 | 36.3 ± 0.5 aA | 81.2 ± 1.5 aA | 14.7 ± 0.5 aA | 19.7 ± 0.1 aA | 6155.8 ± 70.0 aA | |
H2 | M1 | 36.8 ± 0.3 bB | 81.4 ± 1.3 bB | 14.8 ± 0.3 aA | 19.2 ± 0.1 bAB | 5440.1 ± 74.6 bA |
M2 | 26.4 ± 0.3 cC | 59.3 ± 1.0 cC | 11.3 ± 0.5 bB | 18.7 ± 0.2 cB | 4350.5 ± 38.1 cB | |
M3 | 40.0 ± 0.6 aA | 85.0 ± 1.0 aA | 13.9 ± 0.7 aA | 19.7 ± 0.2 aA | 5850.6 ± 26.7 aA | |
H3 | M1 | 29.3 ± 0.5 aA | 68.6 ± 1.0 aA | 13.3 ± 0.1 aA | 19.7 ± 0.1 aAB | 4886.0 ± 35.8 bB |
M2 | 20.3 ± 0.4 bB | 55.7 ± 0.8 bB | 10.8 ± 0.4 bB | 19.4 ± 0.1 bB | 4142.6 ± 41.7 cC | |
M3 | 30.0 ± 0.7 aA | 70.0 ± 0.8 aA | 12.6 ± 0.6 aA | 19.9 ± 0.1 aA | 5283.6 ± 47.5 aA | |
Mean of row space | H1 | 34.7 ± 0.4 aA | 76.0 ± 1.0 aA | 14.4 ± 0.7 aA | 18.8 ± 0.2 cB | 5626.7 ± 51.8 aA |
H2 | 34.4 ± 0.5 aA | 75.3 ± 1.0 aA | 13.4 ± 0.6 abAB | 19.2 ± 0.2 bAB | 5217.7 ± 65.7 bB | |
H3 | 26.6 ± 0.7 bB | 74.7 ± 0.8 bB | 12.2 ± 0.4 bB | 19.7 ± 0.1 aA | 4756.1 ± 62.2 cC | |
Mean of density | M1 | 33.6 ± 0.4 bB | 76.7 ± 0.9 bB | 14.5 ± 0.5 aA | 19.2 ± 0.2 bB | 5323.7 ± 34.6 bB |
M2 | 26.6 ± 0.5 cC | 60.6 ± 0.8 cC | 11.8 ± 0.5 bB | 18.7 ± 0.2 cB | 4522.5 ± 31.9 cC | |
M3 | 35.4 ± 0.7 aA | 78.7 ± 1.0 aA | 13.7 ± 0.7 aA | 19.7 ± 0.1 aA | 5763.3 ± 35.9 aA | |
F | H | 7.36 * | 9.72 * | 28.11 ** | 5.12 | 40.78 ** |
M | 7.68 * | 23.90 ** | 45.94 ** | 7.54 * | 82.25 ** | |
H×M | 300.29 ** | 248.73 ** | 5.42 ** | 23.92 ** | 1.55 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ran, X.; Zhou, J.; Mao, T.; Wu, S.; Wu, Q.; Chen, G.; Zhai, Y. The Effect of Plant and Row Configuration on the Growth and Yield of Multiple Cropping of Soybeans in Southern Xinjiang, China. Sustainability 2023, 15, 14608. https://doi.org/10.3390/su151914608
Ran X, Zhou J, Mao T, Wu S, Wu Q, Chen G, Zhai Y. The Effect of Plant and Row Configuration on the Growth and Yield of Multiple Cropping of Soybeans in Southern Xinjiang, China. Sustainability. 2023; 15(19):14608. https://doi.org/10.3390/su151914608
Chicago/Turabian StyleRan, Xinyue, Jianguo Zhou, Tingyong Mao, Shu Wu, Quanzhong Wu, Guodong Chen, and Yunlong Zhai. 2023. "The Effect of Plant and Row Configuration on the Growth and Yield of Multiple Cropping of Soybeans in Southern Xinjiang, China" Sustainability 15, no. 19: 14608. https://doi.org/10.3390/su151914608
APA StyleRan, X., Zhou, J., Mao, T., Wu, S., Wu, Q., Chen, G., & Zhai, Y. (2023). The Effect of Plant and Row Configuration on the Growth and Yield of Multiple Cropping of Soybeans in Southern Xinjiang, China. Sustainability, 15(19), 14608. https://doi.org/10.3390/su151914608