Mapping Soil Parameters with Environmental Covariates and Land Cover Projection in Tropical Rainforest, Hangadi Watershed, Ethiopia
Abstract
:1. Introduction
- ➢
- Assessing the fertility status of soils, mapping the spatial variability of selected soil fertility parameters in the Hangadi watershed, and providing soil quality information to practitioners, natural resource managers and other stakeholders.
- ➢
- Comparing the test predictions of soil pH, CEC, and OC using random forest and ordinary kriging techniques.
2. Study Area Description and Methodology
2.1. Study Area Description
2.2. Methodology
2.2.1. Soil Sample Analysis and Classification
2.2.2. LULC Change Prediction for the Year 2048
- Using land use maps from 1988 and 2018, the IDRISI software’s CA–Markov model was utilized to construct a transaction probability and area matrix. The forecast map was produced using a 30-year run cycle 5 × 5 contiguity filter.
- The Markov chain was used to compute the transition probability matrix.
- The transition probability was used to create the LULC atlas.
- In the end, the LULC change for the year 2048 was projected using the transition probability images and base map (Figure 3).
P1, 1 P2, 2 P2, N
=Pij= · · · · · · · · ·
PN, 1 PN, 2 PN, N
0 ≤ Pij ≤ 1,
3. Results
3.1. Particle size and Topography
3.2. Predictors’ Importance Obtained from Random Forest
3.3. Semi-Variogram Model Parameters Derived from Ordinary Kriging
3.4. Mapping Soil pH, CEC and OC in Hangadi Watershed
3.5. Model Accuracy
3.6. LULC Change Prediction for the Year 2048
4. Discussion
4.1. Soil Bulk Density and Topography
4.2. Selected Soil Chemical Properties
4.3. Mapping and Covariate Variables
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Amare, T.; Birru, Y.; Hans, H. Effects of Guie on Soil Organic Carbon and Other Properties: A Traditional Soil Fertility Management Practice in the Central Highlands. J. Agric. Sci. 2013, 5, 236. [Google Scholar] [CrossRef] [Green Version]
- Meersmans, J.; De Ridder, F.; Canters, F.; De Baets, S.; Van Molle, M. A multiple regression approach to assess the spatial distribution of Soil Organic Carbon (SOC) at the regional scale (Flanders). Geoderma 2008, 143, 1–13. [Google Scholar] [CrossRef]
- Yigini, Y.; Panagos, P. Assessment of soil organic carbon stocks under future climate and land cover changes in Europe. Sci. Total Environ. 2016, 557–558, 838–850. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Waters, C.; Orgill, S.; Cowie, A.; Clark, A.; Liu, D.; Simpson, M.; McGowen, I.; Sides, T. Estimating soil organic carbon stocks using different modelling techniques in the semi-arid rangelands of eastern. Ecol. Indic. 2018, 88, 425–438. [Google Scholar] [CrossRef]
- Lacoste, M.; Minasny, B.; McBratney, A.; Michot, D.; Viaud, V.; Walter, C. High resolution 3D mapping of soil organic carbon in a heterogeneous agricultural landscape. Geoderma 2014, 213, 296–311. [Google Scholar] [CrossRef]
- Kuang, B.; Tekin, Y.; Mouazen, A. Comparison between artificial neural network and partial least squares for on-line visible and near infrared spectroscopy measurement of soil organic carbon, pH and clay content. Soil Tillage Res. 2015, 146, 243–252. [Google Scholar] [CrossRef]
- Subburayalu, S.; Slater, B. Soil series mapping by knowledge discovery from an Ohio County soil map. Soil Sci. Soc. Am. J. 2013, 77, 1254–1268. [Google Scholar] [CrossRef]
- Behera, S.; Mathur, R.; Shukla, A.; Suresh, K.; Prakash, C. Spatial Variability of Soil Properties and Delineation of Soil Management Zones of Oil Palm Plantations Grown in a Hot and Humid Tropical Region of Southern India. Catena 2018, 165, 251–259. [Google Scholar] [CrossRef]
- Gallo, B.; Demattê, J.; Rizzo, R.; Safanelli, J.; Mendes, W.; Lepsch, I.; Lacerda, M. Multi-Temporal Satellite Images on Topsoil Attribute Quantification and the Relationship with Soil Classes and Geology. Remote Sens. 2018, 10, 1571. [Google Scholar] [CrossRef]
- Castro-Franco, M.; Córdoba, M.; Balzarini, M.; Costa, J. A pedometric technique to delimitate soil-specific zones at field scale. Geoderma 2018, 322. [Google Scholar] [CrossRef]
- Zhao, Z.; Yang, Q.; Sun, D.; Ding, X.; Meng, F. Extended Model Prediction of High-Resolution Soil Organic Matter Over a Large Area Using Limited Number of Field Samples. Comput. Electron. Agric. 2021, 169, 105172. [Google Scholar] [CrossRef]
- Hoover, C.; Ducey, M.; Colter, R.; Yamasaki, M. Evaluation of alternative approaches for landscape-scale biomass estimation in a mixed-species northern forest. Ecol. Manag. 2018, 409, 552–563. [Google Scholar] [CrossRef]
- Hashimoto, H.; Wang, W.; Melton, F.; Moreno, A.; Ganguly, S.; Michaelis, A.; Nemani, R. High-resolution mapping of daily climate variables by aggregating multiple spatial data sets with the random forest algorithm over the conterminous. Int. J. Climatol. 2019, 39, 2964–2983. [Google Scholar] [CrossRef]
- Chatterjee, S.; Santra, P.; Majumdar, K.; Ghosh, D.; Das, I.; Sanyal, S. Geostatistical approach for management of soil nutrients with special emphasis on different forms of potassium considering their spatial variation in intensive cropping system of West Bengal. Environ. Monit. Assess. 2015, 187, 1–17. [Google Scholar] [CrossRef]
- Li, J.; Heap, A. Spatial interpolation methods applied in the environmental sciences: A review. Environ. Model. Softw. 2014, 53, 173–189. [Google Scholar] [CrossRef]
- Singh, S.; Mustak, S.; Srivastava, P.; Szabo, S.; Islam, T. Predicting spatial and decadal LULC changes through cellular automata Markov chain models using earth observation datasets and geo-information. Environ. Process. 2015, 2, 61–78. [Google Scholar] [CrossRef] [Green Version]
- Azizi, A.; Malakmohamadi, B.; Jafari, H. Land use and land cover spatiotemporal dynamic pattern and predicting changes using integrated CA-Markov model. Glob. J. Environ. Sci. Manag. 2016, 2, 223–234. [Google Scholar]
- Menne, M.; Durre, I.; Vose, R.; Gleason, B.; Houston, T. An Overview of the Global Historical Climatology Network-Daily Database. J. Atmos. Ocean. Technol. 2012, 29, 897–910. [Google Scholar] [CrossRef]
- Huffman, G.; Bolvin, D.; Nelkin, E. Integrated Multi-Satellite Retrievals for GPM (IMERG), Late Run, Version V06A. 2014. Available online: http//jsimpson.pps.eosdis.nasa.gov/data/imerg/gis/ (accessed on 31 March 2019).
- Mayunga, S. Monitoring of Land Use/Cover Change Using Remote Sensing and GIS techniques: A case study of Loliondo Game Controlled Area. Trends J. Sci. Res. 2018, 3, 18–32. [Google Scholar]
- Akyürek, D.; Koç, Ö.; Akbaba, M.; Sunar, F. Land use/land cover change detection using multitemporal satellite dataset: A case study in Istanbul new airport. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, 42, 17–22. [Google Scholar] [CrossRef] [Green Version]
- Berhanu, T.; Teshome, S.; Bikila, W.; Gudina, L.; Merga, B. Woody species composition and community types of Hangadi watershed, Guji zone. BMC Ecol. Evol. 2021, 21, 225. [Google Scholar] [CrossRef]
- Central Statistical Agency, CSA. Population Projection of Ethiopia for Regions at District Level from 2014–2017. Addis Ababa; 2013. Available online: http://www.csa.gov.et (accessed on 3 January 2019).
- Walkley, A.; Black, I. An Examination of the Degtjareff Method for Determining Soil Organic Matter, and a Proposed Modification of the Chromoc Acid titration method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Henok, K.; Dondeyne, S.; Poesen, J.; Frankl, A.; Nyssen, J. Impact of deforestation on soil fertility, soil carbon and nitrogen stocks: The case of the Gacheb catchment in the White Nile Basin, Ethiopia. Agric. Ecosyst. Environ. 2017, 247, 273–282. [Google Scholar] [CrossRef] [Green Version]
- Chen, D.; Chang, N.; Xiao, J.; Zhou, Q.; Wu, W. Mapping Dynamics of Soil Organic Matter in Croplands with MODIS Data and Machine Learning Algorithms. Sci. Total Environ. 2019, 669, 844–855. [Google Scholar] [CrossRef] [PubMed]
- Tziachris, P.; Aschonitis, V.; Chatzistathis, T.; Papadopoulou, M. Assessment of spatial hybrid methods for predicting soil organic matter using DEM derivatives and soil parameters. Catena 2019, 174, 206–216. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Houborg, R.; McCabe, M. A hybrid training approach for leaf area index estimation via Cubist and random forests machine-learning. ISPRS J. Photogramm. Remote Sens. 2018, 135, 173–188. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2019. [Google Scholar]
- Kumar, P.; Sajjad, H.; Tripathy, B.; Ahmed, R.; Mandal, V. Prediction of spatial soil organic carbon distribution using sentinel-2A and field inventory data in Sariska Tiger Reserve. Nat. Hazards 2018, 90, 693–704. [Google Scholar] [CrossRef]
- Omuto, C.; Vargas, R. Re-tooling of Regression Kriging in R for Improved Digital Mapping of Soil Properties. Geosci. J. 2015, 19, 157–165. [Google Scholar] [CrossRef]
- Isaaks, E.; Mohan, S. An Introduction to Applied Geostatistics; Oxford Unviversity Press: New York, NY, USA, 1989. [Google Scholar]
- Wang, Y.; Zhang, X. A dynamic modeling approach to simulating socioeconomic effects on landscape changes. Ecol. Model. 2001, 140, 141–162. [Google Scholar] [CrossRef]
- Cressie, N. Statistics for Spatial Data, Revised Edition; John Wiley & Sons, Inc.: New York, NY, USA, 1993. [Google Scholar]
- Hengl, T.; Nikolić, M.; MacMillan, R. Mapping efficiency and information content. Int. J. Appl. Earth Obs. Geoinf. 2013, 22, 127–138. [Google Scholar] [CrossRef]
- Abdulrahman, A.; Ameen, S. Predicting Land use and land cover spatiotemporal changes utilizing CA-Markov model in Duhok district between 1999 and 2033. Acad. J. Nawroz Univ. 2020, 9, 71–80. [Google Scholar] [CrossRef]
- Regmi, R.; Saha, S.; Balla, M. Geospatial analysis of land use land cover change modeling at Phewa lake watershed of Nepal by using cellular automata Markov model. Int. J. Curr. Eng. Technol. 2014, 4, 2617–2627. [Google Scholar]
- Zhilong, Z.; Xue, W.; Yili, Z.; Jungang, G. Assessment of changes in the value of ecosystem services in the Koshi River Basin, central high Himalayas based on land cover changes and the CA-Markov model. J. Resour. Ecol. 2017, 8, 67–77. [Google Scholar] [CrossRef]
- Behera, D.; Mukun, D.; Borate, S.; Panda, S.; Behera, P.; Roy, P. Modelling and analyzing the watershed dynamics using Cellular Automata (CA)– Markov model–A geo-information-based approach. J. Earth Syst. Sci. 2012, 121, 1011–1024. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, P.; Mukhopadhyay, A.; Chanda. Application of cellular automata and Markov-chain model in geospatial environmental modeling—A review. Remote Sens. Appl. Soc. Environ. 2017, 5, 64–77. [Google Scholar] [CrossRef]
- Camara, M. Integrating cellular automata Markov model to simulate future land use change of a tropical basin. Glob. J. Environ. Sci. Manag. 2020, 6, 403–414. [Google Scholar]
- Subedi, P.; Subedi, K.; Thapa, B. Application of a hybrid cellular automaton-Markov (CA-Markov) model in land-use change prediction: A case study of saddle creek drainage basin, Florida. Appl. Ecol. Environ. Sci. 2013, 16, 126–132. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Radhakrishnan, N.; Mathew, S. Land use change modelling using a Markov model and remote sensing. Geomat. Nat. Hazards Risk 2014, 5, 145–156. [Google Scholar] [CrossRef]
- Mishra, V.; Rai, P.; Mohan, K. Prediction of land use changes based on land change modeler (LCM) using remote sensing: A case study of Muzaffarpur (Bihar). J. Geogr. Inst. Jovan Cvijic SASA 2014, 64, 111–127. [Google Scholar] [CrossRef]
- USDA/NRCS. (United States Department of Agriculture/ Natural Resources Conservation Service). Soil Health- Bulk Density/Moisture/Aeration- Guide for Educators. 2014. Available online: https://www.academia.edu/5114008/Guides_for_Educators (accessed on 5 March 2021).
- Tekalign, T. Soil, Plant, Water, Fertilizer, Animal Manure and Compost Analysis; Working Document No. 13; International Livestock Research Center for Africa: Addis Ababa, Ethiopia, 1991. [Google Scholar]
- Majoro, F.; Niyonzima, A.; Mukamwambali, C.; Mugabushaka, A.; Twagirimana, A. Digital Soil Nutrients Mapping in Sebeya Catchment Agricultural Land. Am. J. Innov. Res. Appl. Sci. Rwanda. 2020, 11, 26–34. [Google Scholar]
- Yimer, F.; Ledin, S.; Abdelkadir, A. Changes in Soil Organic Carbon and Total Nitrogen Contents in Three Adjacent Land Use Types in the Bale Mountains, South-Eastern Highlands. For. Ecol. Manag. 2007, 242, 337–342. [Google Scholar] [CrossRef]
- Kizilkaya, R.; Dengiz, O. Variation of Land Use/Cover Effects on Some Soil Physico-Chemical Characteristics and Soil Enzyme Activity. Zemdirb. Agric. 2010, 97, 15–22. [Google Scholar]
- Weldemariam, S.; Eyasu, E.; Girmay, G. The Effects of Land Use and Landscape Position on Soil Physicochemical Properties in a Semiarid Watershed, Northern. Appl. Environ. Soil Sci. 2020. [Google Scholar] [CrossRef]
- Emiru, N.; Gebrekidan, H. Effect of land use changes and soil depth on soil organic matter, total nitrogen and available phosphorus contents of soils in Senbat watershed, western. J. Agric. Biol. Sci. 2013, 8, 206–212. [Google Scholar]
- Alemayehu, K.; Sheleme, B. Effects of the Different Land-Use Systems on Selected Soil Properties in South Ethiopia. J. Soil Sci. Environ. Manag. 2013, 4, 100–107. [Google Scholar]
- Belayneh, B.; Eyasu, E.; Getachew, A. Effects of landscape positions on soil physicochemical properties at shenkella watershed, south central. Environ. Syst. Res. 2021, 10, 14. [Google Scholar] [CrossRef]
- Hazelton, P.; Murphy, B. Interpreting Soil Test Results: What Do All Numbers Mean? 2nd ed.; CSIRO Publishing: Collingwood, Australia, 2007. [Google Scholar] [CrossRef]
- Gazey, C.; Davis, S. Soil Acidity: A Guide for West Australia Farmers and Consultants; Department of Agriculture and Food: Western Australia: Perth, Australia, 2009. [Google Scholar]
- Landon, J. Booker Tropical Soil Manual: A Handbook for Soil Survey and Agricultural Land Evaluation in the Tropics and Subtropics; Longman Scientific and Technical: Essex, NY, USA, 1991; p. 474. [Google Scholar]
- Worku, G.; Bantider, A.; Temesgen, H. Effects of land use/land cover change on some soil physical and chemical properties in Ameleke micro-watershed Gedeo and Borena Zones. South. J. Environ. Earth Sci. 2014, 4, 13–24. [Google Scholar]
- Noi, P.; Degener, J.; Kappas, M. Comparison of multiple linear regression, cubist regression, and random Forest algorithms to estimate daily air surface temperature from dynamic combinations of MODIS LST data. Remote Sens. 2017, 9, 398. [Google Scholar] [CrossRef] [Green Version]
- Nabiollahi, K.; Eskandari, S.; Taghizadeh-Mehrjardi, R.; Kerry, R.; Triantafilis, J. Assessing Soil Organic Carbon Stocks Under Land Use Change Scenarios Using Random Forest Models. Carbon Manag. 2019, 10, 63–77. [Google Scholar] [CrossRef]
- Al-Awadhi, A. Case Assessment of the Mechanisms Involved Inhu-man-Induced Land Degradation in North Eastern Kuwait. Land Degrad. Dev. 2013, 24, 2–11. [Google Scholar] [CrossRef]
- Kuhn, M. Caret: Classification and Regression Training. R Package Version 6.0-86. 2020. Available online: https://CRAN.R-project.org/package=caret (accessed on 2 March 2020).
- Nasir, J.; Arif, M.; Gyu, S.; Imam, A. A novel improved random forest for text classification using feature ranking and optimum number of trees. J. King Saud Univ.-Comput. Inf. Sci. 2022, 24, 2733–2742. [Google Scholar]
LULC Type | 1988 | 2008 | 2018 | |||
---|---|---|---|---|---|---|
Area (ha) | % | Area (ha) | % | Area (ha) | % | |
Agroforestry | 1136 | 32 | 818.98 | 23.27 | 1575.4 | 44.8 |
Cultivated land | 517 | 15 | 1235.99 | 35.12 | 955.1 | 27.1 |
Forest land | 1866 | 53 | 1464.46 | 41.61 | 988.4 | 28.1 |
Total | 3519 | 100 | 3519.43 | 100 | 3519 | 100 |
Land Use | Particle Size Distribution (%) | Bulk Density (g/cm3) | Altitude (m) | Slope (%) | pH (pHmeter) | OM (%) | CEC (cmol) | ||
---|---|---|---|---|---|---|---|---|---|
Sand | Silt | Clay | |||||||
Forest | 61.6 a | 18 a | 21 a | 1.22 a | 2122 a | 17 a | 5.2 a | 4.2 a | 30 a |
Agroforestry | 62.1 a | 17 a | 20 a | 1.22 a | 2098 a | 24.6 b | 5.4 b | 3.8 b | 28 a |
Cultivated Land | 53.4 b | 27 b | 20 a | 1.23 a | 1889 b | 22.9 b | 5.6 c | 3.4 c | 29 a |
Parameters | Nugget | Psill | Range | Nugget/Psill |
---|---|---|---|---|
pH | 0.0021 | 0.0439 | 0.00 | 0.00 |
CEC | 0.002 | 0.01 | 1001 | 0.2 |
OC | 0.00 | 0.01 | 137 | 0.00 |
Parameter | OK | RF | ||||||
---|---|---|---|---|---|---|---|---|
MSE | RMSE | MAE | R2 | MSE | RMSE | MAE | R2 | |
OC | 0.13 | 0.36 | 0.15 | 0.85 | 0.02 | 0.17 | 0.02 | 0.82 |
pH | 0.02 | 0.15 | 0.54 | 0.90 | 0.01 | 0.06 | 0.01 | 0.89 |
CEC | 12.9 | 3.6 | 0.14 | 0.92 | 10.72 | 0.95 | 0.07 | 0.91 |
Forest | Agroforestry | Cultivated Land | |
---|---|---|---|
Forest | 0.5213 | 0.3501 | 0.1287 |
Agroforestry | 0.0131 | 0.6108 | 0.3762 |
Cultivated land | 0.0012 | 0.4422 | 0.5565 |
No | Land Use | Area (ha) | Area (%) |
---|---|---|---|
1 | Forest | 539.97 | 15.34 |
2 | Agroforestry | 1730.42 | 49.16 |
3 | Cultivated land | 1249.54 | 35.50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tamiru, B.; Soromessa, T.; Warkineh, B.; Legese, G. Mapping Soil Parameters with Environmental Covariates and Land Cover Projection in Tropical Rainforest, Hangadi Watershed, Ethiopia. Sustainability 2023, 15, 1066. https://doi.org/10.3390/su15021066
Tamiru B, Soromessa T, Warkineh B, Legese G. Mapping Soil Parameters with Environmental Covariates and Land Cover Projection in Tropical Rainforest, Hangadi Watershed, Ethiopia. Sustainability. 2023; 15(2):1066. https://doi.org/10.3390/su15021066
Chicago/Turabian StyleTamiru, Berhanu, Teshome Soromessa, Bikila Warkineh, and Gudina Legese. 2023. "Mapping Soil Parameters with Environmental Covariates and Land Cover Projection in Tropical Rainforest, Hangadi Watershed, Ethiopia" Sustainability 15, no. 2: 1066. https://doi.org/10.3390/su15021066
APA StyleTamiru, B., Soromessa, T., Warkineh, B., & Legese, G. (2023). Mapping Soil Parameters with Environmental Covariates and Land Cover Projection in Tropical Rainforest, Hangadi Watershed, Ethiopia. Sustainability, 15(2), 1066. https://doi.org/10.3390/su15021066