Convergence Analysis of the Overall Benefits of Returning Farmland into Forest in the Upper Yangtze River Basin, China
Abstract
:1. Introduction
2. Materials
2.1. Study Area
2.2. Data and Processing
2.2.1. Socio-Economic Data
2.2.2. Ecological Statistics
2.3. Methods
2.3.1. Construction of the Index System
2.3.2. Convergence Analysis Model
- σ convergence
- 2.
- convergence
2.4. Variables
3. Results
3.1. Results of σ Convergence Analysis
3.2. Results of Convergence Analysis
3.3. Results of the Spatial Spillover Effect Analysis
4. Discussion
4.1. Discussion of Convergence Analysis
4.2. Discussion of the Spatial Effect Decomposition
5. Conclusions
- To improve the overall benefits of RFTF, it is necessary to strengthen the financial support and management of RFTF in slow-growing areas, give full play to regional advantages, improve the radiation capacity of regions with high overall benefits of RFTF, and improve the comprehensive benefit monitoring system of RFTF. According to the objectives and tasks of ecological construction and the needs of industrial development, in combination with the local climate, hydrology, and geographical conditions, scientific and reasonable planning must be carried out to ensure the full range of ecological benefits.
- Regions should continuously improve transportation infrastructure, strengthen the inter-regional links, promote the free flow of factors, ensure the effective development of economic activities in the area of RFTF, and play a significant role in promoting the coordinated development of the regional economy. At the same time, it is necessary to scientifically understand the impact of economic activities on the overall benefits of RFTF.
- China’s farmland accounts for about 8% of the world’s farmland but feeds more than 21% of the world’s population. In the decision-making and management of RFTF, special attention should be paid to how to protect surplus farmland, carefully managing for long-term agricultural production and guarding against potential food security risks caused by the excessive conversion of farmland.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
City (State) | 1995–2000 | 2000–2005 | 2005–2010 | 2010–2013 | 2013–2015 | 2015–2018 |
---|---|---|---|---|---|---|
Chengdu | 456.0608 | 2055.9141 | 439.1097 | 93,416.1704 | 80,474.0362 | 91,867.2897 |
Zigong | 189.3768 | 600.5733 | 164.0393 | 25,232.3247 | 68,683.6486 | 24,766.7015 |
Panzhihua | 168.8628 | 934.7709 | 1141.5299 | 83,905.3105 | 91,228.7604 | 82,909.9991 |
Deyang | 233.2242 | 408.0202 | 214.2139 | 22,197.3574 | 23,277.7357 | 21,933.5467 |
Mianyang | 800.9246 | 3694.1267 | 1120.8360 | 212,096.3298 | 212,308.8747 | 211,093.9610 |
Guangyuan | 548.1051 | 2508.2377 | 1179.6168 | 293,893.8601 | 287,710.1067 | 291,783.0550 |
Suining | 516.5481 | 1035.2763 | 513.8314 | 50,947.5345 | 52,712.4528 | 50,290.5300 |
Neijiang | 47.8614 | 3544.4969 | 116.5221 | 27,444.2880 | 29,568.7834 | 27,338.8090 |
Leshan | 1351.8291 | 553.3732 | 625.4247 | 121,664.5101 | 144,662.4364 | 121,526.1751 |
Meishan | 19.3786 | 931.7727 | 307.5074 | 61,167.1068 | 60,176.6222 | 60,876.4051 |
Yibin | 1962.7551 | 3026.3255 | 559.6679 | 210,206.5050 | 209,721.4635 | 208,135.2478 |
Guangan | 59.7304 | 800.9743 | 145.7259 | 51,005.0084 | 49,547.2347 | 50,719.3071 |
Dazhou | 1226.7568 | 593.9967 | 1308.6174 | 268,127.4011 | 283,146.9532 | 267,211.5400 |
Ya’an | 108.9445 | 1025.0000 | 680.2809 | 94,478.4590 | 105,745.1310 | 93,326.9532 |
Bazhong | 1406.2917 | 2667.2196 | 1273.7571 | 241,468.4350 | 195,681.3549 | 239,840.9301 |
Aba | 1372.2006 | 7503.9797 | 879.1661 | 103,935.5456 | 128,210.8410 | 103,694.3041 |
Ganzi | 254.3633 | 3372.7932 | 1483.8697 | 121,001.9436 | 119,999.3321 | 120,555.2403 |
Liangshan | 281.6061 | 4411.2453 | 5495.5485 | 617,343.3898 | 606,464.9095 | 614,675.5794 |
Kunming | 140.0017 | 543.0757 | 1592.3383 | 187,677.2502 | 192,729.2281 | 184,528.3022 |
Qujing | 229.7107 | 1534.0281 | 1574.1874 | 289,889.7635 | 297,102.0959 | 285,938.7047 |
Zhaotong | 156.0238 | 1835.2364 | 1731.0177 | 301,464.3838 | 278,973.8989 | 299,099.8031 |
Lijiang | 82.4185 | 25.0000 | 518.4681 | 133,308.7234 | 130,647.5940 | 132,527.7917 |
Dali | 36.6545 | 1226.8499 | 3717.9671 | 222,420.6018 | 214,783.5197 | 222,058.5434 |
Guiyang | 6.1568 | 1325.9875 | 918.4935 | 125,879.6822 | 114,791.8884 | 120,334.5664 |
Zunyi | 353.9501 | 16,271.4523 | 1944.3561 | 464,347.9075 | 461,116.0347 | 458,473.1150 |
Bijie | 537.4214 | 5686.5478 | 3181.0109 | 452,729.9105 | 464,125.4222 | 449,325.3250 |
Tongren | 2100.3502 | 5186.3364 | 277.8133 | 290,864.8793 | 285,922.4122 | 287,568.2681 |
Yichang | 184.7496 | 1412.0329 | 51.4006 | 142,595.1328 | 150,904.0876 | 147,439.2663 |
Enshi | 321.3287 | 3913.8486 | 163.8788 | 200,959.1990 | 203,536.1354 | 206,725.7914 |
Chongqing | 5838.3831 | 34,262.1720 | 16277.3986 | 1065,107.9848 | 1,138,403.5269 | 1,058,725.9376 |
Hanzhong | 3800.3320 | 2689.9711 | 395.9558 | 344,538.8302 | 343,525.4658 | 343,903.9776 |
Longnan | 2173.0026 | 10,853.6831 | 4992.3066 | 327,821.7496 | 341,514.1196 | 336,571.3491 |
Yushu | 158.4463 | 540.0497 | 86.0459 | 18,803.4912 | 18,612.6007 | 18,599.0751 |
Appendix B
Object Evaluation | System Evaluation | Indicator Evaluation | Weight |
---|---|---|---|
Calculation of the overall benefits of RFTF in the upper Yangtze River basin | Ecological benefits | Production of food | 0.0786 |
Production of raw materials | 0.0810 | ||
Regulation of gases | 0.0804 | ||
Regulation of climate | 0.0802 | ||
Regulation of hydrology | 0.0803 | ||
Disposal of waste | 0.0794 | ||
Conservation of soil | 0.0800 | ||
Biodiversity preservation | 0.0803 | ||
Supply of aesthetic landscapes | 0.0803 | ||
Economic benefits | Forestry output value | 0.0331 | |
Animal husbandry output value | 0.0284 | ||
Per capita GDP | 0.0297 | ||
Gross agricultural product per labor | 0.0169 | ||
Yield of grains per unit area | 0.0181 | ||
The gross value of agricultural production | 0.0167 | ||
The proportion of cash crop sown areas to total sown areas | 0.0091 | ||
Social benefits | Arable area | 0.0392 | |
The number of rural employees | 0.0324 | ||
Rate of urbanization of residents with household registrations | 0.0204 | ||
A significant portion of the total output value is accounted for by secondary and tertiary industries | 0.0047 | ||
A significant portion of the value of agricultural output comes from forestry and animal husbandry | 0.0058 | ||
Output value of agricultural service industries accounts for the portion of total agricultural output | 0.0197 | ||
Intensity of application of agricultural chemical fertilizers | 0.0053 |
Appendix C
City (State) | 2000 | 2005 | 2010 | 2013 | 2015 | 2018 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Overall Benefits | Sorting | Overall Benefits | Sorting | Overall Benefits | Sorting | Overall Benefits | Sorting | Overall Benefits | Sorting | Overall Benefits | Sorting | |
Chengdu | 0.0019 | 2 | 0.0023 | 2 | 0.0026 | 3 | 0.0084 | 11 | 0.0077 | 13 | 0.0088 | 11 |
Zigong | 0.0011 | 27 | 0.0014 | 26 | 0.0016 | 18 | 0.0033 | 29 | 0.0058 | 20 | 0.0034 | 29 |
Panzhihua | 0.0012 | 20 | 0.0014 | 24 | 0.0016 | 17 | 0.0060 | 17 | 0.0065 | 14 | 0.0061 | 17 |
Deyang | 0.0014 | 11 | 0.0016 | 11 | 0.0019 | 10 | 0.0035 | 28 | 0.0037 | 29 | 0.0036 | 28 |
Mianyang | 0.0015 | 5 | 0.0018 | 5 | 0.0019 | 8 | 0.0121 | 8 | 0.0123 | 7 | 0.0124 | 8 |
Guangyuan | 0.0012 | 18 | 0.0014 | 23 | 0.0015 | 23 | 0.0137 | 4 | 0.0133 | 4 | 0.0138 | 4 |
Suining | 0.0011 | 28 | 0.0013 | 28 | 0.0016 | 16 | 0.0042 | 24 | 0.0044 | 27 | 0.0044 | 26 |
Neijiang | 0.0012 | 23 | 0.0014 | 17 | 0.0016 | 20 | 0.0031 | 31 | 0.0033 | 30 | 0.0033 | 30 |
Leshan | 0.0013 | 15 | 0.0014 | 20 | 0.0017 | 15 | 0.0076 | 13 | 0.0087 | 12 | 0.0079 | 13 |
Meishan | 0.0012 | 25 | 0.0014 | 22 | 0.0015 | 21 | 0.0049 | 21 | 0.0049 | 23 | 0.0051 | 21 |
Yibin | 0.0014 | 10 | 0.0016 | 10 | 0.0018 | 12 | 0.0124 | 6 | 0.0125 | 6 | 0.0128 | 7 |
Guang’an | 0.0012 | 26 | 0.0014 | 25 | 0.0015 | 22 | 0.0046 | 22 | 0.0046 | 24 | 0.0048 | 22 |
Dazhou | 0.0015 | 7 | 0.0017 | 9 | 0.0019 | 9 | 0.0156 | 3 | 0.0165 | 3 | 0.0159 | 3 |
Ya’an | 0.0010 | 30 | 0.0013 | 30 | 0.0014 | 26 | 0.0055 | 19 | 0.0060 | 19 | 0.0057 | 19 |
Bazhong | 0.0012 | 19 | 0.0014 | 19 | 0.0014 | 27 | 0.0127 | 5 | 0.0106 | 8 | 0.0128 | 6 |
Aba | 0.0012 | 24 | 0.0014 | 18 | 0.0013 | 29 | 0.0042 | 25 | 0.0050 | 22 | 0.0046 | 25 |
Ganzi | 0.0009 | 32 | 0.0010 | 32 | 0.0011 | 32 | 0.0037 | 27 | 0.0038 | 28 | 0.0038 | 27 |
Liangshan | 0.0014 | 8 | 0.0017 | 7 | 0.0020 | 6 | 0.0242 | 2 | 0.0241 | 2 | 0.0244 | 2 |
Kunming | 0.0016 | 3 | 0.0017 | 6 | 0.0020 | 5 | 0.0058 | 18 | 0.0060 | 17 | 0.0061 | 18 |
Qujing | 0.0013 | 14 | 0.0016 | 13 | 0.0027 | 2 | 0.0064 | 14 | 0.0061 | 16 | 0.0065 | 15 |
Zhaotong | 0.0013 | 16 | 0.0019 | 4 | 0.0021 | 4 | 0.0045 | 23 | 0.0044 | 26 | 0.0047 | 24 |
Lijiang | 0.0009 | 31 | 0.0017 | 8 | 0.0012 | 31 | 0.0032 | 30 | 0.0032 | 31 | 0.0033 | 31 |
Dali | 0.0012 | 21 | 0.0015 | 16 | 0.0017 | 13 | 0.0061 | 16 | 0.0060 | 18 | 0.0063 | 16 |
Guiyang | 0.0014 | 13 | 0.0013 | 29 | 0.0015 | 24 | 0.0041 | 26 | 0.0044 | 25 | 0.0047 | 23 |
Zunyi | 0.0015 | 6 | 0.0020 | 3 | 0.0018 | 11 | 0.0122 | 7 | 0.0125 | 5 | 0.0128 | 5 |
Bijie | 0.0014 | 12 | 0.0015 | 14 | 0.0016 | 19 | 0.0079 | 12 | 0.0089 | 11 | 0.0088 | 12 |
Tongren | 0.0015 | 4 | 0.0012 | 31 | 0.0013 | 28 | 0.0062 | 15 | 0.0062 | 15 | 0.0068 | 14 |
Yichang | 0.0014 | 9 | 0.0016 | 12 | 0.0019 | 7 | 0.0090 | 10 | 0.0096 | 9 | 0.0098 | 10 |
Enshi | 0.0012 | 22 | 0.0014 | 21 | 0.0014 | 25 | 0.0092 | 9 | 0.0094 | 10 | 0.0100 | 9 |
Chongqing | 0.0036 | 1 | 0.0055 | 1 | 0.0053 | 1 | 0.0432 | 1 | 0.0435 | 1 | 0.0439 | 1 |
Hanzhong | 0.0011 | 29 | 0.0015 | 15 | 0.0017 | 14 | 0.0050 | 20 | 0.0051 | 21 | 0.0052 | 20 |
Longnan | 0.0013 | 17 | 0.0013 | 27 | 0.0013 | 30 | 0.0019 | 32 | 0.0020 | 32 | 0.0023 | 32 |
Yushu | 0.0007 | 33 | 0.0009 | 33 | 0.0011 | 33 | 0.0012 | 33 | 0.0013 | 33 | 0.0013 | 33 |
mean | 0.0013 | — | 0.0016 | — | 0.0018 | — | 0.0084 | — | 0.0086 | — | 0.0087 | — |
Appendix D
Sub-Basin | 2000 | 2005 | 2010 | 2013 | 2015 | 2018 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
SD | CV | SD | CV | SD | CV | SD | CV | SD | CV | SD | CV | |
Upper Yangtze River basin | 0.0004 | 0.3355 | 0.0007 | 0.4489 | 0.0007 | 0.4072 | 0.0077 | 0.9248 | 0.0077 | 0.8987 | 0.0078 | 0.8992 |
Jinsha River basin | 0.0003 | 0.2207 | 0.0003 | 0.2005 | 0.0005 | 0.2924 | 0.0063 | 0.8500 | 0.0062 | 0.8430 | 0.0063 | 0.8386 |
Mintuo River basin | 0.0003 | 0.2017 | 0.0003 | 0.1943 | 0.0004 | 0.2178 | 0.0019 | 0.3718 | 0.0017 | 0.3057 | 0.0019 | 0.3622 |
Jialing River basin | 0.0001 | 0.1112 | 0.0002 | 0.1041 | 0.0002 | 0.1251 | 0.0050 | 0.5690 | 0.0049 | 0.5702 | 0.0050 | 0.5526 |
Wu River basin | 0.0001 | 0.0437 | 0.0003 | 0.1901 | 0.0002 | 0.1131 | 0.0030 | 0.3925 | 0.0030 | 0.3790 | 0.0030 | 0.3622 |
upper Yangtze River main channel | 0.0011 | 0.5231 | 0.0019 | 0.6682 | 0.0017 | 0.5972 | 0.0161 | 0.7856 | 0.0160 | 0.7700 | 0.0160 | 0.7544 |
References
- Hasan, S.S.; Zhen, L.; Miah, M.G.; Ahamed, T.; Samie, A. Impact of land use change on ecosystem services: A review. Environ. Dev. 2020, 34, 100527. [Google Scholar] [CrossRef]
- Zhang, B.Q.; He, C.S.; Burnham, M.; Zhang, L.H. Evaluating the coupling effects of climate aridity and vegetation restoration on soil erosion over the Loess Plateau in China. Sci. Total Environ. 2016, 539, 436–449. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.H.; Wei, H.J.; Fan, W.G.; Wang, X.C.; Huang, B.L.; Lu, N.C.; Ren, J.H.; Dong, X.B. Energy modeling simulation of changes in ecosystem services before and after the implementation of a Grain-for-Green program on theLoess Plateau—A case study of the Zhifanggou valley in Ansai County, Shaanxi Province, China. Ecosyst. Serv. 2018, 31, 32–43. [Google Scholar] [CrossRef]
- Liu, W.C.; Liu, J.Y.; Kuang, W.H. Spatio-temporal characteristics of soil protection efforts of the Grain for Green Project in northern Shaanxi Province. J. Geogr. Sci. 2020, 30, 401–422. [Google Scholar] [CrossRef]
- Wang, W.Z.; Chen, L.; Zhu, Y.X.; Wang, K.; Chen, S.B.; Shen, Z.Y. Is returning farmland to forest an effective measu-re to reduce phosphorus delivery across distinct spatial scales? J. Environ. Manag. 2019, 252, 109663. [Google Scholar] [CrossRef]
- Ding, Y.B.; Wang, F.Z.; Mu, Q.; Sun, Y.N.; Cai, H.J.; Zhou, Z.Q.; Xu, J.T.; Shi, H.Y. Estimating land use/land cover change impacts on vegetation response to drought under ‘Grain for Green’in the Loess Plateau. Land Degrad. Dev. 2021, 32, 5083–5098. [Google Scholar] [CrossRef]
- Li, G.; Sun, S.B.; Han, J.C.; Yan, J.W.; Liu, W.B.; Wei, Y.; Lu, N.; Sun, Y.Y. Impacts of Chinese Grain for Green program and cli-mate change on vegetation in the Loess Plateau during 1982–2015. Sci. Total Environ. 2019, 660, 177–187. [Google Scholar] [CrossRef]
- Wang, Z.Y.; Yu, Q.R.; Guo, L. Quantifying the impact of the grain-for-green program on e-cosystem health in the typical agro-pastoral ecotone: A case study in the Xilin G-ol league, Inner Mongolia. Int. J. Environ. Health. 2020, 17, 5631. [Google Scholar] [CrossRef]
- Ye, L.P.; Fang, L.C.; Shi, Z.H.; Deng, L.; Tan, W.F. Spatio-temporal dynamics of soil moisture driven by ‘Grain for Green’program on the Loess Plateau, China. Agric. Ecosyst. Environ. 2019, 269, 204–214. [Google Scholar] [CrossRef]
- Bi, W.X.; Wang, K.; Weng, B.S.; Yan, D.H.; Liu, S.Y. Does the Returning Farmland to Forest Program i-mprove the ecosystem stability of rhizosphere in winter in alpine regions? Agric. Ecosyst. Environ. Appl. Soil Ecol. 2021, 165, 104011. [Google Scholar] [CrossRef]
- Zeng, L.; Li, J.; Zhou, Z.X.; Yu, Y.Y. Optimizing land use patterns for the grain for GreenProject based on the efficiency of ecosystem services under different objectives. Ecol. Indic. 2020, 114, 106347. [Google Scholar] [CrossRef]
- Geng, Q.L.; Ren, Q.F.; Yan, H.M.; Li, L.H.; Zhao, X.N.; Mu, X.M.; Wu, P.; Yu, Q. Target areas for harmonizing the grain for green p-rogramme in China’s Loess Plateau. Land Degrad. Dev. 2020, 31, 325–333. [Google Scholar] [CrossRef]
- Wang, J.T.; Peng, J.; Zhao, M.Y.; Liu, Y.X.; Chen, Y.Q. Significant trade-off for the impact of Grain-for-G-reen Programme on ecosystem services in North-western Yunnan, China. Sci. Total Environ. 2017, 574, 57–64. [Google Scholar] [CrossRef]
- Treacy, P.; Jagger, P.; Song, C.H.; Zhang, Q.; Bilsborrow, R.E. Impacts of China’s Grain for Green Program o-n migration and household income. Environ. Manag. 2018, 62, 489–499. [Google Scholar] [CrossRef]
- Liang, Y.C.; Li, S.Z.; Feldman, M.W.; Daily, G.C. Does household composition matter? The im-pact of the Grain for Green Program on rural livelihoods in China. Ecol. Econ. 2012, 75, 152–160. [Google Scholar] [CrossRef]
- Peng, H.; Cheng, G.; Xu, Z.; Yin, Y.; Xu, W. Social, economic, and ecological impacts of the “Grain for Green” project in China: A preliminary case in Zhangye, Northwest China. J. Environ. Manag. 2007, 85, 774–784. [Google Scholar] [CrossRef]
- Zhou, P.; Wen, A.B.; Yan, D.C.; Shi, Z.L.; Guo, J.; Ju, Z.S.; Zhang, Y.L. Changes in land use and agricultural production str-ucture before and after the implementation of grain for green program in WesternChina—Taking two typical counties as examples. J. Mt. Sci. 2014, 11, 526–534. [Google Scholar] [CrossRef]
- Gao, Y.C.; Liu, Z.H.; Li, R.P.; Shi, Z.D. Long-term impact of China’s returning farmland to fo-rest program on rural economic development. Sustainability 2020, 12, 1492. [Google Scholar] [CrossRef] [Green Version]
- Delang, C.O. The second phase of the grain for green program: Adapting the largestreforestation program in the world to the new conditions in rural China. Environ. Manag. 2019, 64, 303–312. [Google Scholar] [CrossRef]
- Liu, J.J.; Wang, J.; Li, Z.H.; Du, Y.K. Exploring impacts of the Grain for Green program on Chinese economic growth. Environ. Dev. Sustain. 2021, 23, 5215–5232. [Google Scholar] [CrossRef]
- Dai, Z.G. Intensive agropastoralism: Dryland degradation, the Grain-to-Green Program a-nd islands of sustainability in the Mu Us Sandy Land of China. Agric. Ecosyst. Environ. 2010, 138, 249–256. [Google Scholar] [CrossRef]
- Li, Z.Y.; Sun, X.T.; Huang, Z.H.; Zhang, X.C.; Wang, Z.H.; Li, S.Q.; Zheng, W.; Zhai, B.N. Changes in nutrient balance, environmental effects, and green development after returning farmland to forest: A case study in Ning-xia, China. Sci. Total Environ. 2020, 735, 139370. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.T.; Wang, S.; Fu, B.J.; Feng, X.M.; Chen, Y.Z. Socio-ecological changes on the Loess Plateau of C-hina after Grain to Green Program. Sci. Total Environ. 2019, 678, 565–573. [Google Scholar] [CrossRef] [PubMed]
- Lu, Q.S.; Xu, B.; Liang, F.Y.; Gao, Z.Q.; Ning, J.C. Influences of the Grain-for-Green project on grain se-curity in southern China. Ecol. Indic. 2013, 34, 616–622. [Google Scholar] [CrossRef] [Green Version]
- Shi, P.; Feng, Z.H.; Gao, H.D.; Li, P.; Zhang, X.M.; Zhu, T.T.; Li, Z.B.; Xu, G.C.; Ren, Z.P.; Xiao, L. Has “Grain for Green” threaten food security on the Loess Plateau of China? Ecosyst. Health Sustain. 2020, 6, 1709560. [Google Scholar] [CrossRef] [Green Version]
- Dang, X.H.; Gao, S.W.; Tao, R.; Liu, G.B.; Xia, Z.D.; Fan, L.X.; Bi, W. Do environmental conservation programs contribute to sustainable livelihoods? Evidence from China’s grain-for-green program in nort-hern Shaanxi province. Sci. Total Environ. 2020, 719, 137436. [Google Scholar] [CrossRef]
- Guo, B.Y.; Xie, T.P.; Subrahmanyam, M.V. The impact of China’s grain for green progr-am on rural economy and precipitation: A case study of yan river basin in the loess plateau. Sustainability 2019, 11, 5336. [Google Scholar] [CrossRef] [Green Version]
- Li, S.D.; Wang, B.; Zhang, S.; Chen, Y.F.; Zhao, G.S. Comprehensive Monitoring and Benefit Evaluation of Converting Farmlands into Forests and Grasslands in China. Int. J. Environ. Res. Public Health 2020, 19, 6942. [Google Scholar] [CrossRef]
- Ding, J.C.; Chen, Y.Z.; Wang, X.Q.; Cao, M.Q. Land degradation sensitivity assessment and convergence analysis in Korla of Xinjiang, China. J. Arid Land. 2020, 12, 594–608. [Google Scholar] [CrossRef]
- Bathurst, J.C.; Iroumé, A.; Cisneros, F.; Fallas, J.; Iturraspe, R.; Novillo, M.G.; Urciuolo, A.; Bièvre, B.D.; Borges, V.G.; Coello, C.; et al. Forest impact on floods due to extreme rainfall and snowmelt in four Latin American environments 2: Model analysis. J. Hydrol. 2011, 400, 292–304. [Google Scholar] [CrossRef]
- Tang, C.C.; Sun, W. Comprehensive evaluation of land spatial development suitability of the Yangtze River Basin. Acta Geogr. Sin. 2012, 67, 1587–1598. [Google Scholar] [CrossRef]
- Xie, G.D.; Zhang, C.X.; Zhang, L.M.; Chen, W.H.; Li, S.M. Improvement of the evaluation method f-or ecosystem service value based on per unit area. J. Nat. Resour. 2015, 30, 1243. [Google Scholar]
- Xie, G.D.; Zhen, L.; Lu, C.X.; Xiao, Y.; Chen, C. Expert Knowledge Based Valuation Method of Ecosystem Services in China. J. Nat. Resour. 2008, 23, 911–919. [Google Scholar]
- Zhao, J.; Ji, G.; Tian, Y.; Chen, Y.; Wang, Z. Environmental vulnerability assessment for mainland China based on entropy method. Ecol. Indic. 2018, 91, 410–422. [Google Scholar] [CrossRef]
- Zhao, D.; Li, C.; Wang, Q.; Yuan, J. Comprehensive evaluation of national electric power development based on cloud model and entropy method and TOPSIS: A case study in 11 countries. J. Clean. Prod. 2020, 277, 123190. [Google Scholar] [CrossRef]
- Baumol, W.J. Productivity growth, convergence, and welfare: What the long-run data show. Am. Econ. Rev. 1986, 76, 1072–1085. [Google Scholar]
- Xu, H.; Wang, Y.; Liu, H.; Yang, R. Environmental efficiency measurement and convergence analysis of interprovincial road transport in China. Sustainability 2020, 12, 4613. [Google Scholar] [CrossRef]
- Quiroga, S.; Suárez, C.; Fernández-Haddad, Z.; Philippidis, G. Levelling the playing field for European Union agriculture: Does the Common Agricultural Policy impact homogeneously on farm productivity and efficiency? Land Use Policy 2017, 68, 179–188. [Google Scholar] [CrossRef]
- Kassouri, Y.; Okunlola, O.A. Analysis of spatio-temporal drivers and convergence characteristics of urban development in Africa. Land Use Policy 2022, 112, 105868. [Google Scholar] [CrossRef]
- Peng, Y.; Chen, Z.; Lee, J. Dynamic convergence of green total factor productivity in Chinese cities. Sustainability 2020, 12, 4883. [Google Scholar] [CrossRef]
- Li, L.; Zhao, K.X.; Wang, X.Y.; Zhao, S.D.; Liu, X.G.; Li, W.W. Spatio-Temporal Evolution and Driving Mechanism of Urbanization in Small Cities: Case Study from Guangxi. Land 2022, 11, 415. [Google Scholar] [CrossRef]
- Otoiu, A.; Titan, E. Socio-economic Convergence in the EU at National and Regional Level. Procedia Econ. Finance 2015, 23, 1090–1095. [Google Scholar] [CrossRef] [Green Version]
- Khan, S.U.; Cui, Y.; Khan, A.A.; Ali, M.A.S.; Khan, A.; Xia, X.L.; Liu, G.B.; Zhao, M.J. Tracking sustainable development efficiency with human-environmental system relationship: An application of DPSIR and super efficiency SBM model. Sci. Total Environ. 2021, 783, 146959. [Google Scholar] [CrossRef] [PubMed]
- Bigerna, S.; Bollino, C.A.; Polinori, P. Convergence in renewable energy sources diffusion worldwide. J. Environ. Manag. 2021, 292, 112784. [Google Scholar] [CrossRef] [PubMed]
- Ram, R. International convergence in population happiness: Evidence from recent data. Appl. Econ. 2021, 53, 3984–3991. [Google Scholar] [CrossRef]
- Ram, R. Income convergence across the US states: Further evidence from new recent data. Int. J. Financ. Econ. 2021, 45, 372–380. [Google Scholar] [CrossRef]
- Yu, C.; Wenxin, L.; Khan, S.U.; Yu, C.; Jun, Z.; Yue, D.; Zhao, M. Regional differential decomposition and convergence of rural green development efficiency: Evidence from China. Environ. Sci. Pollut. Res. 2020, 27, 22364–22379. [Google Scholar] [CrossRef]
- Chen, Z.; Li, X.; Xia, X. Measurement and spatial convergence analysis of China’s agricultural green development index. Eviron. Sci. Pollut. Res. 2021, 28, 19694–19709. [Google Scholar] [CrossRef]
- Xu, Y.; Yang, B.; Tang, Q.; Liu, G.; Liu, P. Analysis of comprehensive benefits of transforming slope farmland to terraces on the Loess Plateau: A case study of the Yangou Watershed in Northern Shaanxi Province, China. J. Mt. Sci. 2011, 8, 448–457. [Google Scholar] [CrossRef]
- Barbier, E.B.; Burgess, J.C.; Grainger, A. The forest transition: Towards a more comprehensive theoretical framework. Land Use Policy 2010, 27, 98–107. [Google Scholar] [CrossRef]
- Tang, C.; Guan, M.; Dou, J. Understanding the impact of high speed railway on urban innovation performance from the perspective of agglomeration externalities and network externalities. Technol. Soc. 2021, 67, 101760. [Google Scholar] [CrossRef]
- Li, L.; Song, Y.; Wei, X.; Dong, J. Exploring the impacts of urban growth on carbon storage under integrated spatial regulation: A case study of Wuhan, China. Ecol. Indic. 2020, 111, 106064. [Google Scholar] [CrossRef]
- Ma, S.; Wang, L.-J.; Zhu, D.; Zhang, J. Spatiotemporal changes in ecosystem services in the conservation priorities of the southern hill and mountain belt, China. Ecol. Indic. 2021, 122, 107225. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, Y.; Zhang, Y.; Liu, Y.; Zhang, G.; Chen, Y. On the spatial relationship between ecosystem services and urbanization: A case study in Wuhan, China. Sci. Total Environ. 2018, 637, 780–790. [Google Scholar] [CrossRef]
Variables | Classic Absolute β Convergence | Spatial Absolute β Convergence | Classic Conditional β Convergence | Spatial Conditional β Convergence | ||||
---|---|---|---|---|---|---|---|---|
SLM | SEM | SDM | SLM | SEM | SDM | |||
comb | −0.31 *** | −0.108 *** | −0.414 *** | −0.43 *** | −0.988 *** | −0.548 *** | −0.548 *** | −0.571 *** |
(−5.21) | (−3.5) | (−6.48) | (−6.52) | (−14.22) | (−9.33) | (−8.18) | (−8.99) | |
0.1 | −0.81 | −0.091 | −0.202 | |||||
(0.68) | (−0.87) | (−0.85) | (−1.8) | |||||
edu | −0.44 | −0.41 | −0.009 | −0.086 | ||||
(−0.3) | (−0.44) | (−0.09) | (−0.84) | |||||
highway | 0.746 *** | 0.364 *** | 0.178 | 0.16 | ||||
(4.37) | (3.25) | (1.37) | (1.22) | |||||
stu | 0.046 | 0.337 | 0.069 * | 0.062 * | ||||
(0.67) | (0.86) | (1.73) | (1.39) | |||||
pop | 24.624 *** | 17.5 *** | 15.45 *** | 18.129 *** | ||||
(2.69) | (3.05) | (2.72) | (3) | |||||
eco | −0.000 *** | −0.000 ** | −0.000 | −0.000 | ||||
(−2.95) | (−2.37) | (−1.48) | (−1.98) | |||||
pcon | 0.48 *** | 0.307 *** | 0.235 *** | 0.202 *** | ||||
(3.55) | (3.59) | (2.67) | (1.96) | |||||
ass | −0.12 | −0.087 | −0.076 | −0.132 | ||||
(−1.04) | (−1.2) | (−1.05) | (−1.46) | |||||
agrm | 0.175 * | 0.147 ** | 0.151 ** | 0.162 ** | ||||
(1.7) | (2.3) | (2.38) | (2.48) | |||||
fin | 0.224 * | 0.137 * | 0.142 * | 0.115 * | ||||
(1.96) | (1.91) | (1.9) | (1.43) | |||||
tele | 0.045 | 0.073 * | 0.084 ** | 0.05 ** | ||||
(0.74) | (1.92) | (2.48) | (1.27) | |||||
W × comb | 0.359 *** | 0.053 | ||||||
(5.44) | (0.49) | |||||||
W × highway | 0.469 ** | |||||||
(2.18) | ||||||||
W × gov | 0.134 | |||||||
(0.74) | ||||||||
W × edu | −0.127 | |||||||
(−0.59) | ||||||||
W × stu | −0.043 | |||||||
(−0.74) | ||||||||
W × pop | 3.642 | |||||||
(0.29) | ||||||||
W × eco | −0.000 | |||||||
(−1.31) | ||||||||
W × pcon | 0.105 | |||||||
(0.55) | ||||||||
W × ass | 0.125 | |||||||
(1.01) | ||||||||
W × agrm | 0.01 | |||||||
(0.07) | ||||||||
W × fin | −0.067 | |||||||
(−0.55) | ||||||||
W × tele | −0.127 ** | |||||||
(−0.99) | ||||||||
C | −1.515 *** | −13.634 *** | ||||||
(−4.25) | (−6.65) | |||||||
ρ | 0.73 *** | 0.739 *** | 0.526 *** | 0.482 *** | ||||
(19.08) | (22.31) | (11.13) | (6.64) | |||||
λ | 0.783 *** | 0.725 *** | ||||||
(22.48) | (15.29) | |||||||
R2 | 0.18 | 0.158 | 0.18 | 0.18 | 0.686 | 0.759 | 0.581 | 0.809 |
Log-likelihood | −35.439 | −22.673 | −22.284 | 1.286 | −6.063 | 8.72 | ||
sigma2 | 0.076 *** | 0.062 *** | 0.062 *** | 0.053 *** | 0.052 *** | 0.049 *** | ||
(8.57) | (8.53) | (8.53) | (8.7) | (8.46) | (8.62) | |||
AIC | 76.877 | 51.346 | 52.568 | 25.429 | 40.127 | 34.56 | ||
BIC | 86.008 | 60.476 | 64.742 | 68.037 | 82.735 | 113.689 | ||
η | 0.025 | 0.008 | 0.036 | 0.037 | 0.295 | 0.053 | 0.053 | 0.056 |
τ | 28.020 | 90.973 | 19.455 | 18.496 | 2.351 | 13.094 | 13.094 | 12.286 |
Variables | Direct Effect | Indirect Effects | Total Effect |
---|---|---|---|
comb | −0.605 *** | −0.395 *** | −1 *** |
(−9.64) | (−3.53) | (−8.19) | |
gov | −0.188 * | 0.033 | −0.155 |
(−1.76) | (0.11) | (−0.49) | |
edu | −0.107 | −0.3 | −0.407 |
(−0.94) | (−0.77) | (−0.9) | |
highway | 0.243 * | 0.977 *** | 1.22 *** |
(1.93) | (2.97) | (3.35) | |
stu | 0.062 | −0.008 | 0.053 |
(1.3) | (−0.07) | (0.37) | |
pop | 20.458 *** | 21.177 | 41.635 |
(3.1) | (0.93) | (1.59) | |
eco | −0.000 ** | −0.000 * | −0.001 ** |
(−2.37) | (−1.71) | (−2.05) | |
pcon | 0.234 ** | 0.348 | 0.582 |
(2.14) | (1.03) | (1.51) | |
ass | −0.113 | 0.107 | −0.006 |
(−1.21) | (0.5) | (−0.02) | |
agrm | 0.18 ** | 0.175 | 0.355 |
(2.47) | (0.69) | (1.2) | |
fin | 0.106 | −0.02 | 0.086 |
(1.33) | (−0.1) | (0.36) | |
tele | 0.035 | −0.182 | −0.147 |
(0.74) | (−1.48) | (−0.95) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Lin, Q.; Zhang, J.; Fang, L.; Li, Y.; Zhang, L.; Wen, C. Convergence Analysis of the Overall Benefits of Returning Farmland into Forest in the Upper Yangtze River Basin, China. Sustainability 2023, 15, 1100. https://doi.org/10.3390/su15021100
Li Y, Lin Q, Zhang J, Fang L, Li Y, Zhang L, Wen C. Convergence Analysis of the Overall Benefits of Returning Farmland into Forest in the Upper Yangtze River Basin, China. Sustainability. 2023; 15(2):1100. https://doi.org/10.3390/su15021100
Chicago/Turabian StyleLi, Yingjuan, Qiong Lin, Jianyu Zhang, Liuhua Fang, Yi Li, Lianjun Zhang, and Chuanhao Wen. 2023. "Convergence Analysis of the Overall Benefits of Returning Farmland into Forest in the Upper Yangtze River Basin, China" Sustainability 15, no. 2: 1100. https://doi.org/10.3390/su15021100
APA StyleLi, Y., Lin, Q., Zhang, J., Fang, L., Li, Y., Zhang, L., & Wen, C. (2023). Convergence Analysis of the Overall Benefits of Returning Farmland into Forest in the Upper Yangtze River Basin, China. Sustainability, 15(2), 1100. https://doi.org/10.3390/su15021100