Identification of Salinity Tolerant Stable Sugarcane Cultivars Using AMMI, GGE and Some Other Stability Parameters under Multi Environments of Salinity Stress
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Materials
2.2. Experimental Design
2.3. Salt Treatments
2.4. Determination of Salinity Stress on Genotype Performance
2.5. AMMI Stability Value (ASV)
2.6. Genotype Selection Index (GSI)
2.7. Sustainability Index (SI)
3. Results
3.1. Effect of Salinity on Sugarcane Genotypes—AMMI Analysis
3.1.1. Biplot Analysis for Determination of Main Effect and Environment Influence
3.1.2. AMMI Stability Value (ASV)
3.1.3. Genotype Stability Index (GSI) and Sustainability Index (SI)
3.1.4. GGE Biplots for Cane Yield and CCS Yield
4. Discussions
4.1. Biplot Analysis for Determination of Main Effect and Environment Influence
4.2. Genotype Stability Index (GSI) and Sustainability Index (SI)
4.3. GGE Biplot Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhao, D.; Li, Y.-R. Climate Change and Sugarcane Production: Potential Impact and Mitigation Strategies. Int. J. Agron. 2015, 2015, 547386. [Google Scholar] [CrossRef] [Green Version]
- FAOSTAT data for crops and production for year 2020. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 9 September 2022).
- Kumar, R.; Meena, M.R.; Dhansu, P.; Karuppaiyan, R.; Appunu, C.; Kulshreshtha, N.; Kaushik, P.; Ram, B. Winter Tolerance Potential of Genetically Diverse Sugarcane Clones under Subtropical Climate of Northern India. Sustainability 2022, 14, 11757. [Google Scholar] [CrossRef]
- Kumar, A.; Sharma, P. Climate Change and Sugarcane Productivity in India: An Econometric Analysis. J. Soc. Dev. Sci. 2014, 5, 111–122. [Google Scholar] [CrossRef] [Green Version]
- Kumar, R.; Meena, M.R.; Kulshreshtha, N.; Kumar, A.; Ram, B. Genotypic Response of Recently Evolved Sugarcane “Co” Clones Under Different Levels of Saline Irrigation Water. J. Sugarcane Res. 2017, 7, 159–168. [Google Scholar]
- Dhansu, P.; Kulshreshtha, N.; Kumar, R.; Raja, A.K.; Pandey, S.K.; Goel, V.; Ram, B. Identification of Drought-Tolerant Co-canes Based on Physiological Traits, Yield Attributes and Drought Tolerance Indices. Sugar Tech 2021, 23, 747–761. [Google Scholar] [CrossRef]
- Moore, P. Sugarcane Biology, Yield and Potential for Improvement. Presentation at the BIOEN Workshop on Sugarcane Improvement, Sao Paulo. 2009. Available online: http://www.fapesp.br/materia/5064/bioen/workshop-bioen-on-sugarcaneimprovement-18-e-19-3-2009-html (accessed on 10 October 2022).
- Shrivastava, P.; Kumar, R. Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J. Biol. Sci. 2014, 22, 123–131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, D.K.; Singh, A. Salinity research in india achievements, challenges and future prospects. Water Energy Int. 2015, 58, 35–45. Available online: https://www.researchgate.net/publication/304395327_Salinity_Research_in_India-Achievements_Challenges_and_Future_Prospects (accessed on 10 October 2022).
- Singh, G. Salinity-related desertification and management strategies: Indian experience. Land Degrad. Dev. 2009, 20, 367–385. [Google Scholar] [CrossRef]
- Leigh, R.A.; Wyn Jones, R.G. A Hypothesis Relating Critical Potassium Concentrations for Growth to the Distribution and Functions of this Ion in the Plant Cell. New Phytol. 1984, 97, 1–13. [Google Scholar] [CrossRef]
- Zhu, J.K. Plant salt tolerance. Trends Plant Sci. 2001, 6, 66–71. [Google Scholar] [CrossRef]
- Chinnusamy, V.; Jagendorf, A.; Zhu, J.K. Understanding and Improving Salt Tolerance in Plants. Crop Sci. 2005, 45, 437–448. [Google Scholar] [CrossRef] [Green Version]
- Workman, M.; Scott, P.M.; Nixon, D.J. A review of the management and amelioration of saline/sodic soils at Mhlume (Swaziland) sugar company. Proc. S. Afr. Sugar Technol. Assoc. 1986, 60, 162–167. [Google Scholar]
- Nelson, P.; Ham, G. Exploring the response of sugar cane to sodic and saline conditions through natural variation in the field. Field Crop. Res. 2000, 66, 245–255. [Google Scholar] [CrossRef]
- Rozeff, N. Irrigation water salinity and macro yields of sugarcane in South Texas. Sugar Cane 1998, 2, 3–6. [Google Scholar]
- Bernstein, L.; Francois, L.E.; Clark, R.A. Salt tolerance of N.Co varieties of sugar cane. I: Sprouting, growth, and yield. Agr. J. 1966, 58, 489–493. [Google Scholar] [CrossRef]
- Dev, G.; Bajwa, M.S. Studies on salt tolerance of sugarcane. Indian Sugar 1972, 22, 723–726. [Google Scholar]
- Rozeff, N. Sugarcane and salinity—A review paper. Sugar Cane 1995, 5, 8–19. [Google Scholar]
- Chowdhury, M.K.A.; Miah, M.A.S.; Ali, S.; Hossain, M.A.; Alam, Z. Influence of sodium chloride salinity on germination and growth of sugarcane (Saccharum officinarum L.). Sugarcane Int. 2001, 7, 15–16. [Google Scholar]
- Rietz, D.N.; Haynes, R.J. Effect of irrigation-induced salinity and sodicity on sugarcane yield. Proc. S. Afr. Sug. Technol. Assoc. 2002, 76, 173–185. [Google Scholar]
- Rao, V.P.; Sengar, R.S.; Singh, S.; Sharma, V. Molecular and metabolic perspectives of sugarcane under salinity stress pressure. Progress. Agric. 2015, 15, 77–84. [Google Scholar]
- Hussein, J. Management and irrigation of Vertisols derived from basalts in Zimbabwe. In Fourth Zimbabwe Sugar Seminar. 20 August 1998; Clowes, M.S.J., Ed.; Zimbabwe Sugar Association Experiment Station: Chiredzi, Zimbabwe, 1998. [Google Scholar]
- Haynes, R.J.; Hamilton, C.S. Effects of sugarcane production on soil quality: A synthesis of world literature. Proc. S. Afr. Sugar Technol. Assoc. 1999, 73, 45–51. [Google Scholar]
- Dhansu, P.; Kumar, R.; Kumar, A.; Vengavasi, K.; Raja, A.K.; Vasantha, S.; Meena, M.R.; Kulshreshtha, N.; Pandey, S.K. Differential Physiological Traits, Ion Homeostasis and Cane Yield of Sub-Tropical Sugarcane Varieties in Response to Long-Term Salinity Stress. Sustainability 2022, 14, 13246. [Google Scholar] [CrossRef]
- Van Antwerpen, R.; Meyer, J.H. Soil degradation under sugarcane cultivation in northern KwaZulu-Natal. Proc. S. Afr. Sugar Technol. Assoc. 1996, 70, 29–33. [Google Scholar]
- Gomathi, R.; Thandapani, P. Influence of Salinity Stress on Growth Parameters and Yield of Sugarcane. IOSR J. Pharm. Biol. Sci. 2014, 9, 28–32. Available online: https://www.iosrjournals.org (accessed on 12 October 2022).
- Lingle, S.E.; Weigand, C.L. Soil salinity and sugarcane juice quality. Field Crops Res. 1997, 54, 259–268. [Google Scholar] [CrossRef]
- Akhtar, S.A.; Wahid, A.; Akram, M.; Rasul, E. Some growth, photosynthetic and anatomical attributes of sugarcane genotypes under NaCI salinity. Int. J. Agri. Biol. 2001, 4, 439–443. [Google Scholar]
- Husain, S.; Von Caemmerer, S.; Munns, R. Control of salt transport from roots to shoots of wheat in saline soil. Funct. Plant Biol. 2004, 31, 1115–1126. [Google Scholar] [CrossRef]
- Singh, R.; Sengar, R. Effect of salinity stress on morphological and yield attributes of sugarcane (Saccharum of ficinarum L.) genotypes. Int. J. Chem. Stud. 2020, 8, 2312–2316. [Google Scholar] [CrossRef]
- Simões, W.L.; Calgaro, M.; Coelho, D.S.; Dos Santos, D.B.; De Souza, M.A. Growth of sugar cane varieties under salinity. Rev. Ceres 2016, 63, 265–271. [Google Scholar] [CrossRef] [Green Version]
- Wolde, L.; Keno, T.; Tadesse, B.; Bogale, G.; Abebe, B. Megaenvironment Targeting of Maize Varieties Using AMMI and GGE-Biplot Analysis in Ethiopia. Ethiop. J. Agric. Sci. 2018, 28, 65–84. [Google Scholar]
- Alarmelu, S.; Balakrishnan, R.; Hemaprabha, G. G × E Interaction Studies in Multi-location Trials of Sugarcane Using GGE Biplot and ANOM Analysis. J. Sugarcane Res. 2015, 5, 12–23. [Google Scholar]
- Otieno, O.V.; Owuor, N.O. Multivariate Genotype and Genotype by Environment Interaction Biplot Analysis of Sugarcane Breeding Data Using R. Int. J. Stat. Distrib. Appl. 2019, 5, 22–31. [Google Scholar]
- Tiwari, D.K.; Pandey, P.; Singh, R.K.; Singh, S.P.; Singh, S.B. Genotypes x Environment Interaction and Stability Analysis in Elite Clones of Sugarcane (Sachharum officinarum L.). Int. J. Plant Breed. Genet. 2011, 5, 93–98. [Google Scholar] [CrossRef] [Green Version]
- Mehareb, E.M.; Osman, M.A.M.; Attia, A.E.; Bekheet, M.A.; Elenen, F.F.M.A. Stability assessment for selection of elite sugarcane clones across multi-environment based on AMMI and GGE-biplot models. Euphytica 2022, 218, 95. [Google Scholar] [CrossRef]
- Gauch, H.G. Statistical Analysis of Regional Yield Trials: AMMI Analysis of Factorial Designs 278; Elsevier: Amsterdam, The Netherlands, 1992. [Google Scholar]
- Yan, W.K.; Hunt, L.A.; Sheng, Q.L.; Szlavnics, Z. Cultivar Evaluation and Mega-Environment Investigation Based on the GGE Biplot. Crop Sci. 2000, 40, 597–605. [Google Scholar] [CrossRef]
- Kaya, Y.; Akcura, M.; Ayaranci, R.; Taner, S. Pattern analysis of multienvironment trials in bread wheat. Commun. Biometry Crop Sci. 2006, 1, 63–71. [Google Scholar]
- Admassu, S.; Nigussie, M.; Zelleke, H. Genotype-Environment Interaction and Stability Analysis for Grain Yield of Maize (Zea mays L.) in Ethiopia. Asian J. Plant Sci. 2008, 7, 163–169. [Google Scholar] [CrossRef]
- Oladosu, Y.; Rafii, M.Y.; Abdullah, N.; Magaji, U.; Miah, G.; Hussin, G.; Ramli, A. Genotype × Environment interaction and stability analyses of yield and yield components of established and mutant rice genotypes tested in multiple locations in Malaysia. Acta Agric. Scand. Sect. B Soil Plant Sci. 2017, 67, 590–606. [Google Scholar] [CrossRef]
- Kumar, A.; Verulkar, S.; Mandal, N.; Variar, M.; Shukla, V.; Dwivedi, J.; Singh, B.; Swain, P.; Mall, A.; Robin, S.; et al. High-yielding, drought-tolerant, stable rice genotypes for the shallow rainfed lowland drought-prone ecosystem. Field Crop. Res. 2012, 133, 37–47. [Google Scholar] [CrossRef]
- Mohammadi, R.; Haghparast, R.; Amri, A.; Ceccarelli, S. Yield stability of rainfed durum wheat and GGE biplot analysis of multi-environment trials. Crop. Pasture Sci. 2010, 61, 92–101. [Google Scholar] [CrossRef]
- Luo, J.; Pan, Y.-B.; Que, Y.; Zhang, H.; Grisham, M.P.; Xu, L. Biplot evaluation of test environments and identification of mega-environment for sugarcane cultivars in China. Sci. Rep. 2015, 5, 15505. [Google Scholar] [CrossRef] [Green Version]
- Al-Naggar, A.M.M.; Shafk, M.M.; Musa, R.Y.M. AMMI and GGE Biplot Analyses for Yield Stability of Nineteen Maize Genotypes Under Different Nitrogen and Irrigation levels. Plant Arch 2020, 20, 4431–4443. [Google Scholar]
- Mohammadi, R.; Abdulahi, A.; Haghparast, R.; Armion, M. Interpreting genotype- environment interactions for durum wheat grain yields using non-parametric methods. Euphytica 2007, 157, 239–251. [Google Scholar] [CrossRef]
- Mohammadi, R.; Amri, A. Comparison of parametric and non-parametric methods for selecting stable and adapted durum wheat genotypes in variable environments. Euphytica 2008, 159, 419–432. [Google Scholar] [CrossRef]
- Karimizadeh, R.; Mohammadi, M.; Sabaghni, N.; Mahmoodi, A.A.; Roustami, B.; Seyyedi, F.; Akbari, F. GGE Biplot Analysis of Yield Stability in Multi-environment Trials of Lentil Genotypes under Rainfed Condition. Not. Sci. Biol. 2013, 5, 256–262. [Google Scholar] [CrossRef] [Green Version]
- Gauch, H.G.; Zobel, R.W. Imputing missing yield trial data. Theor. Appl. Genet. 1990, 79, 753–761. [Google Scholar] [CrossRef] [PubMed]
- Purchase, J.L.; Hatting, H.; van Deventer, C.S. Genotype × environment interaction of winter wheat (Triticum aestivum L.) in South Africa: II. Stability analysis of yield performance. South Afr. J. Plant Soil 2000, 17, 101–107. [Google Scholar] [CrossRef]
- Farshadfar, E.; Mahmodi, N.; Yaghotipoor, A. AMMI Sability Value and Simultaneous Estimation of Yield and Yield Stability in Bread Wheat (Triticumaestivum L.). Austral J. Crop Sci. 2011, 5, 1837–1844. [Google Scholar]
- Manzoor, B.A.; Tariq, M.S.; Ghulam, A.; Muhammad, A. Genotype × environment interaction for seed yield in Kabuli Chickpea (Cicer arietinum L.) genotypes developed through mutation breeding. Pak. J. Bot. 2009, 41, 1883–1890. [Google Scholar]
- Eskridge, K.M. Selection of Stable Cultivars Using a Safety-First Rule. Crop. Sci. 1990, 30, 369–374. [Google Scholar] [CrossRef]
- Kang, M.S. Simultaneous Selection for Yield and Stability in Crop Performance Trials: Consequences for Growers. Agron. J. 1993, 85, 754–757. [Google Scholar] [CrossRef]
- Dashiell, K.E.; Ariyo, O.J.; Ojo, K. Genotype X environment interaction and simultaneous selection for high yield and stability in soybeans (Glycine max (L.) Merr.). Ann. Appl. Biol. 1994, 124, 133–139. [Google Scholar] [CrossRef]
- Bajpai, P.K.; Prabhakaran, V.T. A new procedure of simultaneous selection for high yielding and stable crop genotypes. Indian J. Genet. Plant Breed. 2000, 60, 141–146. [Google Scholar]
- Rao, A.R.; Prabhakaran, V.T. Use of AMMI in simultaneous selection of genotypes for yield and stability. J. Indian Soc. Agric. Stat. 2005, 59, 76–82. [Google Scholar]
- Chen, J.C.P.; Chi, C.C. Cane Sugar Handbook: A Manual for Cane Sugar Manufacturers and Their Chemists; John Wiley and Sons: Hoboken, NJ, USA, 1993; p. 1090. [Google Scholar]
- Yan, W.; Kang, M.S. GGE Biplot Analysis: A Graphical Tool for Breeders, Geneticists, and Agronomists, 1st ed.; CRC Press: Boca Raton, FL, USA, 2002. [Google Scholar] [CrossRef]
- R Studio Team. RStudio: Integrated Development for R; RStudio, PBC: Boston, MA, USA, 2020. Available online: http://www.rstudio.com/ (accessed on 8 October 2022).
- Olivoto, T.; Lúcio, A.D. metan: An R package for multi-environment trial analysis. Methods Ecol. Evol. 2020, 11, 783–789. [Google Scholar] [CrossRef] [Green Version]
- Bocianowski, J.; Niemann, J.; Nowosad, K. Genotype-by-environment interaction for seed quality traits in interspecific cross-derived Brassica lines using additive main effects and multiplicative interaction model. Euphytica 2019, 215, 7. [Google Scholar] [CrossRef] [Green Version]
- Crossa, J.; Gauch, H.G.; Zobel, R.W. Additive Main Effects and Multiplicative Interaction Analysis of Two International Maize Cultivar Trials. Crop. Sci. 1990, 30, 493–500. [Google Scholar] [CrossRef]
- Rea, R.A.; De Sousa-Vieira, O.; Lucena, A.D.; Ramón, M.; Cárdenas, R.B. Genotype by environment interaction and yield stability in sugarcane. Rev. Fac. Nac. De Agron. Medellín 2017, 70, 8129–8138. [Google Scholar] [CrossRef]
- Tena, E.; Goshu, F.; Mohamad, H.; Tesfa, M.; Tesfaye, D.; Seife, A. Genotype × environment interaction by AMMI and GGE-biplot analysis for sugar yield in three crop cycles of sugarcane (Saccharum officinirum L.) clones in Ethiopia. Cogent Food Agric. 2019, 5, 1651925. [Google Scholar] [CrossRef]
- Meena, M.R.; Karuppiayan, R.; Ram, B.; Kumar, R.; Kulshreshtha, N. Genotypes × Environment Interactions and Stability Analysis of Sugarcane Clones (Saccharum spp.) by AMMI Model in Sub-tropical Regions of India. Indian J. Genet. Plant Breed. 2017, 77, 540–546. [Google Scholar] [CrossRef]
- Sheelamary, S.; Karthigeyan, S. Evaluation of promising commercial sugarcane genotypes for stability by AMMI analysis. Electron. J. Plant Breed. 2021, 12, 371–378. [Google Scholar] [CrossRef]
- Anandan, A.; Sabesan, T.; Eswaran, R.; Rajiv, G.; Muthalagan, N.; Suresh, R. Appraisal of environmental interaction on quality traits of rice by additive main effects and multiplicative interaction analysis. Cereal Res. Commun. 2009, 37, 131–140. [Google Scholar] [CrossRef]
- Bose, L.K.; Jambhulkar, N.N.; Pande, K.; Singh, O.N. Use of AMMI and other stability statistics in the simultaneous selection of rice genotypes for yield and stability under direct-seeded conditions. Chil. J. Agric. Res. 2014, 74, 3–9. [Google Scholar] [CrossRef] [Green Version]
- Singh, P.; Agarwa, D.K. Sustainability index as an aid for determining the genotypic stability in diploid cotton (Gossypiumarboretum). J. Cotton Res. 2003, 17, 90–92. [Google Scholar]
- Tuteja, O.P. Comparative studies on stability parameters and sustainability index for selecting stable genotypes in upland cotton (Gossypiumhirsutum L.). Indian J. Genet. Plant Breed. 2006, 66, 221–224. [Google Scholar]
- Gangwar, B.; Katyal, V.; Anand, K.V. Stability and efficiency of cropping systems in Chatisgarh and Madhya Pradesh. Indian J. Agric. Sci. 2004, 74, 521–528. [Google Scholar]
- Yan, W. Singular-Value Partitioning in Biplot Analysis of Multienvironment Trial Data. Agron. J. 2002, 94, 990–996. [Google Scholar]
- Mahadevaiah, C.; Hapase, P.; Sreenivasa, V.; Hapase, R.; Swamy, H.K.M.; Anilkumar, C.; Mohanraj, K.; Hemaprabha, G.; Ram, B. Delineation of genotype × environment interaction for identification of stable genotypes for tillering phase drought stress tolerance in sugarcane. Sci. Rep. 2021, 11, 18649. [Google Scholar] [CrossRef]
- Zubair, M.; Ahmad, S.; Rasool, A.; Farooq, M.A.; Khalil, I.A. Evaluation of Sugarcane Genotypes for Different Ecologies of Pakistan by Employing Gge-Biplot Technique. Pak. J. Agric. Res. 2019, 33, 579–588. [Google Scholar] [CrossRef]
- Yan, W.; Kang, M.S.; Ma, B.; Woods, S.; Cornelius, P.L. GGE Biplot vs. AMMI Analysis of Genotype-by-Environment Data. Crop Sci. 2007, 47, 643–653. [Google Scholar] [CrossRef] [Green Version]
- Yan, W.K. GGE Biplot vs. AMMI Graphs for Genotype-by Environment Data Analysis. Indian Soc. Agric. Stat. 2011, 65, 181–193. Available online: https://www.cabdirect.org/cabdirect/abstract/20113313412 (accessed on 10 October 2022).
- Hongyu, K.; Penña, M.G.; Araújo, L.B.; Dias, C.T.S. Statistical analysis of yield trials by AMMI analysis of genotype × environment interaction. Biom. Lett. 2014, 51, 89–102. [Google Scholar] [CrossRef] [Green Version]
- Hongyu, K.; Silva, F.L.; Oliveira, A.C.S.; Sarti, D.A.; Araújo, L.C.; Dias, C.T.S. Comparação Entre OsModelos AMMI e GGE Biplot Para os Dados de Ensaiosmulti-Ambientais. Rev. Bras. Biom. 2015, 33, 139–155. [Google Scholar]
- Neisse, A.C.; Kirch, J.L.; Hongyu, K. AMMI and GGE Biplot for genotype × environment interaction: A medoid–based hierarchical cluster analysis approach for high–dimensional data. Biom. Lett. 2018, 55, 97–121. [Google Scholar] [CrossRef]
Source | df | Cane Yield ha−1 | CCS t ha−1 | NMC ‘000 no. ha−1 | SCW (kg) | Pol% | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
M.S. | VE (%) | M.S. | VE (%) | M.S. | VE (%) | M.S. | VE (%) | M.S. | VE (%) | ||
Genotypes | 23 | 4453.61 ** | 25.41 | 68.57 ** | 24.88 | 1413.3 ** | 21.81 | 0.75 ** | 42.74 | 45.60 ** | 82.48 |
Environments | 7 | 38,571.59 ** | 66.98 | 627.28 ** | 67.60 | 14,003.6 ** | 65.78 | 2.48 ** | 43.27 | 17.17 ** | 9.45 |
Interactions | 161 | 190.48 ** | 7.61 | 8.12 ** | 8.12 | 114.9 ** | 12.41 | 0.03 ** | 13.99 | 0.64 * | 8.07 |
IPCA1 | 29 | 605.88 ** | 57.29 | 11.84 ** | 65.10 | 320.5 ** | 50.25 | 0.11 ** | 54.51 | 1.88 ** | 53.02 |
IPCA2 | 27 | 224.25 ** | 19.74 | 3.23 ** | 16.52 | 157.0 ** | 22.91 | 0.06 ** | 27.55 | 0.87 ** | 22.02 |
IPCA3 | 25 | 148.54 ** | 12.10 | 2.00 ** | 9.48 | 125.1 ** | 16.91 | 0.03 ** | 12.15 | 0.46 ns | 11.25 |
IPCA4 | 23 | 113.50 ** | 8.51 | 1.46 ** | 6.34 | 65.2 ** | 8.10 | 0.01 * | 3.77 | 0.22 ns | 5.97 |
Residuals | 384 | 22.16 ns | 00 | 0.46 ns | 00 | 15.18 ns | 00 | 0.002 ns | 00 | 0.49 ns | 00 |
Clones | Cane Yield ha−1 | CCS t ha−1 | NMC Thousands ha−1 | SCW (kg) | Pol% | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | ASV | RA | RM | GSI | Mean | ASV | RA | RM | GSI | Mean | ASV | RA | RM | GSI | Mean | ASV | RA | RM | GSI | Mean | ASV | RA | RM | GSI | |
G1 | 57.67 | 7.78 | 18 | 10 | 28 | 7.58 | 4.08 | 21 | 12 | 33 | 71.57 | 2.93 | 13 | 1 | 14 | 0.80 | 0.66 | 22 | 16 | 38 | 15.41 | 0.69 | 15 | 21 | 36 |
G2 | 53.55 | 8.48 | 23 | 20 | 43 | 5.73 | 4.31 | 22 | 22 | 44 | 54.74 | 2.15 | 9 | 16 | 25 | 0.75 | 0.49 | 18 | 18 | 36 | 15.88 | 0.22 | 4 | 19 | 23 |
G3 | 71.23 | 2.21 | 7 | 14 | 21 | 7.97 | 0.59 | 4 | 11 | 15 | 65.74 | 1.97 | 8 | 5 | 13 | 0.79 | 0.23 | 7 | 17 | 24 | 17.16 | 0.33 | 7 | 12 | 19 |
G4 | 37.33 | 8.24 | 22 | 3 | 25 | 10.80 | 5.33 | 24 | 3 | 27 | 59.68 | 3.50 | 16 | 12 | 28 | 1.16 | 0.23 | 6 | 3 | 9 | 17.30 | 1.20 | 22 | 9 | 31 |
G5 | 70.60 | 4.88 | 14 | 23 | 37 | 6.34 | 3.72 | 19 | 18 | 37 | 46.40 | 4.55 | 21 | 23 | 44 | 0.73 | 0.88 | 24 | 19 | 43 | 18.85 | 2.29 | 23 | 3 | 26 |
G6 | 44.69 | 4.45 | 13 | 5 | 18 | 9.83 | 0.20 | 1 | 6 | 7 | 60.09 | 3.49 | 15 | 10 | 25 | 1.11 | 0.32 | 12 | 4 | 16 | 17.00 | 2.40 | 24 | 13 | 37 |
G7 | 61.76 | 1.18 | 3 | 16 | 19 | 6.37 | 0.70 | 6 | 17 | 23 | 59.94 | 3.85 | 18 | 11 | 29 | 0.72 | 0.31 | 11 | 20 | 31 | 16.10 | 1.18 | 21 | 17 | 38 |
G8 | 40.33 | 7.91 | 19 | 9 | 28 | 8.64 | 3.26 | 16 | 9 | 25 | 69.80 | 5.49 | 22 | 2 | 24 | 0.83 | 0.45 | 16 | 14 | 30 | 16.07 | 0.88 | 20 | 18 | 38 |
G9 | 42.27 | 3.21 | 10 | 21 | 31 | 6.32 | 1.43 | 11 | 19 | 30 | 54.09 | 8.34 | 24 | 17 | 41 | 0.68 | 0.21 | 4 | 23 | 27 | 18.13 | 0.56 | 10 | 4 | 14 |
G10 | 39.58 | 7.47 | 17 | 18 | 35 | 5.32 | 4.83 | 23 | 23 | 46 | 50.91 | 1.18 | 5 | 20 | 25 | 0.80 | 0.44 | 15 | 15 | 30 | 14.85 | 0.84 | 17 | 22 | 39 |
G11 | 31.54 | 2.17 | 6 | 22 | 28 | 5.95 | 1.18 | 9 | 21 | 30 | 52.46 | 6.63 | 23 | 18 | 41 | 0.69 | 0.15 | 2 | 22 | 24 | 17.19 | 0.58 | 11 | 11 | 22 |
G12 | 63.98 | 8.75 | 24 | 24 | 48 | 5.27 | 3.72 | 18 | 24 | 42 | 46.51 | 2.31 | 10 | 22 | 32 | 0.66 | 0.63 | 21 | 24 | 45 | 19.04 | 0.29 | 6 | 2 | 8 |
G13 | 43.28 | 8.01 | 21 | 8 | 29 | 9.55 | 3.78 | 20 | 8 | 28 | 60.23 | 3.62 | 17 | 8 | 25 | 1.01 | 0.44 | 14 | 8 | 22 | 17.32 | 0.15 | 1 | 8 | 9 |
G14 | 56.60 | 0.72 | 1 | 17 | 18 | 6.40 | 0.50 | 3 | 16 | 19 | 45.40 | 3.16 | 14 | 24 | 38 | 0.89 | 0.58 | 19 | 13 | 33 | 16.93 | 0.20 | 2 | 14 | 16 |
G15 | 66.49 | 5.74 | 16 | 11 | 27 | 8.59 | 3.52 | 17 | 10 | 27 | 55.90 | 0.80 | 3 | 14 | 17 | 0.95 | 0.42 | 13 | 12 | 25 | 17.29 | 0.22 | 5 | 10 | 15 |
G16 | 55.15 | 3.28 | 11 | 7 | 18 | 10.38 | 0.33 | 2 | 4 | 6 | 67.25 | 1.47 | 11 | 4 | 15 | 0.97 | 0.60 | 20 | 9 | 29 | 18.00 | 0.88 | 19 | 5 | 24 |
G17 | 67.08 | 1.38 | 4 | 12 | 16 | 7.44 | 0.88 | 8 | 14 | 22 | 55.69 | 0.78 | 2 | 15 | 17 | 0.95 | 0.14 | 1 | 11 | 12 | 15.63 | 0.21 | 3 | 20 | 23 |
G18 | 42.09 | 7.93 | 20 | 6 | 26 | 10.20 | 3.09 | 15 | 5 | 20 | 65.16 | 4.31 | 20 | 6 | 26 | 1.02 | 0.46 | 17 | 6 | 23 | 17.78 | 0.67 | 14 | 6 | 20 |
G19 | 42.03 | 2.87 | 9 | 19 | 28 | 6.09 | 1.61 | 13 | 20 | 33 | 56.12 | 0.77 | 1 | 13 | 14 | 0.71 | 0.28 | 8 | 21 | 29 | 16.66 | 0.60 | 12 | 16 | 28 |
G20 | 78.93 | 4.96 | 15 | 1 | 16 | 9.62 | 1.54 | 12 | 7 | 19 | 63.13 | 2.41 | 11 | 7 | 18 | 1.22 | 0.30 | 10 | 2 | 12 | 14.36 | 0.84 | 18 | 24 | 42 |
G21 | 70.87 | 2.66 | 8 | 4 | 12 | 12.06 | 2.64 | 14 | 1 | 15 | 68.44 | 0.87 | 4 | 3 | 7 | 1.01 | 0.16 | 3 | 7 | 9 | 19.74 | 0.80 | 16 | 1 | 17 |
G22 | 51.23 | 1.97 | 5 | 15 | 20 | 7.47 | 0.66 | 5 | 13 | 18 | 51.53 | 3.90 | 19 | 19 | 38 | 0.97 | 0.67 | 23 | 10 | 33 | 16.82 | 0.53 | 9 | 15 | 24 |
G23 | 54.61 | 0.82 | 2 | 13 | 15 | 6.85 | 0.78 | 7 | 15 | 22 | 48.45 | 2.88 | 12 | 21 | 33 | 1.08 | 0.30 | 9 | 5 | 14 | 14.56 | 0.67 | 13 | 23 | 36 |
G24 | 76.22 | 3.44 | 12 | 2 | 14 | 11.42 | 1.26 | 10 | 2 | 12 | 60.21 | 1.46 | 6 | 9 | 15 | 1.23 | 0.23 | 5 | 1 | 6 | 17.60 | 0.43 | 8 | 7 | 15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumar, R.; Dhansu, P.; Kulshreshtha, N.; Meena, M.R.; Kumaraswamy, M.H.; Appunu, C.; Chhabra, M.L.; Pandey, S.K. Identification of Salinity Tolerant Stable Sugarcane Cultivars Using AMMI, GGE and Some Other Stability Parameters under Multi Environments of Salinity Stress. Sustainability 2023, 15, 1119. https://doi.org/10.3390/su15021119
Kumar R, Dhansu P, Kulshreshtha N, Meena MR, Kumaraswamy MH, Appunu C, Chhabra ML, Pandey SK. Identification of Salinity Tolerant Stable Sugarcane Cultivars Using AMMI, GGE and Some Other Stability Parameters under Multi Environments of Salinity Stress. Sustainability. 2023; 15(2):1119. https://doi.org/10.3390/su15021119
Chicago/Turabian StyleKumar, Ravinder, Pooja Dhansu, Neeraj Kulshreshtha, Mintu Ram Meena, Mahadevaswamy Huskur Kumaraswamy, Chinnaswamy Appunu, Manohar Lal Chhabra, and Sstish Kumar Pandey. 2023. "Identification of Salinity Tolerant Stable Sugarcane Cultivars Using AMMI, GGE and Some Other Stability Parameters under Multi Environments of Salinity Stress" Sustainability 15, no. 2: 1119. https://doi.org/10.3390/su15021119
APA StyleKumar, R., Dhansu, P., Kulshreshtha, N., Meena, M. R., Kumaraswamy, M. H., Appunu, C., Chhabra, M. L., & Pandey, S. K. (2023). Identification of Salinity Tolerant Stable Sugarcane Cultivars Using AMMI, GGE and Some Other Stability Parameters under Multi Environments of Salinity Stress. Sustainability, 15(2), 1119. https://doi.org/10.3390/su15021119