Distribution and Source Apportionment of Heavy Metals in Soil around Dexing Copper Mine in Jiangxi Province, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling and Chemical Analysis
2.3. Accumulation Risk Assessment for Heavy Metals in the Soil
2.4. Multivariate Statistical Analysis
3. Results
3.1. Distribution of Heavy Metals in Waste Rock, Tailings and Slag
3.2. Distribution of Heavy Metals in Soil
3.2.1. Heavy Metals in Soil of Dawu River Basin
3.2.2. Heavy Metals in Soil of Tailings Pond Downstream
4. Discussion
4.1. Environmental Hazard Assessment of Heavy Metals in Mining Waste Rock and Tailings Sand
4.2. Assessment of Heavy Metal Pollution and Source Apportionment of Heavy Metals in Soils
4.2.1. Evaluation of Heavy Metal Pollution in Soil around Dexing Copper Mine (Dawu River Basin and Tailings Pond Downstream)
4.2.2. Changes of Heavy Metals Concentration in Soil Profile
- Change of heavy metals concentration in soil longitudinal profile
- (1)
- The Dawu River basin profile
- (2)
- Tailings pond downstream profile
- 2.
- Change of heavy metals concentration in soil transverse terrace profile
4.3. Discussion on the Source of Heavy Metal Pollution in Soil around Dexing Copper Mine
5. Conclusions
- The soil around the Dexing Copper Mine (Dawu River basin and 4# tailings pond Downstream) was polluted by heavy metals of Cu, Zn, Pb, Cd, As, Hg and Cr to some extent. Cu pollution of soil was the most serious.
- 2.
- Mine development should be the main factor leading to soil Cu pollution in this area. The profile analysis showed that the Cu concentrations in the waste rocks and tailings sand of Dexing Copper Mine and tailings pond were higher than in soils of Dexing Copper Mine and tailings pond profiles. Mine development should be the main factor leading to soil Cu pollution in this area.
- 3.
- High As concentration in soil obviously caused by the copper mine, Dexing Copper Mine, should partly account for soil pollution by Zn, Pb, Cd, Hg and Cr around the mine.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wu, P.; Liu, C.Q.; Yang, Y.G.; Zhang, G.P. Release and Transport of(Heavy) Metals and Their Environmental Effect in Mining Activities. Acta Mineral. Sin. 2001, 21, 213–218. [Google Scholar]
- Zhou, Y.Z.; Fu, S.M.; Zhang, C.B.; Yang, Z.J.; Yang, X.Q.; Dang, Z.; Chen, B.H. Geochemical migration model of heavy metallic elements in eco-environmental system of sulfide-bearing metallic mines in South China-with specific discussion on Dabaoshan Fe-Cu-polymetallic mine, Guangdong Province. Earth Sci. Front. 2008, 15, 248–255. [Google Scholar]
- Wang, Y.; Liang, L.Y.; Chen, X.Y.; Zhang, Y.; Zhang, F.B.; Xu, F.; Cai, T.Z. The impact of river sand mining on remobilization of lead and cadmium in sediments—A case study of the Jialing River. Ecotoxicol. Environ. Saf. 2022, 246, 114–144. [Google Scholar] [CrossRef] [PubMed]
- Kadriu, S.; Sadiku, M.; Kelmendi, M.; Sadriu, E. Studying the heavy metals concentration in discharged water from the Trepça Mine and flotation, Kosovo. Min. Miner. Depos. 2020, 14, 47–52. [Google Scholar] [CrossRef]
- Sadiku, M.; Kadriu, S.; Kelmendi, M.; Latifi, L. Impact of Artana mine on heavy metal pollution of the Marec river in Kosovo. Min. Miner. Depos. 2021, 15, 18–24. [Google Scholar] [CrossRef]
- Golik, V.I.; Gashimova, Z.A.; Liskova, M.Y.; Kongar-Syuryun, C.B. To the problem of minimizing the volume of mobile dust in the development of pits. Bezop. Tr. V Promyshlennosti 2021, 11, 28–33. [Google Scholar] [CrossRef]
- Jiang, X.; Liu, W.; Xu, H.; Cui, X.; Li, J.; Chen, J.; Zheng, B. Characterizations of heavy metal contamination, microbial community, and resistance genes in a tailing of the largest copper mine in China. Environ. Pollut. 2021, 280, 116947. [Google Scholar] [CrossRef]
- Reyes, A.; Cuevas, J.; Fuentes, B.; Fernandez, E.; Arce, W.; Guerrero, M.; Letelier, M.V. Distribution of potentially toxic elements in soils surrounding abandoned mining waste located in Taltal, Northern Chile. J. Geochem. Explor. 2021, 220, 106653. [Google Scholar] [CrossRef]
- Rybak, J.; Gorbatyuk, S.M.; Kongar-Syuryun, C.B.; Khairutdinov, A.M.; Tyulyaeva, Y.S.; Makarov, P.S. Utilization of Mineral Waste: A Method for Expanding the Mineral Resource Base of a Mining and Smelting Company. Metallurgist 2021, 64, 851–861. [Google Scholar] [CrossRef]
- Chen, L.; Zhou, M.X.; Wang, J.Z.; Zhang, Z.Q.; Duan, C.J.; Wang, X.X.; Zhao, S.L.; Bai, X.H.; Li, Z.J.; Li, Z.M.; et al. A global meta-analysis of heavy metal(loid)s pollution in soils near coppermines: Evaluation of pollution level and probabilistic health risks. Sci. Total Environ. 2022, 835, 155441. [Google Scholar] [CrossRef]
- Liu, R.P.; Xu, Y.N.; Zhang, J.H.; Wang, W.K.; Elwardany, R.M. Effects of heavy metal pollution on farmland soils and crops: A case study of the Xiaoqinling Gold Belt, China. China Geol. 2020, 3, 402–410. [Google Scholar] [CrossRef]
- Fagbenro, A.A.; Yinusa, T.S.; Ajekiigbe, K.M.; Oke, A.O.; Obiajunwa, E.I. Assessment of heavy metal pollution in soil samples from a gold mining area in Osun State, Nigeria using proton-induced X-ray emission. Sci. Afr. 2021, 14, 1–14. [Google Scholar] [CrossRef]
- Golik, V.I.; Stas, G.V.; Liskova, M.Y.; Kongar-Syuryun, C.B. Improvement of the occupational safety by radical isolation of pollution sources during underground ore mining. Bezop. Tr. V Promyshlennosti 2021, 7, 7–12. [Google Scholar] [CrossRef]
- Khayrutdinov, M.M.; Golik, V.I.; Aleksakhin, A.V.; Trushina, E.V.; Lazareva, N.V.; Aleksakhina, Y.V. Proposal of an Algorithm for Choice of a Development System for Operational and Environmental Safety in Mining. Resources 2022, 11, 88. [Google Scholar] [CrossRef]
- Ni, S.; Li, R.; Wang, A. Heavy metal content in scalp hair of the inhabitants near Dexing Copper Mine, Jiangxi Province, China. Sci. China Earth Sci. 2011, 54, 780–788. [Google Scholar] [CrossRef]
- Liu, G.N.; Li, T.; Liu, X.H.; Hou, J.; Wang, A.J.; Li, R.P. Heavy metal speciation and pollution of agricultural soils along Jishui River in non-ferrous metal mine area in Jiangxi Province, China. J. Geochem. Explor. 2013, 132, 156–163. [Google Scholar] [CrossRef]
- Zhu, Z.J.; Nie, F.J.; Hu, Q.H. Analysis of Soil Pollution by Heavy Metals in Dexing Mining Area, Jiangxi. J. East China Inst. Technol. 2008, 30, 332–336. [Google Scholar]
- Zhao, Y.Y.; Wang, X.L.; Zhao, X.T.; Liu, J.P.; Lu, L.; Yang, Y.Q. Terraces Development of the Le’an River in the Dexing Copper Mine of Northeast Jiangxi and Its Environmental Significance. Acta Geosci. Sin. 2014, 35, 454–462. [Google Scholar]
- Liu, J.P.; Zhao, Y.Y.; Xue, Q.; Lu, L. A genetic analysis of soil heavy metals accumulation characteristics of the Dawu River ba-sin in the Dexing copper mine, Jiangxi Province. Geol. Bull. China. 2014, 33, 1154–1166. [Google Scholar]
- Ministry of Ecology and Environment of the People’s Republic of China and State Administration for Market Regulation of China. Soil Environmental Quality- Risk Control Standard for Soil Contamination of Agricultural Land; GB15618-2018; Environmental Publishing Group: Beijing, China, 2018.
- Zhu, X.; Huang, C.K.; Rui, Z.Y. Dexing Porphyry Copper Mine; Geological Publishing House: Beijing, China, 1983; pp. 1–336. [Google Scholar]
- Okbah, M.A.; Nasr, S.M.; Soliman, N.F.; Khairy, M.A. Distribution and contamination status of trace metals in the Mediterranean coastal sediments, Egypt. Soil Sediment Contam. Int. J. 2014, 23, 656–676. [Google Scholar] [CrossRef]
- Alkan, A.; Akbaş, U.; Fisher, A. Metal pollution assessment in sediments of the southeastern Black Sea Coast of Turkey. Soil Sediment Contam. Int. J. 2015, 24, 290–305. [Google Scholar] [CrossRef]
- Barkett, M.O.; Akun, E. Heavy metal contents of contaminated soils and ecological risk assessment in abandoned copper mine harbor in Yedidalga, Northern Cyprus. Environ. Earth Sci. 2018, 77, 1–14. [Google Scholar] [CrossRef]
- China National Environmental Monitoring Station. China’s Soil Element Background Value; China Environmental Science Press: Beijing, China, 1990. [Google Scholar]
- Mafuyai, G.M.; Kamoh, N.M.; Kangpe, N.S.; Ayuba, S.N.; Eneji, I.S. Heavy metal contamination in roadside dust along major traffic roads in JOS metropolitan Area, Nigeria. J. Environ. Earth Scie. 2015, 5, 5,2224–3216. [Google Scholar]
- Muller, G. Index of geoaccumulation in sediments of the Rhine River. GeoJournal 1969, 2, 108–118. [Google Scholar]
- Shah, M.H.; Shaheen, N.; Khalique, A.; Alrabti, A.A.A.; Jaffar, M. Comparative metal distribution in hair of Pakistani and Libyan population and source identification by multivariate analysis. Eur. J. Pediatr. 2006, 114, 505–519. [Google Scholar] [CrossRef] [PubMed]
- Li, T. Chemical Element Abundances in the Earth and It’s Major Shells. Geochimica 1976, 3, 167–174. [Google Scholar]
- Zhao, Y.Y.; Chang, Y.H.; Liu, J.P.; Xue, Q.; Lu, L.; Wang, X.L.; Zhao, X.T.; Cao, Q.; Shan, Y.; Huang, D.M. The Geochemical Environment Cumulative Effect and Early Warning Method Study of Dexing Copper Ore Concentration Area in Jiangxi Province; Geological Publishing House: Beijing, China, 2017. [Google Scholar]
- Luo, X.H.; Wu, C.; Lin, Y.C.; Li, W.C.; Deng, M.; Tan, J.Q.; Xue, S.G. Soil heavy metal pollution from Pb/Zn smelting regions in China and the remediation potential of biomineralization. J. Environ. Sci. 2023, 25, 662–677. [Google Scholar] [CrossRef] [PubMed]
- Sun, R.; Shu, F.; Hao, W. Heavy Metal Contamination and Pb Isotopic Composition in Natural Soils Around a Pb/Zn Mining and Smelting Area. Environ. Sci. 2011, 32, 1146–1153. [Google Scholar]
- Xue, X.C.; Chen, F. Heavy metal pollution on soil and vegetation in Xiaoyu gold mining area. J. Northwest A F Univ. 2013, 41, 141–148. [Google Scholar]
- Lee, P.-K.; Kang, M.-J.; Jeong, Y.-J.; Kwon, Y.K.; Yu, S. Lead isotopes combined with geochemical and mineralogical analyses for source identification of arsenic in agricultural soils surrounding a zinc smelter. J. Hazard. Mater. 2019, 382, 121044. [Google Scholar] [CrossRef]
- Hu, Y.; Liu, X.; Bai, J.; Shih, K.; Zeng, E.Y.; Cheng, H. Assessing heavy metal pollution in the surface soils of a region that had undergone three decades of intense industrialization and urbanization. Environ. Sci. Pollut. Res. 2013, 20, 6150–6159. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.H.; Xie, X.D.; Wang, P.; Hu, Y.N.; Cheng, H.F.; Sun, Z.H.; Xie, X.D. Heavy metal pollution caused by small-scale metal ore mining activities:A case study from a polymetallic mine in South China. Sci. Total Environ. 2018, 639, 217–227. [Google Scholar] [CrossRef] [PubMed]
- Facchinelli, A.; Sacchi, E.; Mallen, L. Multivariate statistical and GIS-based approach to identify heavy metal sources in soils. Environ. Pollut. 2001, 114, 313–324. [Google Scholar] [CrossRef]
- Wu, Y.F.; Li, X.; Yu, L.; Wang, T.Q.; Wang, J.N.; Liu, T.T. Review of soil heavy metal pollution in China: Spatial distribution, primary sources, and remediation alternatives. Resour. Conserv. Recycl. 2022, 181, 106261. [Google Scholar] [CrossRef]
- Zhang, C.; Yang, Y. Modeling the spatial variations in anthropogenic factors of soil heavy metal accumulation by geographically weighted logistic regression. Sci. Total Environ. 2020, 717, 137096. [Google Scholar] [CrossRef]
Cr | Zn | Pb | Cu | Cd | As | Hg | |
---|---|---|---|---|---|---|---|
Detection limit | 3 | 2 | 2 | 0.8 | 0.02 | 0.2 | 0.0005 |
GSS-22 standard value | 57 ± 3 | 59 ± 2 | 26 ± 2 | 18.3 ± 0.8 | 0.065 ± 0.012 | 7.8 ± 0.5 | 0.020 ± 0.002 |
GSS-22 determined value | 56.3 | 59.1 | 26.4 | 18.1 | 0.067 | 8.0 | 0.020 |
Sample | Cu | Zn | Pb | Cd | Cr | As | Hg | pH | Collection Time |
---|---|---|---|---|---|---|---|---|---|
Tailings | 1107.67 | 41.87 | 7.87 | 0.13 | 53.24 | 11.70 | 0.05 | 7.01 | 2017 |
Tailings 1 | 876.00 | 38.20 | 13.60 | 0.09 | 65.70 | 14.00 | 0.05 | 2011–2013 ([30]) | |
Tailings 2 | 1043.00 | 44.10 | 13.80 | 0.09 | 84.60 | 19.80 | 0.13 | ||
Tailings 3 | 815.00 | 30.40 | 9.53 | 0.07 | 49.70 | 14.40 | 0.07 | ||
Tailings 4 | 911.33 | 37.57 | 12.31 | 0.08 | 66.67 | 16.07 | 0.08 | ||
Mean | 950.60 | 38.43 | 11.42 | 0.09 | 63.98 | 15.19 | 0.08 | ||
CEA [28] | 63 | 94 | 12 | 0.2 | 110 | 2.2 | 0.089 | ||
RSVCAL (Exclude Orchard (Cu) and Paddy Field (Zn, Pb, Cd, As, Hg, Cr)) [20] | 50 | 200 | 70 | 0.3 | 40 | 0.3 | 150 | pH ≤ 5.5 | |
50 | 200 | 90 | 0.3 | 40 | 0.3 | 150 | 5.5 ≤ pH ≤ 6.5 | ||
100 | 250 | 120 | 0.3 | 30 | 0.3 | 200 | 6.5 ≤ pH ≤ 7.5 | ||
100 | 300 | 170 | 0.6 | 25 | 0.6 | 250 | Ph > 7.5 |
Number | Mean | Standard Error | Median | Stand Deviation | Skewness | Minimum | Maximum | ||
---|---|---|---|---|---|---|---|---|---|
Cu | Dawu river basin | 58 | 304.60 | 25.72 | 271.31 | 195.90 | 1.45 | 1021.41 | 82.70 |
Tailings pond downstream | 31 | 125.74 | 26.06 | 69.18 | 145.08 | 3.09 | 733.90 | 43.00 | |
Zn | Dawu river basin | 58 | 158.14 | 10.23 | 133.90 | 77.90 | 2.45 | 477.36 | 64.25 |
Tailings pond downstream | 31 | 122.61 | 4.28 | 119.70 | 23.81 | 0.46 | 182.70 | 81.48 | |
Pb | Dawu river basin | 58 | 77.59 | 3.27 | 75.16 | 24.88 | 0.68 | 142.00 | 38.96 |
Tailings pond downstream | 31 | 43.86 | 2.63 | 40.20 | 14.62 | 1.76 | 97.70 | 18.74 | |
Cd | Dawu river basin | 58 | 0.52 | 0.04 | 0.43 | 0.32 | 1.01 | 1.52 | 0.11 |
Tailings pond downstream | 31 | 0.35 | 0.02 | 0.35 | 0.09 | −0.12 | 0.54 | 0.17 | |
As | Dawu river basin | 58 | 35.09 | 5.38 | 22.15 | 40.95 | 2.74 | 184.38 | 11.26 |
Tailings pond downstream | 31 | 12.86 | 1.33 | 10.87 | 7.40 | 2.73 | 41.60 | 5.64 | |
Hg | Dawu river basin | 58 | 0.51 | 0.16 | 0.15 | 1.24 | 4.54 | 7.23 | 0.04 |
Tailings pond downstream | 31 | 0.26 | 0.16 | 0.08 | 0.89 | 5.54 | 5.02 | 0.04 | |
Cr | Dawu river basin | 58 | 108.01 | 5.27 | 96.65 | 40.17 | 2.16 | 271.00 | 54.58 |
Tailings pond downstream | 31 | 89.26 | 2.14 | 87.62 | 11.93 | −0.23 | 113.20 | 57.94 | |
pH | Dawu river basin | 58 | 5.08 | 0.14 | 4.91 | 1.08 | 0.48 | 7.76 | 3.15 |
Tailings pond downstream | 31 | 5.45 | 0.11 | 5.42 | 0.63 | 1.34 | 7.12 | 4.33 |
Dawu River Basin | Tailings Pond Downstream | |
---|---|---|
Cu | 0.898 | 0.813 |
Zn | 0.862 | 0.901 |
Pb | 0.781 | 0.818 |
Cd | 0.827 | 0.738 |
As | 0.607 | 0.797 |
Hg | 0.7 | 0.814 |
Cr | 0.59 | 0.645 |
Component | |||
---|---|---|---|
1 | 2 | 3 | |
Cu | 0.153 | 0.260 | 0.898 |
Zn | 0.912 | 0.170 | −0.030 |
Pb | 0.846 | −0.178 | −0.183 |
Cd | 0.894 | −0.080 | 0.149 |
As | −0.042 | 0.686 | −0.367 |
Hg | −0.570 | 0.607 | −0.084 |
Cr | 0.543 | −0.534 | −0.102 |
% of Variance | 42.721 | 17.978 | 14.509 |
Cumulative % | 42.721 | 60.699 | 75.208 |
eigenvalues | 2.991 | 1.258 | 1.016 |
Component | |||
---|---|---|---|
1 | 2 | 3 | |
Cu | −0.093 | 0.752 | 0.489 |
Zn | 0.935 | −0.117 | 0.112 |
Pb | 0.779 | −0.230 | −0.397 |
Cd | 0.791 | 0.076 | 0.327 |
As | 0.269 | 0.850 | 0.040 |
Hg | 0.457 | 0.510 | −0.587 |
Cr | 0.444 | −0.368 | 0.559 |
% of Variance | 37.07 | 25.088 | 16.79 |
Cumulative % | 37.07 | 62.157 | 78.948 |
eigenvalues | 2.595 | 1.756 | 1.175 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ni, S.; Liu, G.; Zhao, Y.; Zhang, C.; Wang, A. Distribution and Source Apportionment of Heavy Metals in Soil around Dexing Copper Mine in Jiangxi Province, China. Sustainability 2023, 15, 1143. https://doi.org/10.3390/su15021143
Ni S, Liu G, Zhao Y, Zhang C, Wang A. Distribution and Source Apportionment of Heavy Metals in Soil around Dexing Copper Mine in Jiangxi Province, China. Sustainability. 2023; 15(2):1143. https://doi.org/10.3390/su15021143
Chicago/Turabian StyleNi, Shanqin, Guannan Liu, Yuanyi Zhao, Changqing Zhang, and Aiyun Wang. 2023. "Distribution and Source Apportionment of Heavy Metals in Soil around Dexing Copper Mine in Jiangxi Province, China" Sustainability 15, no. 2: 1143. https://doi.org/10.3390/su15021143
APA StyleNi, S., Liu, G., Zhao, Y., Zhang, C., & Wang, A. (2023). Distribution and Source Apportionment of Heavy Metals in Soil around Dexing Copper Mine in Jiangxi Province, China. Sustainability, 15(2), 1143. https://doi.org/10.3390/su15021143