Optimal DG Location and Sizing to Minimize Losses and Improve Voltage Profile Using Garra Rufa Optimization
Abstract
:1. Summary
2. Related Work
2.1. GRO Initialization
2.2. GRO Leaders’ Crossover
2.3. GRO Followers’ Crossover
3. Proposed System Model
3.1. Minimization of Total Active Power Losses
3.2. Minimization of Reactive Power Losses
3.3. Voltage Stability Index Improvement
4. Result and Discussion
4.1. Test Case 1: IEEE-14 Bus Standard
4.2. Test Case 2: IEEE-30 Bus Standard
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Somefun, T.; Popoola, O.; Abdulkareem, A.; Awelewa, A. Review of Different Methods for Siting and Sizing Distributed Generator. Int. J. Energy Econ. Policy 2022, 12, 16–31. [Google Scholar] [CrossRef]
- Suyarov, A.; Hasanov, M.; Boliev, A.; Nazarov, F. Whale Optimization Algorithm for Intogreting Distributed Generators in Radial Distribution Network. 2021. Available online: https://ssrn.com/abstract=3938852 (accessed on 8 September 2021).
- Abdalla, A.N.; Jing, W.; Nazir, M.S.; Jiang, M.; Tao, H. Socio-economic impacts of solar energy technologies for sustainable green energy: A review. Environ. Dev. Sustain. 2022, 1–38. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhou, Y.; Wang, Z.; Zhou, C.; Gao, B. A terminal distribution network black-start optimization method based on pruning algorithm considering distributed generators. Energy Rep. 2021, 8, 237–244. [Google Scholar] [CrossRef]
- Abidi, M.H.; Alkhalefah, H.; Moiduddin, K.; Al-Ahmari, A. Novel improved chaotic elephant herding optimization algorithm-based optimal defense resource allocation in cyber-physical systems. Soft Comput. 2022, 1–16. [Google Scholar] [CrossRef]
- Hussein, B.M.; Jaber, A.S. Unit commitment based on modified firefly algorithm. Meas. Control. 2020, 53, 320–327. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Li, Y.; Fan, Y. Regularization Cuckoo Search Algorithm for Multi-Parameter Optimization of the Multi-Laminated Controlled Release System. Axioms 2022, 11, 500. [Google Scholar] [CrossRef]
- Aderibigbe, M.; Adoghe, A.; Agbetuyi, F.; Airoboman, A. A Review on Optimal Placement of Distributed Generators for Reliability Improvement on Distribution Network. IEEE PES/IAS PowerAfr. 2021, 1–5. [Google Scholar] [CrossRef]
- Jaber, A.S.; Satar, K.A.; Shalash, N.A. Short term load forecasting for electrical dispatcher of Baghdad city based on SVM-PSO method. In Proceedings of the 2018 2nd International Conference on Electrical Engineering and Informatics (ICon EEI), Batam, Indonesia, 16–17 October 2018; pp. 140–143. [Google Scholar]
- Azrag, M.A.K.; Kadir, T.A.A.; Jaber, A.S. Segment Particle Swarm Optimization Adoption for Large-Scale Kinetic Parameter Identification of Escherichia Coli Metabolic Network Model. IEEE Access 2018, 6, 78622–78639. [Google Scholar] [CrossRef]
- Jaber, A.S.; Satar, K.A.; Shalash, N.A. Short-term load forecasting for electrical dispatcher of Baghdad City based on SVM-FA. Int. J. Adv. Comput. Sci. Appl. 2018, 9, 300–304. [Google Scholar] [CrossRef] [Green Version]
- Suresh, M.C.V.; Belwin, E.J. Optimal DG placement for benefit maximization in distribution networks by using Dragonfly algorithm. Renew. Wind. Water Sol. 2018, 5, 4. [Google Scholar] [CrossRef]
- Ogunsina, A.A.; Petinrin, M.O.; Petinrin, O.O.; Offornedo, E.N.; Petinrin, J.O.; Asaolu, G.O. Optimal distributed generation location and sizing for loss minimization and voltage profile optimization using ant colony algorithm. SN Appl. Sci. 2021, 3, 248. [Google Scholar] [CrossRef]
- Marimuthu, A.; Gnanambal, K.; Eswari, R.P.; Pavithra, T. Optimal Location and Sizing of DG Units to Improve The Voltage Stability in The Distribution System Using Particle Swarm Optimization Algorithm with Time Varying Acceleration Coefficients. In Proceedings of the International Conference on Innovations in Engineering and Technology (ICIET-2016), Bangkok, Thailand, 5–6 August 2016. [Google Scholar]
- Gil-González, W.; Montoya, O.D.; Grisales-Noreña, L.F.; Vanegas, C.A.R.; Cabrera, A.M. Hybrid Optimization Strategy for Optimal Location and Sizing of DG in Distribution Networks. Rev. Tecnura 2020, 24, 47–61. [Google Scholar] [CrossRef]
- Chandel, A.; Chauhan, D.S.; Singh, D. Enriched Technique for DG Placement and Sizing by GA Optimization. Am. Eurasian J. Sci. Res. 2017, 12, 260–270. [Google Scholar] [CrossRef]
- Sayed, E.M.; Elamary, N.H.; Swief, R.A. Optimal Sizing and Placement of Distributed Generation (DG) Using Particle Swarm Optimization. J. Phys. Conf. Ser. 2021, 2128, 012023. [Google Scholar] [CrossRef]
- Yuvaraj, T.; Devabalaji, K.R.; Ravi, K. Optimal Allocation of DG in the Radial Distribution Network Using Bat Optimization Algorithm. In Advances in Power Systems and Energy Management; Springer: Singapore, 2018; Volume 436, pp. 563–569. [Google Scholar] [CrossRef]
- Suresh, M.C.V.; Edward, B.J. Optimal Placement of DG Units for Loss Reduction in Distribution Systems Using One Rank Cuckoo Search Algorithm. Int. J. Grid Distrib. Comput. 2018, 11, 37–44. [Google Scholar] [CrossRef]
- Abedini, M.; Saremi, H. A Hybrid of GA and PSO for Optimal DG Location and Sizing in Distribution Systems with Load Uncertainty. J. Basic. Appl. Sci. Res. 2012, 2, 5103–5118. [Google Scholar]
- Siddiqui, A.S.; Sarwar, M.; Althobaiti, A.; Ghoneim, S.S. Optimal Location and Sizing of Distributed Generators in Power System Network with Power Quality Enhancement Using Fuzzy Logic Controlled D-STATCOM. Sustainability 2022, 14, 3305. [Google Scholar] [CrossRef]
- Nazir, M.S.; Abdalla, A.N.; Metwally, A.S.M.; Imran, M.; Bocchetta, P.; Javed, M.S. Cryogenic-Energy-Storage-Based Optimized Green Growth of an Integrated and Sustainable Energy System. Sustainability 2022, 14, 5301. [Google Scholar] [CrossRef]
- Chen, W.; Liu, B.; Nazir, M.S.; Abdalla, A.N.; Mohamed, M.A.; Ding, Z.; Bhutta, M.S.; Gul, M. An Energy Storage Assessment: Using Frequency Modulation Approach to Capture Optimal Coordination. Sustainability 2022, 14, 8510. [Google Scholar] [CrossRef]
- Qiming, Z.; Husheng, W.; Zhaowang, F. A review of intelligent optimization algorithm applied to unmanned aerial vehicle swarm search task. In Proceedings of the 11th International Conference on Information Science and Technology (ICIST), Chengdu, China, 21–23 May 2021; pp. 383–393. [Google Scholar]
- Abdalla, A.N.; Ju, Y.; Nazir, M.S.; Tao, H. A Robust Economic Framework for Integrated Energy Systems Based on Hybrid Shuffled Frog-Leaping and Local Search Algorithm. Sustainability 2022, 14, 10660. [Google Scholar] [CrossRef]
- Jaber, A.S.; Mohammed, K.S.; Shalash, N.A. Optimization of Electrical Power Systems Using Hybrid PSO-GA Computational Algorithm: A Review. Int. Rev. Electr. Eng. (IREE) 2020, 15, 502. [Google Scholar] [CrossRef]
- An, H.K.; Javeed, M.A.; Bae, G.; Zubair, N.; Metwally, A.S.M.; Bocchetta, P.; Na, F.; Javed, M.S. Optimized Intersection Signal Timing: An Intelligent Approach-Based Study for Sustainable Models. Sustainability 2022, 14, 11422. [Google Scholar] [CrossRef]
- Zamani, M.; Karimi-Ghartemani, M.; Sadati, N. FOPID controller design for robust performance using Particle Swarm Optimization. Fract. Calc. Appl. Anal. 2007, 10, 169–187. [Google Scholar]
- Sadati, N.; Zamani, M.; Mahdavian, H. Hybrid particle swarmbased-simulated annealing optimization techniques. In Proceedings of the IECON 2006-32nd Annual Conference on IEEE Industrial Electronics, Paris, France, 7–10 November 2006; pp. 644–648. [Google Scholar]
- Fogel, D.B. Evolutionary Computation toward A New Philosophy of Machine Intelligence; IEEE: Piscataway, NJ, USA, 1995. [Google Scholar]
- Jaber, A.S.; Abdulbari, H.A.; Shalash, N.A.; Abdalla, A.N. Garra Rufa-inspired optimization technique. Int. J. Intell. Syst. 2020, 35, 1831–1856. [Google Scholar] [CrossRef]
- Prakash, A.; Joseph, A.S.; Shanmugasundaram, R.; Ravichandran, C. A machine learning approach-based power theft detection using GRF optimization. J. Eng. Des. Technol. 2021. [Google Scholar] [CrossRef]
- Krishnan, V.A.; Kumar, N.S. Robust soft computing control algorithm for sustainable enhancement of renewable energy sources based microgrid: A hybrid Garra rufa fish optimization–Isolation forest approach. Sustain. Comput. Inform. Syst. 2022, 35, 100764. [Google Scholar] [CrossRef]
- Kennedy, J.; Eberhart, R. Particle Swarm Optimization. In Proceedings of the ICNN’95-International Conference on Neural Networks, Perth, WA, Australia, 27 November–1 December 1995; pp. 1942–1948. [Google Scholar]
- Modarresi, J.; Gholipour, E.; Khodabakhshian, A. A comprehensive review of the voltage stability indices. Renew. Sustain. Energy Rev. 2016, 63, 1–12. [Google Scholar] [CrossRef]
- Venkatesan, C.; Kannadasan, R.; Alsharif, M.; Kim, M.-K.; Nebhen, J. Assessment and Integration of Renewable Energy Resources Installations with Reactive Power Compensator in Indian Utility Power System Network. Electronics 2021, 10, 912. [Google Scholar] [CrossRef]
- Hung, D.Q.; Mithulananthan, N.; Bansal, R.C. Integration of PV and BES units in commercial distribution systems considering energy loss and voltage stability. Appl. Energy 2014, 113, 1162–1170. [Google Scholar] [CrossRef]
- Singh, D.; Singh, D.; Verma, K. Multiobjective optimization for DG planning with load models. IEEE Trans. Power Syst. 2009, 24, 427–436. [Google Scholar] [CrossRef]
System | 30 Bus | 30 Bus | 30 Bus | 30 Bus | 30 Bus | 14 Bus | 14 Bus | 14 Bus | 14 Bus | 14 Bus |
---|---|---|---|---|---|---|---|---|---|---|
DGs-number | 1 | 2 | 3 | 4 | 5 | 1 | 2 | 3 | 4 | 5 |
Particles | 25 | 30 | 40 | 40 | 40 | 20 | 20 | 20 | 20 | 20 |
Iterations | 30 | 30 | 35 | 40 | 40 | 20 | 20 | 30 | 30 | 30 |
Dg Number | 1DG | 2DG | 3DG | 4DG | 5DG | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Method | GRO | PSO | GA | GRO | PSO | GA | GRO | PSO | GA | GRO | PSO | GA | GRO | PSO | GA |
Location | 7 | 7 | 8 | 12,8 | 9,5 | 3,7 | 6,5,4 | 2,4,5 | 2,6,13 | 2,3,12,10 | 9,2,2,3 | 2,2,8,11 | 2,3,10,11,2 | 2,7,2,5,4 | 11,10,2,2,3 |
size | 17.771 | 20.85 | 20.848 | 17.381 21.432 | 20.850 20.010 | 20.837 20.707 | 46.174 41.925 45.954 | 49.685 51.350 50.850 | 50.789 43.203 49.329 | 15.652 17.134 13.558 38.021 | 20.850 8.048 17.471 20.85 | 1.582 20.849 20.777 20.825 | 11.352 39.087 25.309 12.051 10.112 | 6.725 20.211 20.309 20.850 20.850 | 20.754 20.812 16.147 20.835 20.828 |
Dg Number | 1DG | 2DG | 3DG | 4DG | 5DG | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Method | GRO | PSO | GA | GRO | PSO | GA | GRO | PSO | GA | GRO | PSO | GA | GRO | PSO | GA |
15.055 | 14.324 | 13.961 | 11.695 | 11.716 | 11.453 | 6.7 | 8.427 | 7.051 | 6.795 | 8.087 | 7.85 | 4.034 | 4.786 | 4.190 | |
61.259 | 58.986 | 57.859 | 35.931 | 35.558 | 36.541 | 22.04 | 26.057 | 24.758 | 26.126 | 27.724 | 27.383 | 21.565 | 19.347 | 19.281 | |
|VSI| | 0.2707 | 0.2210 | 0.1916 | 0.1062 | 0.0866 | 0.1330 | 0.0294 | 0.0334 | 0.13685 | 0.0626 | 0.0470 | 0.0994 | 0.0107 | 0.2150 | 0.1990 |
Objective | 0.547 | 0.545 | 0.547 | 0.459 | 0.471 | 0.435 | 0.323 | 0.358 | 0.410 | 0.280 | 0.400 | 0.423 | 0.212 | 0.361 | 0.329 |
Dg Number | 1DG | 2DG | 3DG | 4DG | 5DG | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Method | GRO | PSO | GA | GRO | PSO | GA | GRO | PSO | GA | GRO | PSO | GA | GRO | PSO | GA |
Location | 5 | 16 | 2 | 19, 14 | 14, 18 | 18,14 | 3,4,9 | 17,28,13 | 29,17,8 | 6,23,9,7 | 17,27,15,9 | 17,29,18,10 | 5,10,21,25,24 | 28,24,2,16,29 | 7,11,28,18,12 |
size | 44.641 | 61.054 | 70.076 | 48.608 52.589 | 47.358 63.882 | 52.719 40.175 | 22.123 72.297 101.7 | 46.051 70.850 58.858 | 9.562 69.359 67.387 | 56.195 26.217 25.888 66.511 | 30.850 30.850 30.850 26.487 | 30.849 22.015 30.839 30.756 | 98.468 47.781 35.144 7.556 7.448 | 98.468 47.781 35.144 7.556 7.448 | 50.819 42.210 46.125 10.804 46.461 |
Dg Number | 1DG | 2DG | 3DG | 4DG | 5DG | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Method | GRO | PSO | GA | GRO | PSO | GA | GRO | PSO | GA | GRO | PSO | GA | GRO | PSO | GA |
11.671 | 11.371 | 11.371 | 9.268 | 9.022 | 8.961 | 6.708 | 6.518 | 6.595 | 8.697 | 9.621 | 8.841 | 5.531 | 7.72 | 6.889 | |
49.266 | 48.157 | 48.157 | 40.092 | 39.34 | 39.081 | 23.964 | 23.164 | 23.446 | 33.58 | 39.033 | 36.448 | 23.624 | 32.691 | 27.842 | |
|VSI| | 0.1737 | 0.2990 | 0.6672 | 0.1527 | 0.1430 | 0.6922 | 0.4708 | 0.5261 | 0.5632 | 0.0955 | 0.3012 | 0.4576 | 0.2341 | 0.4215 | 0.2812 |
objective | 0.507 | 0.544 | 0.685 | 0.4104 | 0.398 | 0.606 | 0.424 | 0.438 | 0.455 | 0.358 | 0.475 | 0.507 | 0.299 | 0.453 | 0.365 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chillab, R.K.; Jaber, A.S.; Smida, M.B.; Sakly, A. Optimal DG Location and Sizing to Minimize Losses and Improve Voltage Profile Using Garra Rufa Optimization. Sustainability 2023, 15, 1156. https://doi.org/10.3390/su15021156
Chillab RK, Jaber AS, Smida MB, Sakly A. Optimal DG Location and Sizing to Minimize Losses and Improve Voltage Profile Using Garra Rufa Optimization. Sustainability. 2023; 15(2):1156. https://doi.org/10.3390/su15021156
Chicago/Turabian StyleChillab, Riyadh Kamil, Aqeel S. Jaber, Mouna Ben Smida, and Anis Sakly. 2023. "Optimal DG Location and Sizing to Minimize Losses and Improve Voltage Profile Using Garra Rufa Optimization" Sustainability 15, no. 2: 1156. https://doi.org/10.3390/su15021156
APA StyleChillab, R. K., Jaber, A. S., Smida, M. B., & Sakly, A. (2023). Optimal DG Location and Sizing to Minimize Losses and Improve Voltage Profile Using Garra Rufa Optimization. Sustainability, 15(2), 1156. https://doi.org/10.3390/su15021156