Recovery of (Z)-13-Docosenamide from Industrial Wastewater and Its Application in the Production of Virgin Polypropylene to Improve the Coefficient of Friction in Film Type Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sampling
2.3. Preparation of Industrial Wastewater Samples
2.4. Gas Sample Taking
2.5. Additive Recuperation
2.5.1. Extraction of Solid Phases
Methodology for Quantifying in Liquid Waste
Treatment of Samples Based on SPE
- 1.
- Pretreatment
- 2.
- Preconcentration and Cleaning
2.5.2. Chromatographic Analysis (HPLC-DAD)
2.5.3. Fourier Transform Infrared Spectroscopy (FTIR)
2.5.4. Differential Scanning Calorimeter (DSC)
2.5.5. Gas Chromatograph-Mass Spectrometry (GC-MS)
2.5.6. TD-GC/MS Chromatographic Conditions
2.6. (Z)-13-Docosenamide Add-On Recovered with the PP Matrix
2.6.1. Fourier Transform Infrared (FTIR)
2.6.2. Friction Coefficient (CoF)
2.6.3. Contact Angle Measurement of PP–Erucamide Films
2.6.4. Atomic Force Microscopy (AFM) Measurement of PP–Erucamide Films
3. Results and Discussion
3.1. Recovery of (Z)-13-Docosenamide
3.2. Identification and Verification of the Purity of (Z)-13-Docosenamide
3.2.1. Fourier Transform Infrared (FTIR)
3.2.2. Identification and Characterization of Erucamide for GC-MS
3.2.3. Identification and Characterization of Erucamide Degradants by High-Resolution Mass Spectrometry
3.2.4. Differential Scanning Spectroscopy (DSC)
3.3. Addition of Recovered (Z)-13-Docosenamide Quench to the PP Matrix
3.3.1. FTIR of the PP Resins with the Recovered Additive
3.3.2. PP Resin CoF
3.3.3. Contact Angle Measurement of PP–Erucamide Films
3.3.4. Atomic Force Microscopy (AFM) Measurement of PP–Erucamide Films
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chamas, A.; Moon, H.; Zheng, J.; Qiu, Y.; Tabassum, T.; Jang, J.H.; Abu-Omar, M.; Scott, S.L.; Suh, S. Degradation Rates of Plastics in the Environment. ACS Sustain. Chem. Eng. 2020, 8, 3494–3511. [Google Scholar] [CrossRef] [Green Version]
- Hahladakis, J.N.; Velis, C.A.; Weber, R.; Iacovidou, E.; Purnell, P. An Overview of Chemical Additives Present in Plastics: Migration, Release, Fate and Environmental Impact during Their Use, Disposal and Recycling. J. Hazard. Mater. 2018, 344, 179–199. [Google Scholar] [CrossRef] [PubMed]
- Bashir, I.; Lone, F.A.; Bhat, R.A.; Mir, S.A.; Dar, Z.A.; Dar, S.A. Concerns and Threats of Contamination on Aquatic Ecosystems. In Bioremediation and Biotechnology; Springer: Cham, Switzerland, 2020; pp. 1–26. [Google Scholar] [CrossRef] [Green Version]
- Jaiswal, S.; Kumar Gupta, G.; Panchal, K.; Mandeep; Shukla, P. Synthetic Organic Compounds from Paper Industry Wastes: Integrated Biotechnological Interventions. Front. Bioeng. Biotechnol. 2021, 8, 592939. [Google Scholar] [CrossRef] [PubMed]
- US EPA. Persistent Organic Pollutants: A Global Issue, A Global Response. Available online: https://www.epa.gov/international-cooperation/persistent-organic-pollutants-global-issue-global-response (accessed on 11 August 2022).
- Grobelak, A.; Kowalska, A. Chapter 2—Emerging Environmental Contaminants—Current Status, Challenges, and Technological Solutions. In Emerging Contaminants in the Environment; Sarma, H., Dominguez, D.C., Lee, W.-Y., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 39–53. ISBN 978-0-323-85160-2. [Google Scholar]
- Hernández-Fernandez, J.; Rodríguez, E. Determination of Phenolic Antioxidants Additives in Industrial Wastewater from Polypropylene Production Using Solid Phase Extraction with High-Performance Liquid Chromatography. J. Chromatogr. A 2019, 1607, 460442. [Google Scholar] [CrossRef]
- Daughton, C.G. Non-Regulated Water Contaminants: Emerging Research. Environ. Impact Assess. Rev. 2004, 24, 711–732. [Google Scholar] [CrossRef]
- Hurtado, C.; Domínguez, C.; Pérez-Babace, L.; Cañameras, N.; Comas, J.; Bayona, J.M. Estimate of Uptake and Translocation of Emerging Organic Contaminants from Irrigation Water Concentration in Lettuce Grown under Controlled Conditions. J. Hazard. Mater. 2016, 305, 139–148. [Google Scholar] [CrossRef]
- Khetan, S.K.; Collins, T.J. Human Pharmaceuticals in the Aquatic Environment: A Challenge to Green Chemistry. Chem. Rev. 2007, 107, 2319–2364. [Google Scholar] [CrossRef]
- Richardson, S.D.; Ternes, T.A. Water Analysis: Emerging Contaminants and Current Issues. Anal. Chem. 2018, 90, 398–428. [Google Scholar] [CrossRef]
- Botalova, O.; Schwarzbauer, J.; Frauenrath, T.; Dsikowitzky, L. Identification and Chemical Characterization of Specific Organic Constituents of Petrochemical Effluents. Water Res. 2009, 43, 3797–3812. [Google Scholar] [CrossRef]
- Förstner, U. Elements and Compounds in Waste Materials. In Elements and Their Compounds in the Environment: Occurrence, Analysis and Biological Relevance, 2nd ed.; Wiley Online Library: Hoboken, NJ, USA, 2004; pp. 163–197. ISBN 978-3-527-30459-2. [Google Scholar]
- Ahmed, J.; Thakur, A.; Goyal, A. Chapter 1 Industrial Wastewater and Its Toxic Effects. In Biological Treatment of Industrial Wastewater; Royal Society of Chemistry: London, UK, 2021; pp. 1–14. [Google Scholar] [CrossRef]
- Bart, J.C. Appendix II: Functionality of Common Additives Used in Commercial Thermoplastics, Rubbers and Thermosetting Resins. In Additives in Polymers; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2005; pp. 773–791. ISBN 978-0-470-01206-2. [Google Scholar]
- National Research Council. Polymer Science and Engineering: The Shifting Research Frontiers; National Academies Press: Washington, DC, USA, 1994. [Google Scholar]
- De Paoli, M.A.; Aurelio, M.; Waldman, W. Bio-Based Additives for Thermoplastics. Polímeros 2019, 29, e2019030. [Google Scholar] [CrossRef] [Green Version]
- Pfaendner, R. Polymer Additives. In Handbook of Polymer Synthesis, Characterization, and Processing; Saldívar-Guerra, E., Vivaldo-Lima, E., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2013; pp. 225–247. ISBN 978-1-118-48079-3. [Google Scholar]
- Gómez-Contreras, P.; Figueroa-Lopez, K.J.; Hernández-Fernández, J.; Cortés Rodríguez, M.; Ortega-Toro, R. Effect of Different Essential Oils on the Properties of Edible Coatings Based on Yam (Dioscorea rotundata L.) Starch and Its Application in Strawberry (Fragaria vesca L.) Preservation. Appl. Sci. 2021, 11, 11057. [Google Scholar] [CrossRef]
- Pavon, C.; Aldas, M.; López-Martínez, J.; Hernández-Fernández, J.; Arrieta, M.P. Films Based on Thermoplastic Starch Blended with Pine Resin Derivatives for Food Packaging. Foods 2021, 10, 1171. [Google Scholar] [CrossRef]
- Shao, J.; He, Y.; Li, F.; Zhang, H.; Chen, A.; Luo, S.; Gu, J.-D. Growth Inhibition and Possible Mechanism of Oleamide against the Toxin-Producing Cyanobacterium Microcystis Aeruginosa NIES-843. Ecotoxicol. Lond. Engl. 2016, 25, 225–233. [Google Scholar] [CrossRef]
- Getachew, P.; Getachew, M.; Joo, J.; Choi, Y.S.; Hwang, D.S.; Hong, Y.K. The Slip Agents Oleamide and Erucamide Reduce Biofouling by Marine Benthic Organisms (Diatoms, Biofilms and Abalones). Toxicol. Environ. Health Sci. 2016, 8, 341–348. Available online: https://link.springer.com/article/10.1007/s13530-016-0295-8 (accessed on 11 August 2022). [CrossRef]
- Mitchell, C.A.; Davies, M.J.; Grounds, M.D.; McGeachie, J.K.; Crawford, G.J.; Hong, Y.; Chirila, T.V. Enhancement of Neovascularization in Regenerating Skeletal Muscle by the Sustained Release of Erucamide from a Polymer Matrix. J. Biomater. Appl. 1996, 10, 230–249. [Google Scholar] [CrossRef]
- Wakamatsu, K.; Masaki, T.; Itoh, F.; Kondo, K.; Sudo, K. Isolation of Fatty Acid Amide as an Angiogenic Principle from Bovine Mesentery. Biochem. Biophys. Res. Commun. 1990, 168, 423–429. [Google Scholar] [CrossRef]
- Hamberger, A.; Stenhagen, G. Erucamide Compounds for the Treatment and Prevention to Disturbances of the Secretory System. WIPO (PCT) WO2003002112A1, 9 January 2003. [Google Scholar]
- Henzel, R.P.; Vanier, N.R. Slipping Layer Containing Functionalized Siloxane and Wax for Dye-Donor Element Used in Thermal Dye Transfer. U.S. Patent 4,866,026, 12 September 1989. [Google Scholar]
- Catarino-Centeno, R.; Waldo-Mendoza, M.A.; Garcia-Hernandez, E.; Perez-Lopez, J.E. Relationship between the Coefficient of Friction of Additive in the Bulk and Chain Graft Surface Density through a Diffusion Process: Erucamide–Stearyl Erucamide Mixtures in Polypropylene Films. J. Vinyl Addit. Technol. 2021, 27, 459–466. Available online: https://onlinelibrary.wiley.com/doi/10.1002/vnl.21820 (accessed on 11 August 2022). [CrossRef]
- Kawamura, Y.; Miura, M.; Sugita, T.; Yamada, T.; Takeda, M. Simultaneous Determination of Antioxidants and Ultraviolet Stabilizers in Polyethylene by HPLC. J. Food Hyg. Soc. Jpn. 1996, 37, 272–279. [Google Scholar] [CrossRef]
- Kawamura, Y.; Miura, M.; Sugita, T.; Yamada, T.; Takeda, M. Simultaneous Determination of Polymer Additives in Polyethylene by GC/MS. J. Food Hyg. Soc. Jpn. 1997, 38, 307–318. [Google Scholar] [CrossRef]
- Kawamura, Y.; Yonezawa, R.; Maehara, T.; Yamada, T. Determination of additives in food contact polypropylene. J. Food Hyg. Soc. Jpn. 1997, 41, 154. [Google Scholar] [CrossRef] [Green Version]
- Vandenburg, H.; Clifford, A.; Bartle, K.; Carroll, J.; Newton, I.; Garden, L.; Dean, J.; Costley, C. Critical Review: Analytical Extraction of Additives from Polymers. Analyst 1997, 122, 101–115. [Google Scholar] [CrossRef]
- Roosen, M.; De Somer, T.; Demets, R.; Ugduler, S.; Meesseman, V.; Gorp, B.; Ragaert, K.; Van Geem, K.; Walgraeve, C.; Dumoulin, A.; et al. Towards a Better Understanding of Odor Removal from Post-Consumer Plastic Film Waste: A Kinetic Study on Deodorization Efficiencies with Different Washing Media. Waste Manag. 2020, 120, 564–575. [Google Scholar] [CrossRef] [PubMed]
- Odor Removal—An Overview | ScienceDirect Topics. Available online: https://www.sciencedirect.com/topics/engineering/odor-removal (accessed on 11 August 2022).
- Hernández-Fernández, J.; Lopez-Martinez, J.; Barceló, D. Quantification and Elimination of Substituted Synthetic Phenols and Volatile Organic Compounds in the Wastewater Treatment Plant during the Production of Industrial Scale Polypropylene. Chemosphere 2021, 263, 128027. [Google Scholar] [CrossRef] [PubMed]
- Fernández, J.H.; Guerra, Y.; Cano, H. Detection of Bisphenol A and Four Analogues in Atmospheric Emissions in Petrochemical Complexes Producing Polypropylene in South America. Molecules 2022, 27, 4832. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Fernández, J.; Lopez-Martinez, J.; Barceló, D. Development and Validation of a Methodology for Quantifying Parts-per-Billion Levels of Arsine and Phosphine in Nitrogen, Hydrogen and Liquefied Petroleum Gas Using a Variable Pressure Sampler Coupled to Gas Chromatography-Mass Spectrometry. J. Chromatogr. A 2021, 1637, 461833. [Google Scholar] [CrossRef]
- Hernández Fernández, J.; Cano, H.; Guerra, Y.; Puello Polo, E.; Ríos-Rojas, J.F.; Vivas-Reyes, R.; Oviedo, J. Identification and Quantification of Microplastics in Effluents of Wastewater Treatment Plant by Differential Scanning Calorimetry (DSC). Sustainability 2022, 14, 4920. [Google Scholar] [CrossRef]
- Hernández-Fernández, J.; Guerra, Y.; Puello-Polo, E.; Marquez, E. Effects of Different Concentrations of Arsine on the Synthesis and Final Properties of Polypropylene. Polymers 2022, 14, 3123. [Google Scholar] [CrossRef]
- Hernández-Fernández, J.; López-Martínez, J. Experimental Study of the Auto-Catalytic Effect of Triethylaluminum and TiCl4 Residuals at the Onset of Non-Additive Polypropylene Degradation and Their Impact on Thermo-Oxidative Degradation and Pyrolysis. J. Anal. Appl. Pyrolysis 2021, 155, 105052. [Google Scholar] [CrossRef]
- Hernández-Fernández, J.; Rayón, E.; López, J.; Arrieta, M.P. Enhancing the Thermal Stability of Polypropylene by Blending with Low Amounts of Natural Antioxidants. Macromol. Mater. Eng. 2019, 304, 1900379. [Google Scholar] [CrossRef]
- Standard Test Method for Static and Kinetic Coefficients of Friction of Plastic Film and Sheeting. Available online: https://www.astm.org/d1894-08.html (accessed on 11 August 2022).
- Joshi, N.B.; Hirt, D.E. Evaluating Bulk-to-Surface Partitioning of Erucamide in LLDPE Films Using FT-IR Microspectroscopy. Appl. Spectrosc. 1999, 53, 11–16. [Google Scholar] [CrossRef]
- Huang, Y.; Xiong, Y.; Liu, C.; Li, L.; Xu, D.; Lin, Y.-H.; Nan, C.-W. Single-Crystalline 2D Erucamide with Low Friction and Enhanced Thermal Conductivity. Colloids Surf. Physicochem. Eng. Asp. 2018, 540, 29–35. [Google Scholar] [CrossRef]
- Har-Even, E.; Brown, A.; Meletis, E.I. Effect of Friction on the Microstructure of Compacted Solid Additive Blends for Polymers. Wear 2015, 328–329, 160–166. [Google Scholar] [CrossRef]
- Soliman, M.; Essers, F.E.J.; Degenhart, P. Scratch-Resistant Moulded Article Made from a Filled Polypropylene Composition. U.S. Patent US8163378B2, 19 November 2009. [Google Scholar]
Sample Point | Zone | Sample | Sample Rate | Objective |
---|---|---|---|---|
Stage 3 | Extruder outlet | Wastewater | 4 h/30 days | Identification, quantification, and recovery of erucamide |
Stage 4 | Top deodorant | Gases | 4 h/30 days | |
Stage 4 | Bottom desorber | Wastewater | 4 h/30 days |
Samples | Recovered Erucamide Added (mg) | Virgin PP Resin Added (Kg) |
---|---|---|
PP1 | 0 | 1 |
PP2 | 500 | 1 |
PP3 | 1000 | 1 |
PP4 | 1500 | 1 |
PP5 | 2000 | 1 |
PP6 | 2500 | 1 |
PP7 | 3000 | 1 |
Sampling Point | Sample Status | Erucamide Concentration Range (ppm) | Preconcentration Factor | Recovery (% w/w) |
---|---|---|---|---|
Top desorber | Gases | 0.1–11 | 100 | 92 |
Bottom desorber | Wastewater | 300–600 | 100 | 95 |
Extruder outlet | Wastewater | 700–900 | 100 | 95 |
Tr (Min) | Compound | Mass | Formula | Fragments |
---|---|---|---|---|
3.06 | 12-amino-12-oxo-dodecanoic acid | 228.16 | C12H23NO3 | 211.13, 210.15, 184.17, 167.14 |
4.34 | 14-amino-14-oxotetradecanoic acid | 256.2 | C14H27NO3 | 239.16, 212.2, 238.18 195.17 |
6.58 | 14-oxotetradecanamide | 242.2 | C14H27NO2 | 225.18, 207.17, 197.2 |
7.26 | 15-oxopentadec-13-enamide | 254.21 | C15H27NO2 | 239.2, 237.18, 219.17, 201.16 |
7.85 | Undecanamide | 186.18 | C11H23NO | 169.16, 158.15, 151.08 |
8.8 | Erucamide keto-epoxide | 368.3 | C22H41NO3 | 351.29, 352.32, 333.28, 315.27 |
10.78 | Erucamide with ketone | 352.3 | C22H41NO2 | 335.29, 317.28, 307.29, 299.27 |
11.3 | Erucamide with one –OH | 354.3 | C22H43NO2 | 337.31, 336.33, 319.29, 309.31, 301.29 |
12 | Cis-11-eicosenamide | 310.3 | C20H39NO | 293.28, 275.27 |
13 | Erucamide (13-cis-Docosenamide) | 338.3 | C22H43NO | 321.32, 303.31 |
Samples | Water Contact Angle (°θ) |
---|---|
PP1 | 85.2 ± 1.7 |
PP2 | 90.6 ± 1.3 |
PP3 | 93.4 ± 0.8 |
PP4 | 95.1 ± 1.5 |
PP5 | 95.9 ± 1.2 |
PP6 | 96.2 ± 1.4 |
PP7 | 97.4 ± 1.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hernández-Fernández, J.; Puello-Polo, E.; López-Martínez, J. Recovery of (Z)-13-Docosenamide from Industrial Wastewater and Its Application in the Production of Virgin Polypropylene to Improve the Coefficient of Friction in Film Type Applications. Sustainability 2023, 15, 1247. https://doi.org/10.3390/su15021247
Hernández-Fernández J, Puello-Polo E, López-Martínez J. Recovery of (Z)-13-Docosenamide from Industrial Wastewater and Its Application in the Production of Virgin Polypropylene to Improve the Coefficient of Friction in Film Type Applications. Sustainability. 2023; 15(2):1247. https://doi.org/10.3390/su15021247
Chicago/Turabian StyleHernández-Fernández, Joaquín, Esneyder Puello-Polo, and Juan López-Martínez. 2023. "Recovery of (Z)-13-Docosenamide from Industrial Wastewater and Its Application in the Production of Virgin Polypropylene to Improve the Coefficient of Friction in Film Type Applications" Sustainability 15, no. 2: 1247. https://doi.org/10.3390/su15021247
APA StyleHernández-Fernández, J., Puello-Polo, E., & López-Martínez, J. (2023). Recovery of (Z)-13-Docosenamide from Industrial Wastewater and Its Application in the Production of Virgin Polypropylene to Improve the Coefficient of Friction in Film Type Applications. Sustainability, 15(2), 1247. https://doi.org/10.3390/su15021247