Design and Research of Automatic Garment-Pattern-Generation System Based on Parameterized Design
Abstract
:1. Introduction
2. Method
2.1. Pattern Decomposition
2.1.1. Points
2.1.2. Line
2.2. Pattern Fitting
2.2.1. Straight-Line Segment Fitting
2.2.2. Curve Fitting
3. System Design and Production
3.1. Development Environment Construction
3.2. Classification and Adjustment Methods of Parameters
3.3. Establishment of Parametric Coordinate System
3.4. Parametric Algorithm Model Building
3.5. Lightweight Main Frame System and Code Encapsulation
3.6. Design and Implementation of Front-End Interface
4. Experiments and Results
4.1. Pattern Comparison Test
4.1.1. Participate
4.1.2. Experimental Procedure
4.1.3. Experimental Results
4.2. Virtual Testing
4.2.1. Construction of the Solid Model
4.2.2. Virtual Pressure Test
4.2.3. Air Layer under the Garment Testing
4.2.4. Test Results
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mok, P.Y.; Cheung, T.Y.; Wong, W.K.; Leung, S.Y.S.; Fan, J.T. Intelligent production planning for complex garment manufacturing. J. Intell. Manuf. 2013, 24, 133–145. [Google Scholar] [CrossRef]
- Elbrecht, P.; Palm, K.-J. Information Processing For Mass-Customized Clothing Production. In Proceedings of the 2016 IEEE Tenth International Conference on Semantic Computing (ICSC), Laguna Hills, CA, USA, 4–6 February 2016; IEEE: Piscataway Township, NJ, USA, 2016; pp. 362–365. [Google Scholar]
- Wang, I.-J.; Chang, W.-T.; Wu, W.-H.; Lin, B.-S. Applying Noncontact Sensing Technology in the Customized Product Design of Smart Clothes Based on Anthropometry. Sensors 2021, 21, 7978. [Google Scholar] [CrossRef] [PubMed]
- Uhm, T.; Park, H.; Park, J.-I. Fully vision-based automatic human body measurement system for apparel application. Measurement 2015, 61, 169–179. [Google Scholar] [CrossRef]
- Choi, T.-M.; Yeung, W.-K.; Cheng, T.C.E.; Yue, X. Optimal scheduling, coordination, and the value of RFID technology in garment manufacturing supply chains. IEEE Trans. Eng. Manag. 2017, 65, 72–84. [Google Scholar] [CrossRef]
- Yuan, Y.; Huh, J.-H. Customized CAD Modeling and design of production process for one-person one-clothing mass production system. Electronics 2018, 7, 270. [Google Scholar] [CrossRef] [Green Version]
- Liu, K.; Zeng, X.; Tao, X.; Bruniaux, P. Associate design of fashion sketch and pattern. IEEE Access 2019, 7, 48830–48837. [Google Scholar] [CrossRef]
- Stjepanovic, Z. Computer-aided processes in garment production, features of CAD/CAM hardware. Int. J. Cloth. Sci. Technol. 1995, 17, 81–88. [Google Scholar] [CrossRef]
- Park, C.K.; Lee, D.H.; Kang, T.J. Knowledge-base construction of a garment manufacturing expert system. Int. J. Cloth. Sci. Technol. 1996, 8. [Google Scholar]
- Santiago-Santiago, K.; Laureano-Cruces, A.L.; Antuñano-Barranco, J.M.A.; Domínguez-Pérez, O.; Sarmiento-Bustos, E. An expert system to improve the functioning of the clothing industry: A development methodology. Int. J. Cloth. Sci. Technol. 2015, 27. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, J.; Zeng, X.; Sharma, S.; Xing, Y.; Xu, S.; Liu, L. Prediction of garment fit level in 3D virtual environment based on artificial neural networks. Text. Res. J. 2021, 91, 1713–1731. [Google Scholar] [CrossRef]
- Arora, S.; Majumdar, A. Machine learning and soft computing applications in textile and clothing supply chain: Bibliometric and network analyses to delineate future research agenda. Expert Syst. Appl. 2022, 200, 117000. [Google Scholar] [CrossRef]
- Lassner, C.; Pons-Moll, G.; Gehler, P.V. A generative model of people in clothing. In Proceedings of the IEEE International Conference on Computer Vision 2017, Venice, Italy, 22–29 October 2017; pp. 853–862. [Google Scholar]
- Qiu, J.; Ma, L. Fusion Mode and Style Based on Artificial Intelligence and Clothing Design. Math. Probl. Eng. 2021, 2021, 6293539. [Google Scholar] [CrossRef]
- Kang, M.; Kim, S. Fabrication of 3D printed garments using flat patterns and motifs. Int. J. Cloth. Sci. Technol. 2019, 31, 653–662. [Google Scholar] [CrossRef]
- Papachristou, E.; Kyratsis, P.; Bilalis, N. A comparative study of open-source and licensed CAD software to support garment development learning. Machines 2019, 7, 30. [Google Scholar] [CrossRef] [Green Version]
- Ho, D.; Chan, E.; Yip, T.; Tsang, C.-W. The United States’ clothing imports from Asian countries along the Belt and Road: An extended gravity trade model with application of artificial neural network. Sustainability 2020, 12, 7433. [Google Scholar] [CrossRef]
- Celcar, D.; Pilar, T. 3D simulation and visualisation of textile patterns on the women’s dresses. Tekst. Ind. 2017, 65, 12–19. [Google Scholar]
- Wang, Z.; Xing, Y.; Wang, J.; Zeng, X.; Yang, Y.; Xu, S. A knowledge-supported approach for garment pattern design using fuzzy logic and artificial neural networks. Multimed. Tools Appl. 2020, 81, 19013–19033. [Google Scholar] [CrossRef]
- Ma, S.; Yan, X. Application of BP Neural Networks in Garment Pattern Design System. Comput. Intell. Neurosci. 2022, 2022, 8766137. [Google Scholar] [CrossRef]
- Petrak, S.; Dubravko, R. Methods of automatic computerised cutting pattern construction. Int. J. Cloth. Sci. Technol. 2001, 13, 228–239. [Google Scholar] [CrossRef]
- Wang, Z.; Tao, X.; Zeng, X.; Xing, Y.; Xu, Y.; Xu, Z.; Bruniaux, P.; Wang, J. An Interactive Personalized Garment Design Recommendation System Using Intelligent Techniques. Appl. Sci. 2022, 12, 4654. [Google Scholar] [CrossRef]
- Krzywinski, S.; Siegmund, J. 3D product development for loose-fitting garments based on parametric human models. IOP Conf. Ser. Mater. Sci. Eng. 2017, 254, 152006. [Google Scholar] [CrossRef]
- Gu, Y.; Shi, Y. Research on automatic method of curves drawing in garment CAD pattern system. Comput. Sci. Appl. 2019, 9, 9–18. [Google Scholar]
- Wang, W.; Zhang, G.; Yang, L.; Wang, W. Research on garment pattern design based on fractal graphics. Eurasip J. Image Video Process. 2019, 2019, 29. [Google Scholar] [CrossRef]
- Monedero, J. Parametric design: A review and some experiences. Autom. Constr. 2000, 9, 369–377. [Google Scholar] [CrossRef]
- De Smedt, T.; Daelemans, W. Pattern for python. J. Mach. Learn. Res. 2012, 13, 2063–2067. [Google Scholar]
- Wang, Y.; Luo, S.L.; Liao, Y. Test and study of pressure comfort threshold of female’s garment. J. Text. Res. 2018, 39, 132–136. [Google Scholar]
Category | Illustration | Fitting Method | ||
---|---|---|---|---|
Straight Line | \ | Least Squares | ||
Curve | C-type | Single intersection | Single-circular-arc discretization | |
Multiple intersection | Multiple-circular-arc discretization | |||
S-type | Spline curve discretization |
No. | Indicator | Grammage/(g/m2) | Thickness /(mm) | Internal Damping | Friction Coefficient | Elongation/(%) | Bending Stiffness/ (gf·cm2/cm) | ||
---|---|---|---|---|---|---|---|---|---|
Warp | Weft | Warp | Weft | ||||||
1 | 100% cotton | 146.7 | 1.25 | 0.0001 | 0.03 | 7.5 | 7.5 | 0.030 | 0.030 |
2 | 100% polyester | 119.0 | 1.10 | 0.0001 | 0.03 | 6.1 | 6.1 | 0.016 | 0.016 |
3 | 50% cotton + 50% polyester | 78 | 1.17 | 0.0001 | 0.03 | 3.4 | 3.4 | 0.074 | 0.074 |
Category | Fabric | Collar/(kPa) | Bust/(kPa) | Waist/(kPa) | Armhole/(kPa) | Hem/(kPa) |
---|---|---|---|---|---|---|
Standing posture | 1 | 0.45~1.13 | 0.31~0.89 | 0.13~0.65 | 0.55~1.13 | 0.21~0.71 |
2 | 0.38~1.27 | 0.41~0.63 | 0.22~0.43 | 0.44~1.09 | 0.29~0.51 | |
3 | 0.36~1.21 | 0.28~0.59 | 0.19~0.45 | 0.40~1.03 | 0.20~0.49 | |
Sitting posture | 1 | 0.49~1.06 | 0.53~0.72 | 0.15~0.47 | 0.25~0.99 | 0.23~0.53 |
2 | 0.35~1.25 | 0.33~0.64 | 0.21~0.53 | 0.24~0.99 | 0.29~0.49 | |
3 | 0.33~1.31 | 0.28~0.61 | 0.19~0.45 | 0.22~0.91 | 0.23~0.43 | |
Walking posture | 1 | 0.83~1.95 | 0.67~1.21 | 0.46~0.97 | 1.05~1.49 | 0.53~0.83 |
2 | 0.55~1.83 | 0.63~1.19 | 0.44~0.93 | 1.01~1.44 | 0.52~0.79 | |
3 | 0.67~1.81 | 0.58~1.13 | 0.45~0.88 | 1.02~1.41 | 0.51~0.73 |
Neck/(mm) | Shoulder/(mm) | Chest/(mm) | Upper Arms/(mm) | Lower Arms/(mm) | Waist/ (mm) | Total/ (mm) | |
---|---|---|---|---|---|---|---|
Maximum value | 19.2865 | 8.7765 | 11.2334 | 24.6589 | 28.3312 | 54.7128 | 54.7128 |
Average value | 11.7765 | 4.2311 | 5.8897 | 17.5567 | 15.8774 | 25.8879 | 12.6992 |
Standard deviation | 2.9865 | 1.7743 | 2.1159 | 7.4469 | 9.8863 | 15.6985 | 9.3506 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, P.; Fan, J.; Zheng, R.; Chen, Q.; Liu, L.; Jiang, R.; Zhang, H. Design and Research of Automatic Garment-Pattern-Generation System Based on Parameterized Design. Sustainability 2023, 15, 1268. https://doi.org/10.3390/su15021268
Jin P, Fan J, Zheng R, Chen Q, Liu L, Jiang R, Zhang H. Design and Research of Automatic Garment-Pattern-Generation System Based on Parameterized Design. Sustainability. 2023; 15(2):1268. https://doi.org/10.3390/su15021268
Chicago/Turabian StyleJin, Peng, Jintu Fan, Rong Zheng, Qing Chen, Le Liu, Runtian Jiang, and Hui Zhang. 2023. "Design and Research of Automatic Garment-Pattern-Generation System Based on Parameterized Design" Sustainability 15, no. 2: 1268. https://doi.org/10.3390/su15021268
APA StyleJin, P., Fan, J., Zheng, R., Chen, Q., Liu, L., Jiang, R., & Zhang, H. (2023). Design and Research of Automatic Garment-Pattern-Generation System Based on Parameterized Design. Sustainability, 15(2), 1268. https://doi.org/10.3390/su15021268