A New Approach for Improving Microbial Fuel Cell Performance Using Artificial Intelligence
Abstract
:1. Introduction
2. Materials and Methods
2.1. Dataset
2.2. Random Forest Regression (RFR)
2.3. Gradient Boost Regression Tree (GBRT)
- (A)
- Calculate
- (B)
- For j = 1 … , determine
2.4. Particle Swarm Optimization Algorithm
2.5. Regression Evaluation Metrics
3. Results
3.1. Correlation Analysis
3.2. Making a Machine Learning Model
3.3. Optimization
4. Conclusions
- All the developed models for MFC prediction of COD removal and power density produced accurate results for both the training and testing stages. According to their accuracy, the proposed techniques can be sorted as follows: power density prediction, GBRT > RFR; COD removal prediction, RFR > GBRT.
- The PSO optimization algorithm can converge in a few iterations, resulting in optimum states.
- In regression problems with low data, RFR and GBRT are accurate algorithms.
- The most important parameter affecting COD removal is DS, while Pt is the most important parameter affecting power density.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alaswad, A.; Omran, A.; Sodre, J.R.; Wilberforce, T.; Pignatelli, G.; Dassisti, M.; Baroutaji, A.; Olabi, A.G. Technical and commercial challenges of proton-exchange membrane (PEM) fuel cells. Energies 2020, 14, 144. [Google Scholar] [CrossRef]
- Gajda, I.; Greenman, J.; Ieropoulos, I.A. Recent advancements in real-world microbial fuel cell applications. Curr. Opin. Electrochem. 2018, 11, 78–83. [Google Scholar] [CrossRef]
- Gul, H.; Raza, W.; Lee, J.; Azam, M.; Ashraf, M.; Kim, K.-H. Progress in microbial fuel cell technology for wastewater treatment and energy harvesting. Chemosphere 2021, 281, 130828. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.H.; Chang, I.S.; Gadd, G.M. Challenges in microbial fuel cell development and operation. Appl. Microbiol. Biotechnol. 2007, 76, 485–494. [Google Scholar] [CrossRef]
- Shabani, M.; Younesi, H.; Pontié, M.; Rahimpour, A.; Rahimnejad, M.; Zinatizadeh, A.A. A critical review on recent proton exchange membranes applied in microbial fuel cells for renewable energy recovery. J. Clean. Prod. 2020, 264, 121446. [Google Scholar] [CrossRef]
- Ghasemi, M.; Sedighi, M.; Tan, Y.H. Carbon Nanotube/Pt Cathode Nanocomposite Electrode in Microbial Fuel Cells for Wastewater Treatment and Bioenergy Production. Sustainability 2021, 13, 8057. [Google Scholar] [CrossRef]
- Jafary, T.; Daud, W.R.W.; Ghasemi, M.; Bakar, M.H.A.; Sedighi, M.; Kim, B.H.; Carmona-Martínez, A.A.; Jahim, J.M.; Ismail, M. Clean hydrogen production in a full biological microbial electrolysis cell. Int. J. Hydrogen Energy 2019, 44, 30524–30531. [Google Scholar] [CrossRef]
- Ortiz-Martínez, V.; Salar-García, M.; De Los Ríos, A.; Hernández-Fernández, F.; Egea, J.; Lozano, L. Developments in microbial fuel cell modeling. Chem. Eng. J. 2015, 271, 50–60. [Google Scholar] [CrossRef]
- Logan, B.E.; Wallack, M.J.; Kim, K.-Y.; He, W.; Feng, Y.; Saikaly, P.E. Assessment of microbial fuel cell configurations and power densities. Environ. Sci. Technol. Lett. 2015, 2, 206–214. [Google Scholar] [CrossRef] [Green Version]
- Yewale, A.; Methekar, R.; Agrawal, S. Multiple model-based control of multi variable continuous microbial fuel cell (CMFC) using machine learning approaches. Comput. Chem. Eng. 2020, 140, 106884. [Google Scholar] [CrossRef]
- Shabani, F.; Philamore, H.; Matsuno, F. An Energy-Autonomous Chemical Oxygen Demand Sensor Using a Microbial Fuel Cell and Embedded Machine Learning. IEEE Access 2021, 9, 108689–108701. [Google Scholar] [CrossRef]
- Ghasemi, M.; Nassef, A.M.; Al-Dhaifallah, M.; Rezk, H. Performance improvement of microbial fuel cell through artificial intelligence. Int. J. Energy Res. 2021, 45, 342–354. [Google Scholar] [CrossRef]
- Ali, A.; Al-Mussawy, H.; Hussein, M.; Hamadi, N. Experimental and theoretical study on the ability of microbial fuel cell for electricity generation. Pollution 2018, 4, 359–368. [Google Scholar]
- Lesnik, K.L.; Liu, H. Predicting microbial fuel cell biofilm communities and bioreactor performance using artificial neural networks. Environ. Sci. Technol. 2017, 51, 10881–10892. [Google Scholar] [CrossRef]
- Tsompanas, M.-A.; You, J.; Wallis, L.; Greenman, J.; Ieropoulos, I. Artificial neural network simulating microbial fuel cells with different membrane materials and electrode configurations. J. Power Sources 2019, 436, 226832. [Google Scholar] [CrossRef]
- Esfandyari, M.; Fanaei, M.A.; Gheshlaghi, R.; Mahdavi, M.A. Neural network and neuro-fuzzy modeling to investigate the power density and Columbic efficiency of microbial fuel cell. J. Taiwan Inst. Chem. Eng. 2016, 58, 84–91. [Google Scholar] [CrossRef]
- Ismail, Z.Z.; Al-wared, A.I.; Jaeel, A.J. Recourse recovery of bioenergy from cellulosic material in a microbial fuel cell fed with giant reed-loaded wastewater. Biofuels 2017, 10, 737–745. [Google Scholar] [CrossRef]
- Islam, M.A.; Ong, H.R.; Ethiraj, B.; Cheng, C.K.; Khan, M.M.R. Optimization of co-culture inoculated microbial fuel cell performance using response surface methodology. J. Environ. Manag. 2018, 225, 242–251. [Google Scholar] [CrossRef]
- Sedighi, M.; Aljlil, S.A.; Alsubei, M.D.; Ghasemi, M.; Mohammadi, M. Performance optimisation of microbial fuel cell for wastewater treatment and sustainable clean energy generation using response surface methodology. Alex. Eng. J. 2018, 57, 4243–4253. [Google Scholar] [CrossRef]
- Muaz, M.; Abdul, R.; Vadivelu, V. Recovery of energy and simultaneous treatment of dewatered sludge using membrane-less microbial fuel cell. Environ. Prog. Sustain. Energy 2019, 38, 208–219. [Google Scholar] [CrossRef] [Green Version]
- Liaw, A.; Wiener, M. Classification and regression by randomForest. R News 2002, 2, 18–22. [Google Scholar]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Janitza, S.; Tutz, G.; Boulesteix, A.-L. Random forest for ordinal responses: Prediction and variable selection. Comput. Stat. Data Anal. 2016, 96, 57–73. [Google Scholar] [CrossRef]
- Friedman, J.; Hastie, T.; Tibshirani, R. Additive logistic regression: A statistical view of boosting (with discussion and a rejoinder by the authors). Ann. Stat. 2000, 28, 337–407. [Google Scholar] [CrossRef]
- Zheng, C.; Kasprowicz, C.G.; Saunders, C. Customized Routing Optimization Based on Gradient Boost Regressor Model. arXiv 2017, arXiv:1710.11118. [Google Scholar]
- Ho, T.K. Random decision forests. In Proceedings of the 3rd International Conference on Document Analysis and Recognition, Montreal, QC, Canada, 14–16 August 1995; pp. 278–282. [Google Scholar]
- Zhang, W.; Zhang, R.; Wu, C.; Goh, A.T.C.; Lacasse, S.; Liu, Z.; Liu, H. State-of-the-art review of soft computing applications in underground excavations. Geosci. Front. 2020, 11, 1095–1106. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, R.; Wu, C.; Goh, A.T.; Wang, L. Assessment of basal heave stability for braced excavations in anisotropic clay using extreme gradient boosting and random forest regression. Undergr. Space 2022, 7, 233–241. [Google Scholar] [CrossRef]
- Friedman, J.H. Greedy function approximation: A gradient boosting machine. Ann. Stat. 2001, 29, 1189–1232. [Google Scholar] [CrossRef]
- Hastie, T.; Tibshirani, R.; Friedman, J.H.; Friedman, J.H. The Elements of Statistical Learning: Data Mining, Inference, and Prediction; Springer: Berlin/Heidelberg, Germany, 2009; Volume 2. [Google Scholar]
- Kennedy, J. Particle Swarm Optimization. Encyclopedia of Machine Learning; Springer: Berlin/Heidelberg, Germany, 2011; Volume 760, p. 766. [Google Scholar]
- Engelbrecht, A.P. Computational swarm intelligence. Comput. Intell. Introd. 2007, 2, 285–412. [Google Scholar]
- Thangaraj, R.; Pant, M.; Abraham, A.; Bouvry, P. Particle swarm optimization: Hybridization perspectives and experimental illustrations. Appl. Math. Comput. 2011, 217, 5208–5226. [Google Scholar] [CrossRef]
- Mahmoodabadi, M.J.; Safaie, A.A.; Bagheri, A.; Nariman-Zadeh, N. A novel combination of Particle Swarm Optimization and Genetic Algorithm for Pareto optimal design of a five-degree of freedom vehicle vibration model. Appl. Soft Comput. 2013, 13, 2577–2591. [Google Scholar] [CrossRef]
- Clerc, M.; Kennedy, J. The particle swarm-explosion, stability, and convergence in a multidimensional complex space. IEEE Trans. Evol. Comput. 2002, 6, 58–73. [Google Scholar] [CrossRef] [Green Version]
- Willmott, C.J. Some comments on the evaluation of model performance. Bull. Am. Meteorol. Soc. 1982, 63, 1309–1313. [Google Scholar] [CrossRef]
Inputs | Outputs | ||||
---|---|---|---|---|---|
DS (%) | Pt (mg/cm2) | Aeration (mL/min) | Power Density (mW/m2) | COD Removal (%) | |
mean | 49.823 | 0.292 | 73.637 | 40.646 | 61.957 |
Std. | 19.865427 | 0.141063 | 39.796273 | 11.624616 | 16.819326 |
Min. | 20 | 0.1 | 10 | 12.54 | 10.68 |
25% | 30 | 0.2 | 40 | 31.975 | 53.2575 |
50% | 50 | 0.3 | 72.5 | 43.37 | 63.475 |
75% | 70 | 0.4 | 104.5 | 50.74 | 73.475 |
Max. | 80 | 0.5 | 150 | 56.95 | 90.56 |
Accuracy | Random Forest Regression | Gradient Boost Regression Tree |
Training Data | ||
R-squared | 0.9958 | 0.9997 |
RMSE | 0.7514 | 0.1962 |
MAE | 0.5693 | 0.1287 |
Accuracy | Random Forest Regression | Gradient Boost Regression Tree |
Testing Data | ||
R-squared | 0.9470 | 0.9540 |
RMSE | 2.5745 | 2.2696 |
MAE | 1.9209 | 1.6544 |
Accuracy | Random Forest Regression | Gradient Boost Regression Tree |
Training Data | ||
R-squared | 0.9936 | 0.9997 |
RMSE | 1.3309 | 0.2631 |
MAE | 0.9736 | 0.1761 |
Accuracy | Random Forest Regression | Gradient Boost Regression Tree |
Testing Data | ||
R-squared | 0.9813 | 0.9695 |
RMSE | 2.3046 | 3.0143 |
MAE | 1.5957 | 2.2944 |
Parameters | DS (%) | Pt (mg/cm2) | Aeration (mL/min) | Best Cost |
---|---|---|---|---|
The optimum value for power density | 67.7087 | 0.3943 | 117.7192 | 55.9069 |
The optimum value for COD removal | 75.8816 | 0.3322 | 75.1933 | 90.6 |
Item | Description | Ref. |
---|---|---|
1 | With an ANFIS model, COD removal and power density were predicted, and then optimized using single-object optimization and multi-object optimization. | [12] |
2 | The voltage of MFCs was predicted using ANN models and compared with experimental results. | [13] |
3 | ANN was used to model 33 MFCs, including 8 substrates and 3 wastewaters. | [14] |
4 | ANN was used to simulate polarization curves with various membrane materials and electrode configurations. | [15] |
5 | The power density and COD removal were modeled using random forest regression and gradient boost regression trees, and the modeled parameters were optimized using particle swarm optimization. | This study |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdollahfard, Y.; Sedighi, M.; Ghasemi, M. A New Approach for Improving Microbial Fuel Cell Performance Using Artificial Intelligence. Sustainability 2023, 15, 1312. https://doi.org/10.3390/su15021312
Abdollahfard Y, Sedighi M, Ghasemi M. A New Approach for Improving Microbial Fuel Cell Performance Using Artificial Intelligence. Sustainability. 2023; 15(2):1312. https://doi.org/10.3390/su15021312
Chicago/Turabian StyleAbdollahfard, Yaser, Mehdi Sedighi, and Mostafa Ghasemi. 2023. "A New Approach for Improving Microbial Fuel Cell Performance Using Artificial Intelligence" Sustainability 15, no. 2: 1312. https://doi.org/10.3390/su15021312
APA StyleAbdollahfard, Y., Sedighi, M., & Ghasemi, M. (2023). A New Approach for Improving Microbial Fuel Cell Performance Using Artificial Intelligence. Sustainability, 15(2), 1312. https://doi.org/10.3390/su15021312