An Analysis of Soil Erosion on Construction Sites in Megacities Using Analytic Hierarchy Process
Abstract
:1. Introduction
- To provide a comprehensive review of the literature to identify factors affecting soil erosion in CSMs.
- To evaluate and rank the factors influencing soil erosion in CSMs with the help of AHP.
- To analyze the results of evaluation and ranking, and to discuss the factors that should be focused on in the soil erosion of CSMs.
2. Methods
2.1. AHP Method
- (1)
- Constructing judgment matrix;
- (2)
- Calculate weight;
- (3)
- Consistency test;
Order of Matrix | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
RI | 0 | 0 | 0.52 | 0.89 | 1.12 | 1.26 | 1.36 | 1.41 | 1.46 | 1.49 |
- (4)
- Application of the model;
2.2. Invited Experts
3. Influencing Factors: A Review of Existing Research
3.1. Natural Conditions
3.2. Construction Activities
3.3. Conservation Measures
3.4. Management Measures
3.5. Vegetation Coverage
4. Soil Erosion Risk Evaluation Model of CSM
5. Discussion
5.1. Analysis of the Weight of Influencing Factors
5.2. Analysis of Expert Assessment in Different Cities
RI | RA | SS | SE | |
---|---|---|---|---|
Local Weight/Rank | ||||
Shanghai | 0.5126/1 | 0.1519/3 | 0.1325/4 | 0.2030/2 |
Guangzhou | 0.4380/1 | 0.2951/2 | 0.1416/3 | 0.1253/4 |
Zhengzhou | 0.3345/2 | 0.0877/4 | 0.4567/1 | 0.1211/3 |
Overall results | 0.4599/1 | 0.1725/3 | 0.2119/2 | 0.1557/4 |
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CSM | Construction Sites in Megacities |
BMPs | Best Management Practices |
NC | Natural conditions of construction site |
CM | Conservation measures for soil erosion |
RI | Rainfall depth per unit time |
SS | Slope of construction site |
CV | Removal and filling of soil |
VF | Vehicle flushing |
HC | Hardening and Covering |
CU | Management of construction unit |
GM | Management of government departments |
USLE | Universal Soil Loss Equation |
AHP | Analytic Hierarchy Process |
CA | Construction activities on construction site |
MM | Management measures for soil erosion |
RA | Total rainfall of one storm |
SE | Soil erodibility of construction site |
FP | Foundation pit dewatering |
SF | Flushing of construction site |
ST | Sediment tank |
SU | Management of supervision unit |
TSS | Total Suspended Solids |
References
- De Jong, M.; Joss, S.; Schraven, D.; Zhan, C.; Weijnen, M. Sustainable-Smart-Resilient-Low Carbon-Eco-Knowledge Cities; Making Sense of a Multitude of Concepts Promoting Sustainable Urbanization. J. Clean Prod. 2015, 109, 25–38. [Google Scholar] [CrossRef] [Green Version]
- Wuepper, D.; Borrelli, P.; Finger, R. Countries and the Global Rate of Soil Erosion. Nat. Sustain. 2020, 3, 51–55. [Google Scholar] [CrossRef]
- Amundson, R.; Berhe, A.A.; Hopmans, J.W.; Olson, C.; Sztein, A.E.; Sparks, D.L. Soil and Human Security in the 21st Century. Science 2015, 348, 1261071. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Russell, K. Potential Sediment Supply Fluxes Associated with Greenfield Residential Construction. Anthropocene 2021, 35, 100300. [Google Scholar] [CrossRef]
- Dongmei, S.; Guangyi, J.; Xudong, P.; Yexin, L.; Huifang, J.; Zi, L. Evaluation on impact of artificial disturbed underlying surfaces on water retention function during urbanization process. Trans. Chin. Soc. Agric. Eng. 2017, 33, 92–102. [Google Scholar]
- Vincent, Q.; Auclerc, A.; Beguiristain, T.; Leyval, C. Assessment of Derelict Soil Quality: Abiotic, Biotic and Functional Approaches. Sci. Total Env. 2018, 613, 990–1002. [Google Scholar] [CrossRef] [Green Version]
- Qin, H.-P.; Khu, S.-T.; Yu, X.-Y. Spatial Variations of Storm Runoff Pollution and Their Correlation with Land-Use in a Rapidly Urbanizing Catchment in China. Sci. Total Env. 2010, 408, 4613–4623. [Google Scholar] [CrossRef]
- Malhotra, K.; Lamba, J.; Srivastava, P.; Shepherd, S. Fingerprinting Suspended Sediment Sources in an Urbanized Watershed. Water 2018, 10, 1573. [Google Scholar] [CrossRef] [Green Version]
- Zhigang, W.; Pei, H.; Yaohuan, Z.; Zhongguang, H.; Jinsong, C.; Yuanling, Z.; Pingcang, Z. Spatial Distribution Pattern of Soil and Water Loss and Its Conservation Strategies in Megacity—A Case Study in Wuhan City. Bull. Soil Water Conserv. 2018, 38, 122–126. [Google Scholar]
- Chang, H.-D.; Jin, P.-K.; Fu, B.-W.; Li, X.-B.; Jia, R.-K. Sediment Characteristics of Sewer in Different Functional Areas of Kunming. Huan Jing Ke Xue Huanjing Kexue 2016, 37, 3821–3827. [Google Scholar] [CrossRef]
- Mirakhorlo, M.S.; Rahimzadegan, M. Analysing the Land-Use Change Effects on Soil Erosion and Sediment in the North of Iran; a Case Study: Talar Watershed. Geocarto Int. 2021, 36, 936–956. [Google Scholar] [CrossRef]
- Wischmeier, W.H.; Smith, D.D. Predicting Rainfall Erosion Losses—A Guide To Conservation Planning; Department of Agriculture, Science and Education Administration: Beltsville, MD, USA, 1978. [Google Scholar]
- Yang, M. The Impact of Urban Building Planning on Soil and Water Loss in the Peripheral Eco-Environment. Ekoloji 2019, 28, 2521–2531. [Google Scholar]
- Loch, R.J. Using Rainfall Simulation to Guide Planning and Management of Rehabilitated Areas: Part I. Experimental Methods and Results from a Study at the Northparkes Mine, Australia. Land Degrad. Dev. 2000, 11, 221–240. [Google Scholar] [CrossRef]
- Folly, A.; Bronsveld, M.C.; Clavaux, M. A Knowledge-Based Approach for C-Factor Mapping in Spain Using Landsat TM and GIS. Int. J. Remote Sens. 1996, 17, 2401–2415. [Google Scholar] [CrossRef]
- Barbosa, R.S.; Marques Junior, J.; Barron, V.; Martins Filho, M.V.; Siqueira, D.S.; Peluco, R.G.; Camargo, L.A.; Silva, L.S. Prediction and Mapping of Erodibility Factors (USLE and WEPP) by Magnetic Susceptibility in Basalt-Derived Soils in Northeastern SAo Paulo State, Brazil. Env. Earth Sci. 2019, 78, 12. [Google Scholar] [CrossRef]
- Bagarello, V.; Ferro, V.; Flanagan, D.C. Predicting Plot Soil Loss by Empirical and Process-Oriented Approaches. A Review. J. Agric. Eng. 2018, 49, 1–18. [Google Scholar] [CrossRef]
- Murphy, J.C. Changing Suspended Sediment in United States Rivers and Streams: Linking Sediment Trends to Changes in Land Use/Cover, Hydrology and Climate. Hydrol. Earth Syst. Sci. 2020, 24, 991–1010. [Google Scholar] [CrossRef] [Green Version]
- Fu, B.; Liu, Y.; Lu, Y.; He, C.; Zeng, Y.; Wu, B. Assessing the Soil Erosion Control Service of Ecosystems Change in the Loess Plateau of China. Ecol. Complex. 2011, 8, 284–293. [Google Scholar] [CrossRef]
- Beskow, S.; Mello, C.R.; Norton, L.D.; Curi, N.; Viola, M.R.; Avanzi, J.C. Soil Erosion Prediction in the Grande River Basin, Brazil Using Distributed Modeling. Catena 2009, 79, 49–59. [Google Scholar] [CrossRef]
- Houser, D.L.; Pruess, H. The Effects of Construction on Water Quality: A Case Study of the Culverting of Abram Creek. Env. Monit. Assess. 2009, 155, 431–442. [Google Scholar] [CrossRef]
- Schussler, J.C.; Perez, M.A.; Donald, W.N.; Whitman, J.B.; Zech, W.C.; Fang, X.; Fagan, B. Decade of Research in Review at the Auburn University Stormwater Research Facility. Transp. Res. Record 2022, 2676, 590–604. [Google Scholar] [CrossRef]
- Costea, M.; Tausan, I. Land Degradation a Matter of Attitude? A Case Study from Southern Transylvania (Romania). J. Environ. Plan. Manag. 2017, 60, 821–841. [Google Scholar] [CrossRef]
- Uisso, A.J.; Chirwa, P.W.; Ackerman, P.A.; Mbwambo, L. Understanding Community Awareness, Knowledge and Perceived Importance of Land-Use Plans and Village Land Forest Reserves in the Context of REDD plus in Tanzania. Int. For. Rev. 2022, 24, 113–128. [Google Scholar] [CrossRef]
- Saaty, R. The analytic hierarchy process—What it is and how it is used. Math. Model. 1987, 9, 161–176. [Google Scholar] [CrossRef] [Green Version]
- Inti, S.; Tandon, V. Application of Fuzzy Preference-Analytic Hierarchy Process Logic in Evaluating Sustainability of Transportation Infrastructure Requiring Multicriteria Decision Making. J. Infrastruct. Syst. 2017, 23, 04017014. [Google Scholar] [CrossRef]
- Mendoza Gomez, M.; Tagle-Zamora, D.; Morales Martinez, J.L.; Caldera Ortega, A.R.; Mora Rodriguez J de, J.; Delgado-Galvan, X. Water Supply Management Index: Leon, Guanajuato, Mexico. Water 2022, 14, 919. [Google Scholar] [CrossRef]
- Diaz, H.; Teixeira, A.P.; Soares, C.G. Application of Monte Carlo and Fuzzy Analytic Hierarchy Processes for Ranking Floating Wind Farm Locations. Ocean Eng. 2022, 245, 110453. [Google Scholar] [CrossRef]
- Khademalhoseiny, M.S.; Nadoushan, M.A.; Radnezhad, H. Site Selection for Landfill Gas Extraction Plant by Fuzzy Analytic Hierarchy Process and Fuzzy Analytic Network Process in the City of Najafabad, Iran. Energy Env. 2017, 28, 763–774. [Google Scholar] [CrossRef]
- Naveed, Q.N.; Qahmash, A.I.; Al-Razgan, M.; Qureshi, K.M.; Qureshi, M.R.N.M.; Alwan, A.A. Evaluating and Prioritizing Barriers for Sustainable E-Learning Using Analytic Hierarchy Process-Group Decision Making. Sustainability 2022, 14, 8973. [Google Scholar] [CrossRef]
- Chen, G.; Li, X.; Liu, X.; Chen, Y.; Liang, X.; Leng, J.; Xu, X.; Liao, W.; Qiu, Y.; Wu, Q.; et al. Global Projections of Future Urban Land Expansion under Shared Socioeconomic Pathways. Nat. Commun. 2020, 11, 537. [Google Scholar] [CrossRef] [Green Version]
- Maniquiz, M.C.; Lee, S.; Lee, E.; Kong, D.-S.; Kim, L.-H. Unit Soil Loss Rate from Various Construction Sites during a Storm. Water Sci. Technol. 2009, 59, 2187–2196. [Google Scholar] [CrossRef]
- Trenouth, W.R.; Gharabaghi, B. Event-Based Soil Loss Models for Construction Sites. J. Hydrol. 2015, 524, 780–788. [Google Scholar] [CrossRef]
- Renard, K.; Freimund, J. Using monthly precipitation data to estimate the r-factor in the revised usle. J. Hydrol. 1994, 157, 287–306. [Google Scholar] [CrossRef]
- Nearing, M.A.; Jetten, V.; Baffaut, C.; Cerdan, O.; Couturier, A.; Hernandez, M.; Le Bissonnais, Y.; Nichols, M.H.; Nunes, J.P.; Renschler, C.S.; et al. Modeling Response of Soil Erosion and Runoff to Changes in Precipitation and Cover. Catena 2005, 61, 131–154. [Google Scholar] [CrossRef]
- Li, Y.; Zhou, Y.; Wang, H.; Jiang, H.; Yue, Z.; Zheng, K.; Wu, B.; Banahene, P. Characterization and Sources Apportionment of Overflow Pollution in Urban Separate Stormwater Systems Inappropriately Connected with Sewage. J. Env. Manag. 2022, 303, 114231. [Google Scholar] [CrossRef]
- Iverson, R.M. Landslide Triggering by Rain Infiltration. Water Resour. Res. 2000, 36, 1897–1910. [Google Scholar] [CrossRef] [Green Version]
- Cerda, A.; Rodrigo-Comino, J. Is the Hillslope Position Relevant for Runoff and Soil Loss Activation under High Rainfall Conditions in Vineyards? Ecohydrol. Hydrobiol. 2020, 20, 59–72. [Google Scholar] [CrossRef]
- Chen, W.; Lei, X.; Chakrabortty, R.; Pal, S.C.; Sahana, M.; Janizadeh, S. Evaluation of Different Boosting Ensemble Machine Learning Models and Novel Deep Learning and Boosting Framework for Head-Cut Gully Erosion Susceptibility. J. Env. Manage. 2021, 284, 112015. [Google Scholar] [CrossRef]
- Martinez-Mena, M.; Carrillo-Lopez, E.; Boix-Fayos, C.; Almagro, M.; Garcia Franco, N.; Diaz-Pereira, E.; Montoya, I.; de Vente, J. Long-Term Effectiveness of Sustainable Land Management Practices to Control Runoff, Soil Erosion, and Nutrient Loss and the Role of Rainfall Intensity in Mediterranean Rainfed Agroecosystems. Catena 2020, 187, 104352. [Google Scholar] [CrossRef]
- Yan, H.; Vosswinkel, N.; Ebbert, S.; Kouyi, G.L.; Mohn, R.; Uhl, M.; Bertrand-Krajewski, J.-L. Numerical Investigation of Particles’ Transport, Deposition and Resuspension under Unsteady Conditions in Constructed Stormwater Ponds. Env. Sci Eur. 2020, 32, 76. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, L.; Wang, H.; Feng, C.; Shi, H.; Wu, S. Investigating Impacts of Deep Foundation Pit Dewatering on Land Subsidence Based on CFD-DEM Method. Eur. J. Env. Civ. Eng. 2022, 26, 6424–6443. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, J.; Zhang, Y.; Gao, Y. Cause Investigation of Damages in Existing Building Adjacent to Foundation Pit in Construction. Eng. Fail. Anal. 2018, 83, 117–124. [Google Scholar] [CrossRef]
- Yongshan, H.; Jun, S.; Xuan, W.; Shihang, Z.; Guixiang, H. Optimization of the Filter Structure of Dewatering Well Tube in Silty Fine Sand Foundation. J. Yangtze River Sci. Res. Inst. 2015, 32, 116. [Google Scholar]
- Xi, X. Research on Sewage Control and Treatment Technology of Urban Construction Sites. Ph.D. Thesis, Tongji University, Shanghai, China, 2018. [Google Scholar]
- Steegen, A.; Govers, G.; Nachtergaele, J.; Takken, I.; Beuselinck, L.; Poesen, J. Sediment Export by Water from an Agricultural Catchment in the Loam Belt of Central Belgium. Geomorphology 2000, 33, 25–36. [Google Scholar] [CrossRef]
- Sansalone, J.J.; Koran, J.M.; Smithson, J.A.; Buchberger, S.G. Physical Characteristics of Urban Roadway Solids Transported during Rain Events. J. Environ. Eng.-ASCE 1998, 124, 427–440. [Google Scholar] [CrossRef]
- Garofalo, G.; Sansalone, J. Urban Drainage Clarifier Load-Response as a Function of Flow, Unsteadiness, and Baffling. J. Environ. Eng.-ASCE 2018, 144, 04017108. [Google Scholar] [CrossRef]
- Zhang, Z.; Nie, W.; Xu, W. Effect of Soil and Water Conservation Measures for Typical Production and Construction Projects in Shenzhen Based on Field Observation. Soil Water Conserv. China 2021, 10, 45–48. [Google Scholar] [CrossRef]
- Perez, M.A.; Zech, W.C.; Fang, X.; Vasconcelos, J.G. Methodology and Development of a Large-Scale Sediment Basin for Performance Testing. J. Irrig. Drain. Eng.-ASCE 2016, 142, 04016042. [Google Scholar] [CrossRef]
- Desta, G.; Abera, W.; Tamene, L.; Amede, T. A Meta-Analysis of the Effects of Land Management Practices and Land Uses on Soil Loss in Ethiopia. Agric. Ecosyst. Env. 2021, 322, 107635. [Google Scholar] [CrossRef]
- Huo, J.; Yu, X.; Liu, C.; Chen, L.; Zheng, W.; Yang, Y.; Tang, Z. Effects of Soil and Water Conservation Management and Rainfall Types on Runoff and Soil Loss for a Sloping Area in North China. Land Degrad. Dev. 2020, 31, 2117–2130. [Google Scholar] [CrossRef]
- Renard, K.G.; Foster, G.R.; Weesies, G.A.; McCool, D.K.; Yoder, D.C. Predicting Hillslope Erosion by Water: A Guide to Conservation Planning with the Revised Universal Hillslope Erosion Equation (RUSLE). US Dep. Agric. Agric. Handb. 1997, 703, 1–251. [Google Scholar]
- Li, Z.; Guo, X. Remote Sensing of Terrestrial Non-Photosynthetic Vegetation Using Hyperspectral, Multispectral, SAR, and LiDAR Data. Prog. Phys. Geogr. 2016, 40, 276–304. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, X.; Lv, D.; Yin, S.; Zhang, M.; Zhu, Q.; Yu, Q.; Liu, B. Remote Sensing Estimation of the Soil Erosion Cover-Management Factor for China’s Loess Plateau. Land Degrad. Dev. 2020, 31, 1942–1955. [Google Scholar] [CrossRef]
- Alexakis, D.D.; Manoudakis, S.; Agapiou, A.; Polykretis, C. Towards the Assessment of Soil-Erosion-Related C-Factor on European Scale Using Google Earth Engine and Sentinel-2 Images. Remote Sens. 2021, 13, 5019. [Google Scholar] [CrossRef]
- Hou, J.; Fu, B.; Wang, S.; Zhu, H. Comprehensive Analysis of Relationship between Vegetation Attributes and Soil Erosion on Hillslopes in the Loess Plateau of China. Env. Earth Sci. 2014, 72, 1721–1731. [Google Scholar] [CrossRef]
- Smith, J.L.; Bhatia, S.K. Bioimprovement of Soils for Highway Applications Using Rolled Erosion Control Products. Transp. Res. Rec. 2009, 2108, 117–126. [Google Scholar] [CrossRef]
- Hopkinson, L.C.; Davis, E.; Hilvers, G. Vegetation Cover at Right of Way Locations. Transp. Res. Part D-Transp. Env. 2016, 43, 28–39. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, J. Effects of Geotextiles for Highway Slope Restoration due to Plant Community in Qin-Ba Mountain Areas of South-Shaanxi, China. Fresenius Env. Bull. 2018, 27, 5742–5751. [Google Scholar]
- Hopkinson, L.C.; Poultney, M.; Hilvers, G.; Pritt, F.; Davis, E.; Strong, A.; Graham, J.; Hudson, M.; Kosar, K. Development and Field Testing of Experimental Seed Mixtures for High Elevation Roadside Locations in West Virginia. Env. Earth Sci. 2018, 77, 504. [Google Scholar] [CrossRef]
- Wu, Y.; Yang, L.; Bueyueksoenmez, F.; Beighley, R.E.; Gu, Z.; Grey, M. Evaluation of Soil Erosion and Sediment Control Products for Release of Heavy Metals. Env. Eng. Sci. 2010, 27, 905–914. [Google Scholar] [CrossRef]
- Shojaeizadeh, A.; Geza, M.; McCray, J.; Hogue, T.S. Site-Scale Integrated Decision Support Tool (i-DSTss) for Stormwater Management. Water 2019, 11, 2022. [Google Scholar] [CrossRef] [Green Version]
- Bang, K.W.; Joo, J.C.; Kim, J.H.; Kang, E.; Choi, J.; Lee, J.M.; Kim, Y. Application of Bottom Ash as Filter Media for Construction Site Runoff Control. Water 2020, 12, 990. [Google Scholar] [CrossRef] [Green Version]
- Kang, J.; McLaughlin, R.A. Polyacrylamide and Chitosan Biopolymer for Flocculation and Turbidity Reduction in Soil Suspensions. J. Polym. Env. 2020, 28, 1335–1343. [Google Scholar] [CrossRef]
- Haque, M.Z.; Reza, M.I.H.; Abd Rahim, S.; Maulud, K.N.A. Assessing the Effectiveness of Hydromulching as a Rapid Soil Erosion Control Measure: A Study in Langat Sub Basin, Peninsular Malaysia. Int. J. Conserv. Sci. 2022, 13, 679–694. [Google Scholar]
The Intensity Importance | Definition |
---|---|
1 | Equally preferred |
3 | Moderately preferred |
5 | Essentially preferred |
7 | Very strongly preferred |
9 | Extremely preferred |
2, 4, 6, 8 | Intermediate importance between two adjacent judgments |
Serial Number | Professional Title | Work Age | Work Area | Research Field |
---|---|---|---|---|
DM1 | Professor | 27 | Shanghai | Water Environment Treatment |
DM2 | Associate Professor | 18 | Shanghai | Construction of Building Works |
DM3 | Senior Engineer | 15 | Shanghai | Construction Project Manager |
DM4 | Senior Engineer | 30 | Guangzhou | Structural Design Engineer |
DM5 | Senior Engineer | 25 | Guangzhou | Construction Project Manager |
DM6 | Associate Professor | 16 | Guangzhou | Sediment Transport Mechanics |
DM7 | Professor | 29 | Zhengzhou | Computational Fluid Dynamics |
DM8 | Senior Engineer | 12 | Zhengzhou | Structural Design Engineer |
DM9 | Senior Engineer | 15 | Zhengzhou | Supervision Engineer |
DM10 | Professor | 24 | Shanghai | Sediment Transport Mechanics |
DM11 | Associate Professor | 8 | Shanghai | Pedology |
DM12 | Associate Professor | 12 | Guangzhou | Soil Erosion and Conservation |
DM13 | Associate Professor | 9 | Guangzhou | Urban soil and Water Conservation |
DM14 | Professor | 27 | Zhengzhou | Soil Erosion and Conservation |
DM15 | Professor | 28 | Zhengzhou | Desertification Combating |
Dimensions | Influencing Factor | References |
---|---|---|
Natural Conditions (NC) | Rainfall Intensity (RI) | Maniquiz et al. (2009) [32], William et al. (2015) [33], Renard et al. (1994) [34], Nearing et al. (2005) [35], Li et al. (2022) [36] |
Rainfall Amount (RA) | William et al. (2015) [33], Nearing et al. (2005) [35], Li et al. (2022) [36], Richard et al. (2000) [37] | |
Soil Slope (SS) | Maniquiz et al. (2009) [32], Artemi et al. (2020) [38], Chen et al. (2021) [39] | |
Soil Erodibility (SE) | Maniquiz et al. (2009) [32], Martinez et al. (2020) [40], Yan et al. (2020) [41] | |
Construction Activities (CA) | Earth cut-fill Volumes (CV) | Russell et al. (2021) [4], Miakhorlo et al. (2019) [11] |
Foundation Pit Dewatering (FP) | Zhang et al. (2021) [42], Xuemin et al. (2018) [43], Yongshan et al. (2015) [44] | |
Vehicle Flushing Water (VF) | Xujun et al. (2018) [45], An et al. (2000) [46] | |
Site Flushing Water (SF) | Qin et al. (2010) [7], Xujun (2018) [45], An et al. (2000) [46], John (1998) [47] | |
Conservation Measures (CM) | Sedimentation Tank (ST) | Yan et al. (2020) [41], Garofalo et al. (2018) [48], Zhihua et al. (2021) [49], Perez et al. (2016) [50] |
Hardening and Covering (HC) | Nearing et al. (2005) [35], Martinez et al. (2020) [40], Zhihua et al. (2021) [49] | |
Management Measures (MM) | Construction Unit Management (CU) | Houser et al. (2009) [21], Schussler et al. (2022) [22], Costea et al. (2017) [23], Uisso et al. (2022) [24], Desta et al. (2021) [51], Jiayi et al. (2020) [52] |
Supervision Unit Management (SU) | ||
Government Management (GM) |
NC | CA | CM | MM | Local Weight | |
---|---|---|---|---|---|
NC | 1 | A | B | C | G |
CA | 1/A | 1 | D | E | H |
CM | 1/B | 1/D | 1 | F | I |
MM | 1/C | 1/E | 1/F | 1 | J |
CI = L, RI = M, CR = N |
A | B | C | D | E | F | |
---|---|---|---|---|---|---|
DM1 | 5 | 3 | 1/3 | 1 | 1/5 | 1/5 |
DM2 | 5 | 1 | 1 | 1/3 | 1/5 | 1/3 |
DM3 | 7 | 3 | 1/3 | 1/3 | 1/5 | 1/5 |
DM4 | 3 | 5 | 1/3 | 1 | 1/3 | 1/5 |
DM5 | 3 | 1 | 1/3 | 1/3 | 1/5 | 1/3 |
DM6 | 3 | 1/3 | 1/5 | 1/3 | 1/7 | 1 |
DM7 | 5 | 3 | 1 | 1/3 | 1/5 | 1 |
DM8 | 7 | 5 | 1 | 1 | 1/5 | 1/3 |
DM9 | 3 | 1 | 1/3 | 1 | 1/5 | 1/5 |
DM10 | 1/3 | 1/5 | 1/5 | 1/3 | 1 | 1 |
DM11 | 5 | 3 | 1/3 | 1 | 1/5 | 1/5 |
DM12 | 3 | 1 | 1 | 1/3 | 1/5 | 1/3 |
DM13 | 3 | 1/5 | 1 | 1/3 | 1 | 3 |
DM14 | 3 | 1 | 1 | 1/3 | 1 | 1 |
DM15 | 7 | 3 | 1/5 | 1/3 | 1/9 | 1/5 |
NC | CA | CM | MM | Local Weight | |
---|---|---|---|---|---|
NC | 1 | 7/3 | 4/3 | 4/9 | 0.2631 |
CA | 2/7 | 1 | 1/2 | 2/7 | 0.0946 |
CM | 3/4 | 15/7 | 1 | 4/7 | 0.1917 |
MM | 19/9 | 26/7 | 19/8 | 1 | 0.4505 |
CI = 0.0125, RI = 0.89, CR = 0.0141 |
Dimensions | Local Weight | Influencing Factor | Local Weight | Global Weight | Rank |
---|---|---|---|---|---|
NC | 0.2631 | RI | 0.4599 | 0.1210 | 3 |
RA | 0.1725 | 0.0454 | 9 | ||
SS | 0.2119 | 0.0558 | 6 | ||
SE | 0.1557 | 0.0410 | 10 | ||
CA | 0.0946 | CV | 0.5872 | 0.0556 | 7 |
FP | 0.1369 | 0.0130 | 12 | ||
VF | 0.1223 | 0.0116 | 13 | ||
SF | 0.1536 | 0.0145 | 11 | ||
CM | 0.1917 | ST | 0.5547 | 0.1063 | 4 |
HC | 0.4453 | 0.0854 | 5 | ||
MM | 0.4505 | CU | 0.4808 | 0.2166 | 1 |
SU | 0.1200 | 0.0541 | 8 | ||
GM | 0.3992 | 0.1798 | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, H.; Shi, P.; Fu, X. An Analysis of Soil Erosion on Construction Sites in Megacities Using Analytic Hierarchy Process. Sustainability 2023, 15, 1325. https://doi.org/10.3390/su15021325
Tang H, Shi P, Fu X. An Analysis of Soil Erosion on Construction Sites in Megacities Using Analytic Hierarchy Process. Sustainability. 2023; 15(2):1325. https://doi.org/10.3390/su15021325
Chicago/Turabian StyleTang, Hongliang, Pengkun Shi, and Xiaoli Fu. 2023. "An Analysis of Soil Erosion on Construction Sites in Megacities Using Analytic Hierarchy Process" Sustainability 15, no. 2: 1325. https://doi.org/10.3390/su15021325
APA StyleTang, H., Shi, P., & Fu, X. (2023). An Analysis of Soil Erosion on Construction Sites in Megacities Using Analytic Hierarchy Process. Sustainability, 15(2), 1325. https://doi.org/10.3390/su15021325