Illicit and Corruption Mitigation Strategy in the Financial Sector: A Study with a Hybrid Methodological Approach
Abstract
:1. Introduction
2. Literature Review
3. Materials and Methods
3.1. Sample Selection
3.2. Variables
3.3. Binary Logistic Regression Model
3.4. Modelling Procedure
4. Results
5. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Coram, P. Corporate resiliency: Managing the growing risk of fraud and corruption. Int. J. Account. 2010, 45, 382–385. [Google Scholar] [CrossRef]
- Binhadab, N.; Breen, M.; Gillanders, R. Press freedom and corruption in business-state interactions. Econ. Syst. 2021, 45, 100922. [Google Scholar] [CrossRef]
- Malik, A.; Froese, F.J. Corruption as a perverse Innovation: The dark side of digitalization and corruption in international business. J. Bus. Res. 2022, 145, 682–693. [Google Scholar] [CrossRef]
- Transparency International. Corruption Perceptions Index. 2022. Available online: www.transparency.org/cpi (accessed on 3 June 2022).
- Jha, C.K. Financial Reforms and Corruption: Which Dimensions Matter? Int. Rev. Financ. 2020, 20, 515–527. [Google Scholar] [CrossRef]
- Colonnelli, E.; Lagaras, S.; Ponticelli, J.; Prem, M.; Tsoutsoura, M. Revealing corruption: Firm and worker level evidence from Brazil. J. Financ. Econ. 2022, 143, 1097–1119. [Google Scholar] [CrossRef]
- Khan, A.; Krishnan, S. Moderating effects of business-systems corruption on corruption in basic national institutions and electronic government maturity: Insights from a dynamic panel data analysis. Int. J. Inf. Manag. 2021, 59, 102349. [Google Scholar] [CrossRef]
- Krishnamurti, C.; Pensiero, D.; Velayutham, E. Corruption risk and stock market effects: Evidence from the defence industry. Pac. Basin Financ. J. 2021, 70, 101681. [Google Scholar] [CrossRef]
- Ferris, S.P.; Hanousek, J.; Tresl, J. Corporate profitability and the global persistence of corruption. J. Corp. Financ. 2021, 66, 101855. [Google Scholar] [CrossRef]
- Arayankalam, J.; Khan, A.; Krishnan, S. How to deal with corruption? Examining the roles of e-government maturity, government administrative effectiveness, and virtual social networks diffusion. Int. J. Inf. Manag. 2021, 58, 102203. [Google Scholar] [CrossRef]
- Nese, A.; O’Higgins, N.; Sbriglia, P.; Scudiero, M. Cooperation, punishment and organized crime: A lab-in-the-field experiment in southern Italy. Eur. Econ. Rev. 2018, 107, 86–98. [Google Scholar] [CrossRef]
- Li, D.; Ferreira, M.P. Institutional environment and firms’ sources of financial capital in Central and Eastern Europe. J. Bus. Res. 2011, 64, 371–376. [Google Scholar] [CrossRef]
- Nese, A.; Troisi, R. Corruption among mayors: Evidence from Italian court of cassation judgments. Trends Organ. Crime 2019, 22, 298–323. [Google Scholar] [CrossRef]
- Troisi, R.; Alfano, G. The re-election of corrupt mayors: Context, relational leadership and level of corruption. Local Gov. Stud. 2022, 1–22. [Google Scholar] [CrossRef]
- Nyberg, D.; Wright, C. Corporate corruption of the environment: Sustainability as a process of compromise. Br. J. Sociol. 2013, 64, 405–424. [Google Scholar] [CrossRef] [PubMed]
- Popova, Y.; Podolyakina, N. Pervasive Impact of Corruption on Social System and Economic Growth. Procedia-Soc. Behav. Sci. 2014, 110, 727–737. [Google Scholar] [CrossRef] [Green Version]
- Frolova, I.I.; Voronkova, O.Y.; Alekhina, N.A.; Kovaleva, I.; Prodanova, N.A.; Kashirskaya, L.V. Corruption as an obstacle to sustainable development: A regional example. Entrep. Sustain. Issues 2019, 7, 674. [Google Scholar] [CrossRef]
- Masud, M.A.K.; Rahman, M.; Rashid, M.H.U. Anti-Corruption Disclosure, Corporate Social Expenditure and Political Corporate Social Responsibility: Empirical Evidence from Bangladesh. Sustainability 2022, 14, 6140. [Google Scholar] [CrossRef]
- Silvestre, B.S.; Viana, F.L.E.; de Sousa Monteiro, M. Supply chain corruption practices circumventing sustainability standards: Wolves in sheep’s clothing. Int. J. Oper. Prod. Manag. 2020, 40, 1873–1907. [Google Scholar] [CrossRef]
- Nghiem, H.; Muric, G.; Morstatter, F.; Ferrara, E. Detecting cryptocurrency pump-and-dump frauds using market and social signals. Expert Syst. Appl. 2021, 182, 115284. [Google Scholar] [CrossRef]
- Suh, J.B.; Nicolaides, R.; Trafford, R. The effects of reducing opportunity and fraud risk factors on the occurrence of occupational fraud in financial institutions. Int. J. Law Crime Justice 2019, 56, 79–88. [Google Scholar] [CrossRef]
- Broadstock, D.; Chen, X. Corporate site visits, private monitoring and fraud: Evidence from China. Financ. Res. Lett. 2020, 40, 101780. [Google Scholar] [CrossRef]
- Aria, M.; Cuccurullo, C. bibliometrix: An R-tool for comprehensive science mapping analysis. J. Informetr. 2017, 11, 959–975. [Google Scholar] [CrossRef]
- Marcucci, G.; Ciarapica, F.; Poler, R.; Sanchis, R. A bibliometric analysis of the emerging trends in silver economy. IFAC-PapersOnLine 2021, 54, 936–941. [Google Scholar] [CrossRef]
- Xie, L.; Chen, Z.; Wang, H.; Zheng, C.; Jiang, J. Bibliometric and Visualized Analysis of Scientific Publications on Atlantoaxial Spine Surgery Based on Web of Science and VOSviewer. World Neurosurg. 2020, 137, 435–442.e4. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Ren, L.; Qiao, J.; Yao, S.; Strielkowski, W.; Streimikis, J. Corporate Social Responsibility and Corruption: Implications for the Sustainable Energy Sector. Sustainability 2019, 11, 4128. [Google Scholar] [CrossRef] [Green Version]
- Troisi, R.; Di Nauta, P.; Piciocchi, P. Private corruption: An integrated organizational model. Eur. Manag. Rev. 2021, 19, 476–486. [Google Scholar] [CrossRef]
- Gavurova, B.; Kelemen, M.; Polishchuk, V. Expert model of risk assessment for the selected components of smart city concept: From safe time to pandemics as COVID-19. Socioecon. Plann. Sci. 2022, 82, 101253. [Google Scholar] [CrossRef]
- Luo, S.; Sun, Y.; Zhou, R. Can fintech innovation promote household consumption? Evidence from China family panel studies. Int. Rev. Financ. Anal. 2022, 82, 102137. [Google Scholar] [CrossRef]
- Allen, F.; Gu, X.; Jagtiani, J.; Mills, D.; Maniff, J.; Park, A.; Klein, A.; Spaniel, W.; Rentezelas, J.; Sanches, D.; et al. Working Papers Fintech, Cryptocurrencies, and CBDC: Financial Structural Transformation in China Fintech, Cryptocurrencies, and CBDC: Financial Structural Transformation in China. J. Int. Money Financ. 2022, 124. [Google Scholar] [CrossRef]
- Murinde, V.; Rizopoulos, E.; Zachariadis, M. The impact of the FinTech revolution on the future of banking: Opportunities and risks. Int. Rev. Financ. Anal. 2022, 81, 102103. [Google Scholar] [CrossRef]
- Hamrick, J.T.; Rouhi, F.; Mukherjee, A.; Feder, A.; Gandal, N.; Moore, T.; Vasek, M. An examination of the cryptocurrency pump-and-dump ecosystem. Inf. Process. Manag. 2021, 58, 102506. [Google Scholar] [CrossRef]
- Larsen, D.S.; Van Stokkum, I.H.M.; Vengris, M.; Van Der Horst, M.A.; De Weerd, F.L.; Hellingwerf, K.J.; Van Grondelle, R. Incoherent Manipulation of the Photoactive Yellow Protein Photocycle with Dispersed Pump-Dump-Probe Spectroscopy. Biophys. J. 2004, 87, 1858. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ouyang, L.; Cao, B. Selective pump-and-dump: The manipulation of their top holdings by Chinese mutual funds around quarter-ends. Emerg. Mark. Rev. 2020, 44, 100697. [Google Scholar] [CrossRef]
- DasGupta, R. Financial performance shortfall, ESG controversies, and ESG performance: Evidence from firms around the world. Financ. Res. Lett. 2022, 46, 102487. [Google Scholar] [CrossRef]
- Kannagi, A.; Gori Mohammed, J.; Sabari Giri Murugan, S.; Varsha, M. Intelligent mechanical systems and its applications on online fraud detection analysis using pattern recognition K-nearest neighbor algorithm for cloud security applications. Mater. Today Proc. 2021; in press. [Google Scholar] [CrossRef]
- Lokanan, M.E.; Sharma, K. Fraud prediction using machine learning: The case of investment advisors in Canada. Mach. Learn. Appl. 2022, 8, 100269. [Google Scholar] [CrossRef]
- Thomson Reuters Eikon. (n.d.). Thomson Reuters ESG Scores; Thomson Reuters: Toronto, ON, Canada, 2017. [Google Scholar]
- Eurostat. Eurostat—Data Explorer; Eurostat: Luxembourg, 2021. [Google Scholar]
- Abdolmohammadi, M.J. Intellectual capital disclosure and market capitalization. J. Intellect. Cap. 2005, 6, 397–416. [Google Scholar] [CrossRef]
- Ball, R.; Gerakos, J.; Linnainmaa, J.T.; Nikolaev, V. Earnings, retained earnings, and book-to-market in the cross section of expected returns. J. Financ. Econ. 2020, 135, 231–254. [Google Scholar] [CrossRef]
- Patriche, C.V.; Pirnau, R.; Grozavu, A.; Rosca, B. A Comparative Analysis of Binary Logistic Regression and Analytical Hierarchy Process for Landslide Susceptibility Assessment in the Dobrov River Basin, Romania. Pedosphere 2016, 26, 335–350. [Google Scholar] [CrossRef]
- Samerei, S.A.; Aghabayk, K.; Shiwakoti, N.; Mohammadi, A. Using latent class clustering and binary logistic regression to model Australian cyclist injury severity in motor vehicle-bicycle crashes. J. Saf. Res. 2021, 79, 246–256. [Google Scholar] [CrossRef]
- Ojeka, S.; Adegboye, A.; Adegboye, K.; Umukoro, O.; Dahunsi, O.; Ozordi, E. Corruption perception, institutional quality and performance of listed companies in Nigeria. Heliyon 2019, 5, e02569. [Google Scholar] [CrossRef] [PubMed]
- Beesley, C.; Hawkins, D. Corruption, institutional trust and political engagement in Peru. World Dev. 2022, 151, 105743. [Google Scholar] [CrossRef]
- Troisi, R.; Alfano, G. Proximity and inter-firm corruption: A transaction cost approach. Small Bus. Econ. 2022, 1–16. [Google Scholar] [CrossRef]
- Teichmann, F.; Falker, M.C.; Sergi, B.S. Corruption and the circumvention of financial sanctions via the extractive industries in Dubai. Extr. Ind. Soc. 2020, 7, 1022–1028. [Google Scholar] [CrossRef]
- Malanski, L.K.; Póvoa, A.C.S. Economic growth and corruption in emerging markets: Does economic freedom matter? Int. Econ. 2021, 166, 58–70. [Google Scholar] [CrossRef]
- Sarker, S.; Henningsson, S.; Jensen, T.; Hedman, J. The Use of Blockchain as a Resource for Combating Corruption in Global Shipping: An Interpretive Case Study. J. Manag. Inf. Syst. 2021, 38, 338–373. [Google Scholar] [CrossRef]
Sources | Articles | ABS List | Scimago List |
---|---|---|---|
Technological Forecasting and Social Change | 8 | 3 *** | Q1 |
Journal of Business Ethics | 6 | 3 *** | Q1 |
Land Use Policy | 6 | Q1 | |
Sustainability (Switzerland) | 6 | Q1 | |
Journal of Corporate Finance | 5 | 4 **** | Q1 |
Industrial Marketing Management | 4 | 3 *** | Q1 |
International Business Review | 4 | 3 *** | Q1 |
International Review of Economics And Finance | 4 | 2 ** | Q2 |
Journal of Business Research | 4 | 3 *** | Q1 |
Journal of Financial Crime | 4 | Q2 | |
Journal of the Knowledge Economy | 4 | 1 * | Q2 |
British Accounting Review | 3 | 3 *** | Q1 |
Cogent Economics And Finance | 3 | 1 * | Q2 |
Ieee Access | 3 | Q1 | |
Information Technology and People | 3 | Q1 | |
International Review of Financial Analysis | 3 | 3 *** | Q1 |
Journal of Business and Industrial Marketing | 3 | 2 ** | Q1 |
Journal of Economic Studies | 3 | 2 ** | Q1 |
Management and Organization Review | 3 | 3 *** | Q1 |
Managerial Auditing Journal | 3 | 2 ** | Q2 |
Sustainable Development | 3 | Q1 | |
Accounting Horizons | 2 | 3 *** | Q1 |
Advances in Accounting | 2 | 2 ** | Q2 |
Annual Review of Sociology | 2 | 4 **** | Q1 |
Category | Name of Variable | Label of Variable | Description of Variable | Source |
---|---|---|---|---|
Dependent variable | BRIB | Bribery Corruption and Fraud Controversies | Describes a company’s spotlight of the media because of a controversy that is linked to bribery and corruption, political contributions, improper lobbying, money laundering, parallel imports or any tax fraud [23]. | Thomson Reuters Datastream |
Independent variables | EBANECO | E-banking and e-commerce | The use of the internet and other electronic networks for the purposes of e-banking and e-commerce by individuals and/or in households [38]. | Eurostat |
ESG | ESG Score | Measures a company’s ESG performance based on reported data in the public domain [23] | Thomson Reuters Refinit Eikon | |
RD | R&D personnel by sector | R&D personnel include all persons employed directly on R&D, plus persons supplying direct services to R&D, such as managers, administrative staff, and office staff. The measure shown in this table is total R&D personnel in full time equivalents as a percentage of the economic active population [38]. | Eurostat | |
MANGSCOR | Management Score | Measures a company’s commitment and effectiveness towards following best practice corporate governance principles [23]. | Thomson Reuters Refinitiv Eikon | |
MARCAPITAL | Market capitalization | Refers to the total value of all a company’s shares of stock [39]. | Penn World Table version 10.0 | |
ICTEDU | Persons with ICT education by labour status | Describes persons with ICT education in labor force by their employment status [38]. | Eurostat | |
RETAIEARN | Retained Earnings | Retained earnings are a firm’s cumulative net earnings or profit after accounting for dividends. They are also referred to as the earning surplus [40]. | Penn World Table version 10.0 | |
ICTGDP | Percentage of the ICT sector in GDP | Is used to provide an initial estimate of the size of the ICT sector and its share of GDP [38]. | Eurostat | |
CORIND | Corruption Perceptions Index | A complex index based on a combination of corruption surveys and assessments from 13 different sources and scores and ranks countries based on how corrupt a country’s public sector is considered, with a score of 0 representing a very high level of corruption and score 100 representing a very clean country [41]. | Eurostat |
BRIB | CORIND | EBANECO | ESG | ICTEDU | ICTGDP | ICTSPECIAL | MANGSCOR | RAND | RETAIEARN | |
---|---|---|---|---|---|---|---|---|---|---|
Mean | 0.797000 | 78.28200 | 76.23067 | 47.43765 | 254.8750 | 6.490310 | 24.01000 | 51.02300 | 0.938750 | 23.97828 |
Median | 1.000000 | 80.00000 | 79.00000 | 47.34000 | 316.9000 | 5.940000 | 24.00000 | 50.04000 | 0.830000 | 1.010000 |
Maximum | 1.000000 | 88.00000 | 94.00000 | 93.79000 | 362.9000 | 325.1000 | 67.00000 | 99.71000 | 12.34000 | 4588.900 |
Minimum | 0.000000 | 52.00000 | 3.430000 | 1.840000 | 11.00000 | 3.290000 | 13.00000 | 0.110000 | 0.470000 | −11.66000 |
Std. Dev. | 0.402434 | 7.094562 | 11.81145 | 20.47474 | 110.4556 | 17.18417 | 5.085446 | 28.29642 | 0.640312 | 228.9241 |
Skewness | −1.476758 | −2.212540 | −2.335441 | 0.085467 | −1.147928 | 18.10327 | 1.017526 | 0.063338 | 15.34341 | 17.62498 |
Kurtosis | 3.180814 | 8.885341 | 10.50713 | 2.417805 | 2.460866 | 329.7299 | 14.05040 | 1.909898 | 265.6668 | 323.6619 |
Jarque–Bera | 364.8312 | 2259.107 | 3257.257 | 15.34038 | 231.7342 | 4502640 | 5260.535 | 50.18207 | 2913980 | 4336109 |
Probability | 0.000000 | 0.000000 | 0.000000 | 0.000467 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
Sum | 797.0000 | 78282.00 | 76230.67 | 47437.65 | 254875.0 | 6490.310 | 24010.00 | 51023.00 | 938.7500 | 23978.28 |
Sum Sq. Dev. | 161.7910 | 50282.48 | 139370.9 | 418795.6 | 12188247 | 295000.4 | 25835.90 | 799886.7 | 409.5893 | 52353837 |
Observations | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 |
BRIB | CORIND | EBANECO | ESG | ICTEDU | ICTGDP | ICTSPECIAL | MANGSCOR | RAND | RETAIEARN | |
---|---|---|---|---|---|---|---|---|---|---|
BRIB | 1.000000 | −0.050751 | 0.036480 | −0.204704 | 0.030805 | −0.019014 | 0.045013 | −0.166460 | −0.037734 | 0.007827 |
CORIND | −0.050751 | 1.000000 | 0.773042 | −0.045052 | −0.075940 | 0.022034 | 0.187309 | 0.007104 | 0.049293 | 0.071728 |
EBANECO | 0.036480 | 0.773042 | 1.000000 | −0.044018 | −0.044908 | −0.305736 | 0.247257 | 0.017384 | −0.293372 | 0.062510 |
ESG | −0.204704 | −0.045052 | −0.044018 | 1.000000 | −0.107459 | −0.065462 | −0.208107 | 0.782685 | −0.023207 | 0.071980 |
ICTEDU | 0.030805 | −0.075940 | −0.044908 | −0.107459 | 1.000000 | −0.111912 | 0.219145 | −0.019351 | −0.364705 | −0.145080 |
ICTGDP | −0.019014 | 0.022034 | −0.305736 | −0.065462 | −0.111912 | 1.000000 | 0.458932 | −0.073946 | 0.939070 | −0.003090 |
ICTSPECIAL | 0.045013 | 0.187309 | 0.247257 | −0.208107 | 0.219145 | 0.458932 | 1.000000 | −0.104473 | 0.353107 | −0.067441 |
MANGSCOR | −0.166460 | 0.007104 | 0.017384 | 0.782685 | −0.019351 | −0.073946 | −0.104473 | 1.000000 | −0.062085 | 0.027494 |
RAND | −0.037734 | 0.049293 | −0.293372 | −0.023207 | −0.364705 | 0.939070 | 0.353107 | −0.062085 | 1.000000 | 0.039095 |
RETAIEARN | 0.007827 | 0.071728 | 0.062510 | 0.071980 | −0.145080 | −0.003090 | −0.067441 | 0.027494 | 0.039095 | 1.000000 |
Variables | Coefficients | Odds Ratio |
---|---|---|
EBANECO *** | 0.037 (0.004) | 0.513 |
ESG *** | −0.018 (0.00) | 0.49 |
RD *** | 1.27 (0.00) | 0.86 |
MANGSCOR | −0.003 (0.5) | 0.498 |
MARCAPITAL *** | 0.019 (0.00) | 0.506 |
ICTEDU *** | 0.0031 (0.00) | 0.501 |
RETAIEARN *** | −0.021 (0.00) | 0.49 |
ICTGDP ** | −0.037 (0.01) | 0.486 |
CORIND * | −0.028 (0.1) | 0.489 |
Quantile of Risk | Dep = 0 | Dep = 1 | Total | H-L | ||||
---|---|---|---|---|---|---|---|---|
Low | High | Actual | Expect | Actual | Expect | Obs | Value | |
1 | 0.3340 | 0.6640 | 34 | 44.7391 | 65 | 54.2609 | 99 | 4.70328 |
2 | 0.6665 | 0.7299 | 33 | 29.4268 | 66 | 69.5732 | 99 | 0.61739 |
3 | 0.7308 | 0.7693 | 29 | 24.8951 | 71 | 75.1049 | 100 | 0.90119 |
4 | 0.7695 | 0.7852 | 27 | 21.9358 | 72 | 77.0642 | 99 | 1.50192 |
5 | 0.7853 | 0.8095 | 22 | 20.2962 | 78 | 79.7038 | 100 | 0.17945 |
6 | 0.8098 | 0.8299 | 18 | 17.5758 | 81 | 81.4242 | 99 | 0.01245 |
7 | 0.8302 | 0.8526 | 13 | 15.6464 | 86 | 83.3536 | 99 | 0.53163 |
8 | 0.8527 | 0.8721 | 16 | 13.7519 | 84 | 86.2481 | 100 | 0.42609 |
9 | 0.8722 | 0.8953 | 7 | 11.4975 | 92 | 87.5025 | 99 | 1.99045 |
10 | 0.8956 | 1.0000 | 4 | 8.32429 | 96 | 91.6757 | 100 | 2.45035 |
Total | 203 | 208.089 | 791 | 785.911 | 994 | 13.3142 | ||
H-L Statistic | 13.3142 | Prob. Chi-Sq(8) | 0.1015 | |||||
Andrews Statistic | 39.4536 | Prob. Chi-Sq(10) | 0.0000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zafeiriou, E.; Garefalakis, A.; Passas, I.; Ragazou, K. Illicit and Corruption Mitigation Strategy in the Financial Sector: A Study with a Hybrid Methodological Approach. Sustainability 2023, 15, 1366. https://doi.org/10.3390/su15021366
Zafeiriou E, Garefalakis A, Passas I, Ragazou K. Illicit and Corruption Mitigation Strategy in the Financial Sector: A Study with a Hybrid Methodological Approach. Sustainability. 2023; 15(2):1366. https://doi.org/10.3390/su15021366
Chicago/Turabian StyleZafeiriou, Eleni, Alexandros Garefalakis, Ioannis Passas, and Konstantina Ragazou. 2023. "Illicit and Corruption Mitigation Strategy in the Financial Sector: A Study with a Hybrid Methodological Approach" Sustainability 15, no. 2: 1366. https://doi.org/10.3390/su15021366
APA StyleZafeiriou, E., Garefalakis, A., Passas, I., & Ragazou, K. (2023). Illicit and Corruption Mitigation Strategy in the Financial Sector: A Study with a Hybrid Methodological Approach. Sustainability, 15(2), 1366. https://doi.org/10.3390/su15021366