Solar Energy: Applications, Trends Analysis, Bibliometric Analysis and Research Contribution to Sustainable Development Goals (SDGs)
Abstract
:1. Introduction
2. Solar PV: The State of the Art
2.1. Fundamentals of Solar PV
2.2. Different Generations of Solar PV
2.2.1. The First Generation of Solar PV Technology
Monocrystalline Silicon Solar Cells
Polycrystalline Silicon Solar Cells
2.2.2. The Second Generation of Solar PV Technology
Amorphous Silicon Solar Cells
Cadmium Telluride Solar Cells
Copper Indium Gallium Diselenide Solar Cells
2.2.3. The Third Generation of Solar PV Technology
Generation | Type | Efficiency | Advantages | Disadvantages |
---|---|---|---|---|
First Generation | Monocrystalline silicon | Up to 24% [43] |
|
|
Polycrystalline silicon | 13–20% [43] |
|
| |
Second Generation | Amorphous silicon | 5–10% [14] |
|
|
Cadmium Telluride | 18–22% [44] |
|
| |
Copper Indium Gallium Diselenide | 15–22% [45] |
|
| |
Third Generation | Organic PV | Up to 17% [46] |
|
|
Concentrated PV | 40% [47] |
|
|
3. Applications of Solar PV Technology
3.1. Large-Scale Solar PV Power Plants
3.1.1. Components of Solar PV Power Plants
PV Modules
Mounting and Tracking
Inverters
Transformers
Grid Interface
3.2. Residential Applications for Solar PV Systems
3.2.1. PV-Powered “Heating, Ventilation and Air Conditioning” (HVAC) Units
3.2.2. PV-Powered Water Pumps
3.3. Green Hydrogen
3.4. Water Desalination
3.5. Transportation
4. Methodology
5. Results and Discussions
6. Conclusions and Recommendations
- -
- Solar PV systems applied on a commercial scale in power plants with a power capacity of more than 1 MW and can reach the Giga scale.
- -
- Solar PV power desalination systems are available worldwide on a commercials scale, and their potential is increasing over time. Significant progress has been realized in the application of solar PV in the production of green hydrogen and green buildings as well as electric vehicles in the transportation sector.
- -
- The bibliometric study demonstrates that there has been a notable increase in the amount of research conducted on solar energy over the past decade.
- -
- The majority of solar research is concentrated within SDG 7, which is directly related to clean energy, while lacking in many other SDGs, such as SDG 6: Clean Water and Sanitation, SDG 1: No Poverty, SDG 4: Quality Education, SDG 5: Gender Equality, SDG 9: Industry, Innovation and Infrastructure, SDG 10: Reduced Inequality and SDG 16: Peace, Justice and Strong Institutions.
- -
- China, India and the USA were the primary contributors of published research, and the rest of the world contributed a significantly lower number of publications.
- -
- This study proves that more research is needed in the solar energy sector regarding the SDGs, as solar energy impacts not only SDG 7 but all other SDGs, whether directly or indirectly. Such studies are crucial for securing a sustainable future for current and future generations.
- -
- Within the five chooses application of solar energy, a ranking of publications was as follows: (1) large-scale solar power generation, (2) transportation, (3) residential applications, (4) water desalination and (5) green hydrogen production.
- -
- The vast majority of the research was focused mainly on the technical aspects of solar energy, whereas other important aspects received significantly less attention.
- -
- There is a significant lack of research in relation to SDG 1: No Poverty, SDG 4: Quality Education, SDG 5: Gender Equality and SDG 16: Peace, Justice and Strong Institutions.
- -
- The results of the bibliometric indicate that there was a total of 276,989 published studies, in addition to 310,009 patents that were registered.
- -
- Overall, there was a good percentage of research published in open-access journals, which shows good financial support from different stakeholders.
- -
- The keywords ”electric vehicles”, “photovoltaic cells”, “vehicle to grid” and ”secondary batteries” were found to be among the most frequently used keywords.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bhuvaneswari, C.; Rajeswari, R.; Kalaiarasan, C. Analysis of solar energy based street light with auto tracking system. Int. J. Adv. Res. Electr. Electron. Instrum. Eng. 2013, 2, 3422–3428. [Google Scholar]
- Michael, P.; Johnston, D.; Moreno, W. A conversion guide: Solar irradiance and lux illuminance. J. Meas. Eng. 2020, 8, 153–166. [Google Scholar] [CrossRef]
- Mekhilef, S.; Saidur, R.; Safari, A. A review on solar energy use in industries. Renew. Sustain. Energy Rev. 2011, 15, 1777–1790. [Google Scholar] [CrossRef]
- Gupta, A.; Das, B.; Biswas, A.; Mondol, J. Sustainability and 4E analysis of novel solar photovoltaic-thermal solar dryer under forced and natural convection drying. Renew. Energy 2022, 188, 1008–1021. [Google Scholar] [CrossRef]
- Al Dashti, H. The Effect of the Chemical Composition of the Atmosphere on the Climate of State of Kuwait; Cairo University: Giza, Egypt, 2012. [Google Scholar]
- Barsanti, L.; Gualtieri, P. Is exploitation of microalgae economically and energetically sustainable? Algal Res. 2018, 31, 107–115. [Google Scholar] [CrossRef]
- Ashok, S. Solar Energy; Encyclopedia Britannica: Chicago, IL, USA, 2020. [Google Scholar]
- Gupta, A.; Das, B.; Biswas, A.; Mondol, J. An environmental and economic evaluation of solar photovoltaic thermal dryer. Int. J. Environ. Sci. Technol. 2022, 19, 10773–10792. [Google Scholar] [CrossRef]
- Jha, P.; Das, B.; Gupta, R. Energy matrices evaluation of a conventional and modified partially covered photovoltaic thermal collector. Sustain. Energy Technol. Assess. 2022, 54, 102610. [Google Scholar] [CrossRef]
- PraveenKumar, S.; Agyekum, E.; Qasim, M.; Alwan, N.; Velkin, V.; Shcheklein, S. Experimental assessment of thermoelectric cooling on the efficiency of PV module. Int. J. Renew. Energy Res. (IJRER) 2022, 12, 1670–1681. [Google Scholar]
- Agyekum, E.; PraveenKumar, S.; Alwan, N.; Velkin, V.; Shcheklein, S.; Yaqoob, S. Experimental investigation of the effect of a combination of active and passive cooling mechanism on the thermal characteristics and efficiency of solar PV module. Inventions 2021, 6, 63. [Google Scholar] [CrossRef]
- Kochtcheeva, L. Renewable energy: Global challenges. E-International Relations, 27 May 2016.
- Sipahutar, R.; Bernas, S.; Imanuddin, M. Renewable energy and hydropower utilization tendency worldwide. Renew. Sustain. Energy Rev. 2013, 17, 213–215. [Google Scholar]
- Parida, B.; Iniyan, S.; Goic, R. A review of solar photovoltaic technologies. Renew. Sustain. Energy Rev. 2011, 15, 1625–1636. [Google Scholar] [CrossRef]
- Ahmadi, A.; Das, B.; Ehyaei, M.; Esmaeilion, F.; El Haj Assad, M.; Jamali, D.; Koohshekan, O.; Kumar, R.; Rosen, M.; Negi, S.; et al. Energy, exergy, and techno-economic performance analyses of solar dryers for agro products: A comprehensive review. Sol. Energy 2021, 228, 349–373. [Google Scholar] [CrossRef]
- Bagher, A.; Vahid, M.; Mohsen, M. Types of solar cells and application. Am. J. Opt. Photonics 2015, 3, 94–113. [Google Scholar] [CrossRef]
- Anku, N.; Adu-Gyamfi, D.; Kankam, A.; Takyi, A.; Amponsah, R. A model for photovoltaic module optimization. J. Mech. Eng. Autom 2015, 5, 72–79. [Google Scholar]
- Koussa, M.; Cheknane, A.; Hadji, S.; Haddadi, M.; Noureddine, S. Measured and modelled improvement in solar energy yield from flat plate photovoltaic systems utilizing different tracking systems and under a range of environmental conditions. Appl. Energy 2011, 88, 1756–1771. [Google Scholar] [CrossRef]
- Hosenuzzaman, M.; Rahim, N.; Selvaraj, J.; Hasanuzzaman, M.; Malek, A.; Nahar, A. Global prospects, progress, policies, and environmental impact of solar photovoltaic power generation. Renew. Sustain. Energy Rev. 2015, 41, 284–297. [Google Scholar] [CrossRef]
- Allouhi, A.; Rehman, S.; Buker, M.; Said, Z. Up-to-date literature review on Solar PV systems: Technology progress, market status and R&D. J. Clean. Prod. 2022, 362, 132339. [Google Scholar]
- Obaideen, K.; Abdelkareem, M.; Wilberforce, T.; Elsaid, K.; Sayed, E.; Maghrabie, H.; Olabi, A. Biogas role in achievement of the sustainable development goals: Evaluation, Challenges, and Guidelines. J. Taiwan Inst. Chem. Eng. 2022, 131, 104207. [Google Scholar] [CrossRef]
- Chiu, J.-S.; Zhao, Y.-M.; Zhang, S.; Wuu, D.-S. The role of laser ablated backside contact pattern in efficiency improvement of mono crystalline silicon PERC solar cells. Sol. Energy 2020, 196, 462–467. [Google Scholar] [CrossRef]
- Jiang, L.; Cui, S.; Sun, P.; Wang, Y.; Yang, C. Comparison of monocrystalline and polycrystalline solar modules. In Proceedings of the 2020 IEEE 5th Information Technology and Mechatronics Engineering Conference (ITOEC), Chongqing, China, 12–14 June 2020; pp. 341–344. [Google Scholar]
- Becker, C.; Amkreutz, D.; Sontheimer, T.; Preidel, V.; Lockau, D.; Haschke, J.; Jogschies, L.; Klimm, C.; Merkel, J.; Plocica, P. Polycrystalline silicon thin-film solar cells: Status and perspectives. Sol. Energy Mater. Sol. Cells 2013, 119, 112–123. [Google Scholar] [CrossRef]
- Corcelli, F.; Ripa, M.; Ulgiati, S. End-of-life treatment of crystalline silicon photovoltaic panels. An emergy-based case study. J. Clean. Prod. 2017, 161, 1129–1142. [Google Scholar] [CrossRef]
- Lin, L.; Xu, X.; Chu, C.; Majeed, M.; Yang, J. Mesoporous Amorphous Silicon: A Simple Synthesis of a High-Rate and Long-Life Anode Material for Lithium-Ion Batteries. Angew. Chem. 2016, 55, 14063–14066. [Google Scholar] [CrossRef] [PubMed]
- Kang, H. Crystalline silicon vs. amorphous silicon: The significance of structural differences in photovoltaic applications. IOP Conf. Ser. Earth Environ. Sci. 2021, 726, 012001. [Google Scholar] [CrossRef]
- Gessert, T.; Ali, S. 1.19-cadmium telluride photovoltaic thin film: CdTe. In Comprehensive Renewable Energy; Elsevier: Oxford, UK, 2012; pp. 423–438. [Google Scholar]
- Nikolić, D.; Bojić, M.; Skerlić, J.; Radulović, J.; Taranović, D. A review of non-silicon and new photovoltaics technology for electricity generation. Zb. Međunarodne Konf. O Obnov. Izvorima Električne Energ. 2018, 2, 1–7. [Google Scholar]
- Yao, H.; Wang, J.; Xu, Y.; Zhang, S.; Hou, J. Recent Progress in Chlorinated Organic Photovoltaic Materials. Acc. Chem. Res. 2020, 53, 822–832. [Google Scholar] [CrossRef]
- Chemisana, D. Building integrated concentrating photovoltaics: A review. Renew. Sustain. Energy Rev. 2011, 15, 603–611. [Google Scholar] [CrossRef]
- Shanks, K.; Senthilarasu, S.; Mallick, T. Optics for concentrating photovoltaics: Trends, limits and opportunities for materials and design. Renew. Sustain. Energy Rev. 2016, 60, 394–407. [Google Scholar] [CrossRef] [Green Version]
- Sharma, S.; Jain, K.; Sharma, A. Solar cells: In research and applications—A review. Mater. Sci. Appl. 2015, 6, 1145. [Google Scholar] [CrossRef] [Green Version]
- Goetzberger, A.; Hebling, C.; Schock, H.-W. Photovoltaic materials, history, status and outlook. Mater. Sci. Eng. R Rep. 2003, 40, 1–46. [Google Scholar] [CrossRef]
- El Chaar, L.; El Zein, N. Review of photovoltaic technologies. Renew. Sustain. Energy Rev. 2011, 15, 2165–2175. [Google Scholar] [CrossRef]
- Badawy, W. A review on solar cells from Si-single crystals to porous materials and quantum dots. J. Adv. Res. 2015, 6, 123–132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beaucarne, G. Silicon thin-film solar cells. Adv. OptoElectronics 2007, 2007, 36970. [Google Scholar] [CrossRef]
- Mesquita, D.d.B.; Silva, J.L.d.S.; Moreira, H.S.; Kitayama, M.; Villalva, M.G. A review and analysis of technologies applied in PV modules. In Proceedings of the 2019 IEEE PES Innovative Smart Grid Technologies Conference-Latin America (ISGT Latin America), Gramado, Brazil, 15–18 September 2019; pp. 1–6. [Google Scholar]
- Pérez-Higueras, P.; Muñoz, E.; Almonacid, G.; Vidal, P. High Concentrator PhotoVoltaics efficiencies: Present status and forecast. Renew. Sustain. Energy Rev. 2011, 15, 1810–1815. [Google Scholar] [CrossRef]
- Tan, M.-H.; Chong, K.-K.; Wong, C.-W. Optical characterization of nonimaging dish concentrator for the application of dense-array concentrator photovoltaic system. Appl. Opt. 2014, 53, 475–486. [Google Scholar] [CrossRef]
- Sala, G.; Anton, I.; Arboiro, J.; Luque, A.; Camblor, E.; Mera, E.; Gasson, M.; Cendagorta, M.; Valera, P.; Friend, M. The 480 kWp EUCLIDESTM-THERMIE Power plant: Installation, Set-up and First Results. In Proceedings of the Sixteenth European Photovoltaic Solar Energy Conference, Glasgow, UK, 1–5 May 2020; pp. 2072–2077. [Google Scholar]
- Matsushima, T.; Setaka, T.; Muroyama, S. Concentrating solar module with horizontal reflectors. Sol. Energy Mater. Sol. Cells 2003, 75, 603–612. [Google Scholar] [CrossRef]
- Ameur, A.; Berrada, A.; Loudiyi, K.; Adomatis, R. Performance and energetic modeling of hybrid PV systems coupled with battery energy storage. In Hybrid Energy System Models; Elsevier: Amsterdam, The Netherlands, 2021; pp. 195–238. [Google Scholar]
- Todorov, T.; Bishop, D.; Lee, Y. Materials perspectives for next-generation low-cost tandem solar cells. Sol. Energy Mater. Sol. Cells 2018, 180, 350–357. [Google Scholar] [CrossRef]
- Ramanujam, J.; Singh, U. Copper indium gallium selenide based solar cells–a review. Energy Environ. Sci. 2017, 10, 1306–1319. [Google Scholar] [CrossRef]
- Ma, Q.; Jia, Z.; Meng, L.; Zhang, J.; Zhang, H.; Huang, W.; Yuan, J.; Gao, F.; Wan, Y.; Zhang, Z. Promoting charge separation resulting in ternary organic solar cells efficiency over 17.5%. Nano Energy 2020, 78, 105272. [Google Scholar] [CrossRef]
- Jakhar, S.; Soni, M.; Gakkhar, N. Historical and recent development of concentrating photovoltaic cooling technologies. Renew. Sustain. Energy Rev. 2016, 60, 41–59. [Google Scholar] [CrossRef]
- Hyder, F.; Sudhakar, K.; Mamat, R. Solar PV tree design: A review. Renewable Sustain. Energy Rev. 2018, 82, 1079–1096. [Google Scholar] [CrossRef]
- Verma, A.; Singhal, S. Solar PV performance parameter and recommendation for optimization of performance in large scale grid connected solar PV plant—Case study. J. Energy Power Sources 2015, 2, 40–53. [Google Scholar]
- Praveenkumar, S.; Agyekum, E.; Kumar, A.; Ampah, J.; Afrane, S.; Amjad, F.; Velkin, V. Techno-economics and the identification of environmental barriers to the development of concentrated solar thermal power plants in India. Appl. Sci. 2022, 12, 10400. [Google Scholar] [CrossRef]
- Mansouri, N.; Lashab, A.; Sera, D.; Guerrero, J.; Cherif, A. Large photovoltaic power plants integration: A review of challenges and solutions. Energies 2019, 12, 3798. [Google Scholar] [CrossRef] [Green Version]
- Obaideen, K.; AlMallahi, M.N.; Alami, A.; Ramadan, M.; Abdelkareem, M.; Shehata, N.; Olabi, A. On the contribution of solar energy to sustainable developments goals: Case study on Mohammed bin Rashid Al Maktoum Solar Park. Int. J. 2021, 12, 100123. [Google Scholar] [CrossRef]
- Lumby, B. Utility-Scale Solar Photovoltaic Power Plants: A Project Developer’s Guide; The World Bank: Bretton Woods, NH, USA, 2015. [Google Scholar]
- Benda, V.; Černá, L. PV cells and modules–State of the art, limits and trends. Heliyon 2020, 6, e05666. [Google Scholar] [CrossRef]
- Aghaei, M.; Eskandari, A.; Vaezi, S.; Chopra, S. Solar PV power plants. In Photovoltaic Solar Energy Conversion; Elsevier: Amsterdam, The Netherlands, 2020; pp. 313–348. [Google Scholar]
- Seme, S.; Štumberger, B.; Hadžiselimović, M.; Sredenšek, K. Solar photovoltaic tracking systems for electricity generation: A review. Energies 2020, 13, 4224. [Google Scholar] [CrossRef]
- Díez-Mediavilla, M.; Dieste-Velasco, M.; Rodríguez-Amigo, M.; García-Calderón, T.; Alonso-Tristán, C. Performance of grid-tied PV facilities based on real data in Spain: Central inverter versus string system. Energy Convers. Manag. 2014, 86, 1128–1133. [Google Scholar] [CrossRef]
- Sahu, A.; Yadav, N.; Sudhakar, K. Floating photovoltaic power plant: A review. Renew. Sustain. Energy Rev. 2016, 66, 815–824. [Google Scholar] [CrossRef]
- Ghosh, S.; Nair, A.; Krishnan, S. Techno-economic review of rooftop photovoltaic systems: Case studies of industrial, residential and off-grid rooftops in Bangalore, Karnataka. Renew. Sustain. Energy Rev. 2015, 42, 1132–1142. [Google Scholar] [CrossRef] [Green Version]
- Trattner, A.; Höglinger, M.; Macherhammer, M.; Sartory, M. Renewable hydrogen: Modular concepts from production over storage to the consumer. Chem. Ing. Tech. 2021, 93, 706–716. [Google Scholar] [CrossRef]
- Shankarappa, N.; Ahmed, M.; Shashikiran, N.; Naganagouda, D. Solar photovoltaic systems–applications & configurations. Int. Res. J. Eng. Technol. 2017, 4, 1851–1855. [Google Scholar]
- Tomar, V.; Tiwari, G. Techno-economic evaluation of grid connected PV system for households with feed in tariff and time of day tariff regulation in New Delhi–A sustainable approach. Renew. Sustain. Energy Rev. 2017, 70, 822–835. [Google Scholar] [CrossRef]
- Mamaghani, A.; Escandon, S.; Najafi, B.; Shirazi, A.; Rinaldi, F. Techno-economic feasibility of photovoltaic, wind, diesel and hybrid electrification systems for off-grid rural electrification in Colombia. Renew. Energy 2016, 97, 293–305. [Google Scholar] [CrossRef]
- Marino, C.; Nucara, A.; Panzera, M.; Pietrafesa, M.; Pudano, A. Economic comparison between a stand-alone and a grid connected PV system vs. grid distance. Energies 2020, 13, 3846. [Google Scholar] [CrossRef]
- Praveenkumar, S.; Gulakhmadov, A.; Kumar, A.; Safaraliev, M.; Chen, X. Comparative Analysis for a Solar Tracking Mechanism of Solar PV in Five Different Climatic Locations in South Indian States: A Techno-Economic Feasibility. Sustainability 2022, 14, 11880. [Google Scholar] [CrossRef]
- Agnew, S.; Dargusch, P. Effect of residential solar and storage on centralized electricity supply systems. Nat. Clim. Change 2015, 5, 315–318. [Google Scholar] [CrossRef]
- Gugulothu, R.; Somanchi, N.; Banoth, H.; Banothu, K. A review on solar powered air conditioning system. Procedia Earth Planet. Sci. 2015, 11, 361–367. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Zhang, G.; Lv, G.; Zhang, A.; Wang, R. Performance study of a solar photovoltaic air conditioner in the hot summer and cold winter zone. Sol. Energy 2015, 117, 167–179. [Google Scholar] [CrossRef]
- Liu, Z.; Li, A.; Wang, Q.; Chi, Y.; Zhang, L. Performance study of a quasi grid-connected photovoltaic powered DC air conditioner in a hot summer zone. Appl. Therm. Eng. 2017, 121, 1102–1110. [Google Scholar] [CrossRef]
- Praveenkumar, S.; Gulakhmadov, A.; Agyekum, E.; Alwan, N.; Velkin, V.; Sharipov, P.; Safaraliev, M.; Chen, X. Experimental study on performance enhancement of a photovoltaic module incorporated with CPU heat pipe—A 5E analysis. Sensors 2022, 22, 6367. [Google Scholar] [CrossRef]
- Afshari, A.; Nikolopoulou, C.; Martin, M. Life-Cycle Analysis of Building Retrofits at the Urban Scale—A Case Study in United Arab Emirates. Sustainability 2014, 6, 453–473. [Google Scholar] [CrossRef] [Green Version]
- Charadi, S.; Salbi, A.; Redouane, A.; El Hasnaoui, A. Smart hybrid AC-DC distribution system for solar electric house: Case of an air conditioner system. In Proceedings of the International Conference on Sustainable Renewable Energy Systems and Applications, Tebessa, Algeria, 4–5 December 2019; pp. 1–4. [Google Scholar]
- Tanaka, K.; Makino, Y.; Sakoguchi, E.; Takeoka, A.; Kuwano, Y. Residential solar--powered air conditioners. Electr. Eng. Jpn. 1994, 114, 123–133. [Google Scholar] [CrossRef]
- Postel, S. Water and world population growth. Am. Water Work. Assoc. 2000, 92, 131–138. [Google Scholar] [CrossRef]
- Verma, S.; Mishra, S.; Chowdhury, S.; Gaur, A.; Mohapatra, S.; Soni, A.; Verma, P. Solar PV powered water pumping system–A review. Mater. Today Proc. 2021, 46, 5601–5606. [Google Scholar] [CrossRef]
- Aliyu, M.; Hassan, G.; Said, S.; Siddiqui, M.; Alawami, A.; Elamin, I. A review of solar-powered water pumping systems. Renew. Sustain. Energy Rev. 2018, 87, 61–76. [Google Scholar] [CrossRef]
- Sashidhar, S.; Reddy, V.; Fernandes, B. A single-stage sensorless control of a PV-based bore-well submersible BLDC motor. IEEE J. Emerg. Sel. Top. Power Electron. 2018, 7, 1173–1180. [Google Scholar] [CrossRef]
- Raza, S.; Janajreh, I.; Ghenai, C. Sustainability index approach as a selection criteria for energy storage system of an intermittent renewable energy source. Appl. Energy 2014, 136, 909–920. [Google Scholar] [CrossRef]
- Ramadan, M. A review on coupling Green sources to Green storage (G2G): Case study on solar-hydrogen coupling. Int. J. Hydrog. Energy 2021, 46, 30547–30558. [Google Scholar] [CrossRef]
- Hosseini, S.; Wahid, M. Hydrogen from solar energy, a clean energy carrier from a sustainable source of energy. Int. J. Energy Res. 2020, 44, 4110–4131. [Google Scholar] [CrossRef]
- Park, C.; Koo, M.; Woo, J.; Hong, B.; Shin, J. Economic valuation of green hydrogen charging compared to gray hydrogen charging: The case of South Korea. Int. J. Hydrog. Energy 2022, 47, 14393–14403. [Google Scholar] [CrossRef]
- Howarth, R.; Jacobson, M. How green is blue hydrogen? Energy Sci. Eng. 2021, 9, 1676–1687. [Google Scholar] [CrossRef]
- Olabi, A.; Obaideen, K.; Elsaid, K.; Wilberforce, T.; Sayed, E.; Maghrabie, H.; Abdelkareem, M. Assessment of the pre-combustion carbon capture contribution into sustainable development goals SDGs using novel indicators. Renew. Sustain. Energy Rev. 2022, 153, 111710. [Google Scholar] [CrossRef]
- Atilhan, S.; Park, S.; El-Halwagi, M.; Atilhan, M.; Moore, M.; Nielsen, R. Green hydrogen as an alternative fuel for the shipping industry. Curr. Opin. Chem. Eng. 2021, 31, 100668. [Google Scholar] [CrossRef]
- Khan, M.; Al-Shankiti, I.; Ziani, A.; Idriss, H. Demonstration of green hydrogen production using solar energy at 28% efficiency and evaluation of its economic viability. Sustain. Energy Fuels 2021, 5, 1085–1094. [Google Scholar] [CrossRef]
- Praveenkumar, S.; Agyekum, E.; Ampah, J.; Afrane, S.; Velkin, V.; Mehmood, U.; Awosusi, A. Techno-economic optimization of PV system for hydrogen production and electric vehicle charging stations under five different climatic conditions in India. Int. J. Hydrog. Energy 2022, 47, 38087–38105. [Google Scholar] [CrossRef]
- Vidas, L.; Castro, R. Recent developments on hydrogen production technologies: State-of-the-art review with a focus on green-electrolysis. Appl. Sci. 2021, 11, 11363. [Google Scholar] [CrossRef]
- Kim, J.; Hansora, D.; Sharma, P.; Jang, J.; Lee, J. Toward practical solar hydrogen production–an artificial photosynthetic leaf-to-farm challenge. Chem. Soc. Rev. 2019, 48, 1908–1971. [Google Scholar] [CrossRef]
- Tebibel, H.; Labed, S. System Design and Optimal Management Strategy for Photovoltaic Energy and Hydrogen Production. In Progress in Clean Energy; Springer: Berlin/Heidelberg, Germany, 2015; pp. 513–523. [Google Scholar]
- Compain, P. Solar energy for water desalination. Procedia Eng. 2012, 46, 220–227. [Google Scholar] [CrossRef]
- Shivajirao, P.A. Treatment of distillery wastewater using membrane technologies. Int. J. Adv. Eng. Res. Stud. 2012, 1, 275–283. [Google Scholar]
- Gorjian, S.; Ghobadian, B.; Ebadi, H.; Ketabchi, F.; Khanmohammadi, S. Applications of Solar PV Systems in Desalination Technologies, in: Photovoltaic Solar Energy Conversion; Academic Press Elsevier: Cambridge, MA, USA, 2020; pp. 237–274. [Google Scholar]
- Qasim, M.; Badrelzaman, M.; Darwish, N.; Darwish, N.; Hilal, N. Reverse osmosis desalination: A state-of-the-art review. Desalination 2019, 459, 59–104. [Google Scholar] [CrossRef] [Green Version]
- Curto, D.; Franzitta, V.; Guercio, A. A review of the water desalination technologies. Appl. Sci. 2021, 11, 670. [Google Scholar] [CrossRef]
- Idrees, M. Performance analysis and treatment technologies of reverse osmosis plant–a case study. Case Stud. Chem. Environ. Eng. 2020, 2, 100007. [Google Scholar] [CrossRef]
- Lutchmiah, K.; Verliefde, A.; Roest, K.; Rietveld, L.; Cornelissen, E. Forward osmosis for application in wastewater treatment: A review. Water Res. 2014, 58, 179–197. [Google Scholar] [CrossRef]
- Wlodarczyk, R.; Kwarciak-Kozlowska, A. Treatment of waterborne pathogens by reverse osmosis. In Wlodarczyk Renata; Kwarciak-Kozlowska, A., Ed.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 57–80. [Google Scholar]
- Obaideen, K.; Shehata, N.; Sayed, E.; Abdelkareem, M.; Mahmoud, M.; Olabi, A. The Role of Wastewater Treatment in Achieving Sustainable Development Goals (SDGs) and sustainability guideline. Energy Nexus 2022, 7, 100112. [Google Scholar] [CrossRef]
- Chao, Y.-M.; Liang, T. A feasibility study of industrial wastewater recovery using electrodialysis reversal. Desalination 2008, 221, 433–439. [Google Scholar] [CrossRef]
- Kucera, J. Desalination: Water from Water; John Wiley Sons: Hoboken, NJ, USA, 2019. [Google Scholar]
- Drioli, E.; Ali, A.; Macedonio, F. Membrane distillation: Recent developments and perspectives. Desalination 2015, 356, 56–84. [Google Scholar] [CrossRef]
- Peng, P.; Fane, A.; Li, X. Desalination by membrane distillation adopting a hydrophilic membrane. Desalination 2005, 173, 45–54. [Google Scholar] [CrossRef]
- Albuquerque, F.; Maraqa, M.; Chowdhury, R.; Mauga, T.; Alzard, M. Greenhouse gas emissions associated with road transport projects: Current status, benchmarking, and assessment tools. Transp. Res. Procedia 2020, 48, 2018–2030. [Google Scholar] [CrossRef]
- Liu, L.; Kong, F.; Liu, X.; Peng, Y.; Wang, Q. A review on electric vehicles interacting with renewable energy in smart grid. Renew. Sustain. Energy Rev. 2015, 51, 648–661. [Google Scholar] [CrossRef]
- Arif, S.; Lie, T.; Seet, B.; Ayyadi, S.; Jensen, K. Review of electric vehicle technologies, charging methods, standards and optimization techniques. Electronics 2021, 10, 1910. [Google Scholar] [CrossRef]
- Jungmeier, G.; Canella, L.; Elgowainy, A.; Ehrenberger, S.; Pérez, G.B.; Roye, P.-O.; Lim, O. Evaluation of the Environmental Benefits of the Global EV-Fleet in 40 Countries–A LCA Based Estimation in IEA HEV. In Proceedings of the EVS32 Symposium, Lyon, France, 19–22 May 2019. [Google Scholar]
- Market Snapshot: Battery Electric Vehicles Are Far More Fuel Efficient than Vehicles with Internal Combustion Engines. 2021. Available online: https://www.cer-rec.gc.ca/en/data-analysis/energy-markets/market-snapshots/2021/market-snapshot-battery-electric-vehicles-are-far-more-fuel-efficient-than-vehicles-with-internal-combustion-engines.html (accessed on 22 October 2022).
- Rodriguez, A.S.; de Santana, T.; MacGill, I.; Ekins--Daukes, N.; Reinders, A. A feasibility study of solar PV--powered electric cars using an interdisciplinary modeling approach for the electricity balance, CO2 emissions, and economic aspects: The cases of The Netherlands, Norway, Brazil, and Australia. Prog. Photovolt. Res. Appl. 2020, 28, 517–532. [Google Scholar] [CrossRef] [Green Version]
- Khan, S.; Ahmad, A.; Ahmad, F.; Shemami, M.S.; Alam, M.S.; Khateeb, S. A comprehensive review on solar powered electric vehicle charging system. Smart Sci. 2018, 6, 54–79. [Google Scholar] [CrossRef]
- Olabi, V.; Wilberforce, T.; Elsaid, K.; Sayed, E.; Abdelkareem, M. Impact of COVID-19 on the Renewable Energy Sector and Mitigation Strategies. Chem. Eng. Technol. 2022, 45, 558–571. [Google Scholar] [CrossRef]
- Elsaid, K.; Olabi, V.; Sayed, E.; Wilberforce, T.; Abdelkareem, M. Effects of COVID-19 on the environment: An overview on air, water, wastewater, and solid waste. J. Environ. Manag. 2021, 292, 112694. [Google Scholar] [CrossRef]
Energy | Advantages | Disadvantages |
---|---|---|
Biomass |
|
|
Geothermal energy |
|
|
Hydro-energy |
|
|
Solar energy |
|
|
Wind energy |
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Obaideen, K.; Olabi, A.G.; Al Swailmeen, Y.; Shehata, N.; Abdelkareem, M.A.; Alami, A.H.; Rodriguez, C.; Sayed, E.T. Solar Energy: Applications, Trends Analysis, Bibliometric Analysis and Research Contribution to Sustainable Development Goals (SDGs). Sustainability 2023, 15, 1418. https://doi.org/10.3390/su15021418
Obaideen K, Olabi AG, Al Swailmeen Y, Shehata N, Abdelkareem MA, Alami AH, Rodriguez C, Sayed ET. Solar Energy: Applications, Trends Analysis, Bibliometric Analysis and Research Contribution to Sustainable Development Goals (SDGs). Sustainability. 2023; 15(2):1418. https://doi.org/10.3390/su15021418
Chicago/Turabian StyleObaideen, Khaled, Abdul Ghani Olabi, Yaser Al Swailmeen, Nabila Shehata, Mohammad Ali Abdelkareem, Abdul Hai Alami, Cristina Rodriguez, and Enas Taha Sayed. 2023. "Solar Energy: Applications, Trends Analysis, Bibliometric Analysis and Research Contribution to Sustainable Development Goals (SDGs)" Sustainability 15, no. 2: 1418. https://doi.org/10.3390/su15021418
APA StyleObaideen, K., Olabi, A. G., Al Swailmeen, Y., Shehata, N., Abdelkareem, M. A., Alami, A. H., Rodriguez, C., & Sayed, E. T. (2023). Solar Energy: Applications, Trends Analysis, Bibliometric Analysis and Research Contribution to Sustainable Development Goals (SDGs). Sustainability, 15(2), 1418. https://doi.org/10.3390/su15021418