Thermoeconomic Optimization of a Polygeneration System Based on a Solar-Assisted Desiccant Cooling
Abstract
:1. Introduction
2. Materials and Methods
2.1. System Layout
2.2. System Model
2.2.1. PV Panel Model
2.2.2. Inverter Model
2.2.3. Energy Model
2.2.4. Environmental Model
2.2.5. Economic Model
3. Results
3.1. Parametric Study
3.1.1. Parametric Study: Secondary TES Top Temperature
3.1.2. Parametric Study: Boiler Outlet Temperature
3.1.3. Parametric Study: Boiler Power Capacity
3.2. Thermoeconomic Optimization
3.3. Yearly Results
3.4. Sensitivity Analysis
3.4.1. Sensitivity Analysis: Purchase Cost of Electricity
3.4.2. Sensitivity Analysis: Purchase Cost of Natural Gas
3.4.3. Sensitivity Analysis: Sell-Back Cost of Electricity
4. Conclusions
- The top temperature of the secondary TES and the boiler outlet temperature and power capacity were defined as 49 ℃, 51 ℃, and 12 kW, respectively.
- The optimum SPB value of 20.68 years was obtained for 9 PVT collectors, 25 PV panels, and a primary and secondary TES volume of 1.35 m3 and 0.25 m3, respectively.
- The optimal structure showed a total energy efficiency of 0.49 for the solar collectors, 0.16 for the solar panels, and a desiccant air conditioning coefficient of performance of 0.37
- The yearly results showed that 12.64 MWh/yr of electricity was injected into the grid.
- The increase in the electricity purchase cost makes the proposed polygeneration system economically profitable. On the other hand, the decrease in the electricity sell-back cost reduces its feasibility. The increase in the natural gas cost is not very relevant to the system’s profitability decision making.
- The highest prices of electricity and natural gas (+250%) and the sell-back cost of electricity (base case) can reduce the SPB by up to 85%.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Perkins-Kirkpatrick, S.; Green, D. Chapter 2—Extreme Heat and Climate Change. In Heat Exposure and Human Health in the Context of Climate Change; Elsevier: Amsterdam, The Netherlands, 2023; pp. 5–36. ISBN 978-0-12-819080-7. [Google Scholar]
- Borie, M.; Mahony, M.; Obermeister, N.; Hulme, M. Knowing like a Global Expert Organization: Comparative Insights from the IPCC and IPBES. Glob. Environ. Chang. 2021, 68, 102261. [Google Scholar] [CrossRef]
- Köhl, M.; Linser, S.; Prins, K.; Talarczyk, A. The EU Climate Package “Fit for 55”—A Double-Edged Sword for Europeans and Their Forests and Timber Industry. For. Policy Econ. 2021, 132, 102596. [Google Scholar] [CrossRef]
- Saint Akadiri, S.; Alola, A.A.; Akadiri, A.C.; Alola, U.V. Renewable Energy Consumption in EU-28 Countries: Policy toward Pollution Mitigation and Economic Sustainability. Energy Policy 2019, 132, 803–810. [Google Scholar] [CrossRef]
- Calise, F.; de Notaristefani di Vastogirardi, G.; Dentice d’Accadia, M.; Vicidomini, M. Simulation of Polygeneration Systems. Energy 2018, 163, 290–337. [Google Scholar] [CrossRef]
- Gimelli, A.; Muccillo, M. Development of a 1 KW Micro-Polygeneration System Fueled by Natural Gas for Single-Family Users. Energies 2021, 14, 8372. [Google Scholar] [CrossRef]
- Khoshgoftar Manesh, M.H.; Mousavi Rabeti, S.A.; Nourpour, M.; Said, Z. Energy, Exergy, Exergoeconomic, and Exergoenvironmental Analysis of an Innovative Solar-Geothermal-Gas Driven Polygeneration System for Combined Power, Hydrogen, Hot Water, and Freshwater Production. Sustain. Energy Technol. Assess. 2022, 51, 101861. [Google Scholar] [CrossRef]
- Calise, F.; Cappiello, F.L.; Cimmino, L.; Dentice d’Accadia, M.; Vicidomini, M. Dynamic Simulation and Thermoeconomic Analysis of a Hybrid Renewable System Based on PV and Fuel Cell Coupled with Hydrogen Storage. Energies 2021, 14, 7657. [Google Scholar] [CrossRef]
- Sawant, P.; Villegas Mier, O.; Schmidt, M.; Pfafferott, J. Demonstration of Optimal Scheduling for a Building Heat Pump System Using Economic-MPC. Energies 2021, 14, 7953. [Google Scholar] [CrossRef]
- Calise, F.; Dentice D’Accadia, M. Simulation of Polygeneration Systems. Energies 2016, 9, 925. [Google Scholar] [CrossRef] [Green Version]
- Alqaed, S.; Fouda, A.; Elattar, H.F.; Mustafa, J.; Almehmadi, F.A.; Refaey, H.A.; Alharthi, M.A. Performance Evaluation of a Solar Heat-Driven Poly-Generation System for Residential Buildings Using Various Arrangements of Heat Recovery Units. Energies 2022, 15, 8750. [Google Scholar] [CrossRef]
- Almehmadi, F.A.; Elattar, H.F.; Fouda, A.; Alqaed, S.; Mustafa, J.; Alharthi, M.A.; Refaey, H.A. Energy Performance Assessment of a Novel Solar Poly-Generation System Using Various ORC Working Fluids in Residential Buildings. Energies 2022, 15, 8286. [Google Scholar] [CrossRef]
- Jana, K.; Ray, A.; Majoumerd, M.M.; Assadi, M.; De, S. Polygeneration as a Future Sustainable Energy Solution—A Comprehensive Review. Appl. Energy 2017, 202, 88–111. [Google Scholar] [CrossRef]
- Chabaud, A.; Eynard, J.; Grieu, S. A New Approach to Energy Resources Management in a Grid-Connected Building Equipped with Energy Production and Storage Systems: A Case Study in the South of France. Energy Build. 2015, 99, 9–31. [Google Scholar] [CrossRef]
- Figaj, R.; Żołądek, M.; Homa, M.; Pałac, A. A Novel Hybrid Polygeneration System Based on Biomass, Wind and Solar Energy for Micro-Scale Isolated Communities. Energies 2022, 15, 6331. [Google Scholar] [CrossRef]
- Ceglia, F.; Macaluso, A.; Marrasso, E.; Roselli, C.; Vanoli, L. Energy, Environmental, and Economic Analyses of Geothermal Polygeneration System Using Dynamic Simulations. Energies 2020, 13, 4603. [Google Scholar] [CrossRef]
- Buonomano, A.; Calise, F.; d’Accadia, M.D.; Vicidomini, M. A Hybrid Renewable System Based on Wind and Solar Energy Coupled with an Electrical Storage: Dynamic Simulation and Economic Assessment. Energy 2018, 155, 174–189. [Google Scholar] [CrossRef]
- Calise, F.; Figaj, R.D.; Vanoli, L. A Novel Polygeneration System Integrating Photovoltaic/Thermal Collectors, Solar Assisted Heat Pump, Adsorption Chiller and Electrical Energy Storage: Dynamic and Energy-Economic Analysis. Energy Convers. Manag. 2017, 149, 798–814. [Google Scholar] [CrossRef]
- Comodi, G.; Giantomassi, A.; Severini, M.; Squartini, S.; Ferracuti, F.; Fonti, A.; Nardi Cesarini, D.; Morodo, M.; Polonara, F. Multi-Apartment Residential Microgrid with Electrical and Thermal Storage Devices: Experimental Analysis and Simulation of Energy Management Strategies. Appl. Energy 2015, 137, 854–866. [Google Scholar] [CrossRef]
- Picallo-Perez, A.; Sala-Lizarraga, J.M. Design and Operation of a Polygeneration System in Spanish Climate Buildings under an Exergetic Perspective. Energies 2021, 14, 7636. [Google Scholar] [CrossRef]
- Ghaem Sigarchian, S.; Malmquist, A.; Martin, V. Design Optimization of a Small-Scale Polygeneration Energy System in Different Climate Zones in Iran. Energies 2018, 11, 1115. [Google Scholar] [CrossRef]
- Experimental Assessment of Thermoelectric Cooling on the Efficiency of PV Module. Int. J. Renew. Energy Res. 2022. [CrossRef]
- Praveenkumar, S.; Gulakhmadov, A.; Agyekum, E.B.; Alwan, N.T.; Velkin, V.I.; Sharipov, P.; Safaraliev, M.; Chen, X. Experimental Study on Performance Enhancement of a Photovoltaic Module Incorporated with CPU Heat Pipe—A 5E Analysis. Sensors 2022, 22, 6367. [Google Scholar] [CrossRef] [PubMed]
- Stadler, M.; Kloess, M.; Groissböck, M.; Cardoso, G.; Sharma, R.; Bozchalui, M.C.; Marnay, C. Electric Storage in California’s Commercial Buildings. Appl. Energy 2013, 104, 711–722. [Google Scholar] [CrossRef] [Green Version]
- Singh, S.; Singh, M.; Kaushik, S.C. Feasibility Study of an Islanded Microgrid in Rural Area Consisting of PV, Wind, Biomass and Battery Energy Storage System. Energy Convers. Manag. 2016, 128, 178–190. [Google Scholar] [CrossRef]
- Destro, N.; Benato, A.; Stoppato, A.; Mirandola, A. Components Design and Daily Operation Optimization of a Hybrid System with Energy Storages. Energy 2016, 117, 569–577. [Google Scholar] [CrossRef]
- Gesteira, L.G.; Uche, J. A Novel Polygeneration System Based on a Solar-Assisted Desiccant Cooling System for Residential Buildings: An Energy and Environmental Analysis. Sustainability 2022, 14, 3449. [Google Scholar] [CrossRef]
- Pina, E.A.; Lozano, M.A.; Serra, L.M. A Multiperiod Multiobjective Framework for the Synthesis of Trigeneration Systems in Tertiary Sector Buildings. Int. J. Energy Res. 2019, 44, 1140–1166. [Google Scholar] [CrossRef]
- TRNSYS: A Transient System Simulation Program; Solar Energy Laboratory, University of Wisconsin: Madison, WI, USA, 2006.
- Duffie, J.A.; Beckman, W.A. Solar Engineering of Thermal Processes; John Wiley & Sons: New York, NY, USA, 1991. [Google Scholar]
- Eckstein, J.H. Detailed Modeling of Photovoltaic Components. Master’s Thesis, University of Wisconsin, Solar Energy Laboratory, Madison, WI, USA, 1990. [Google Scholar]
- Buonomano, A.; Calise, F.; Vicidomini, M. Design, Simulation and Experimental Investigation of a Solar System Based on PV Panels and PVT Collectors. Energies 2016, 9, 497. [Google Scholar] [CrossRef]
- Instituto para la Diversificación y Ahorro de la Energia (IDAE). CO2 Emission Factors and Primary Energy Coefficients for Different Final Energy Sources Consumed in the Building Sector in Spain; IDAE: Madrid, Spain, 2014. [Google Scholar]
- Spanish Ministry of Development. Updating of the Energy Saving Document DB-HE of the Technical Building Code. 2019. Available online: https://www.codigotecnico.org/pdf/Documentos/HE/DBHE.pdf (accessed on 1 October 2021).
- Pinto, E.S.; Serra, L.M.; Lázaro, A. Optimization of the Design of Polygeneration Systems for the Residential Sector under Different Self-consumption Regulations. Int. J. Energy Res. 2020, 44, 11248–11273. [Google Scholar] [CrossRef]
- Red Eléctrica Española (REE). CO2 Emissions of Electricity Generation in Spain; REE: Madrid, Spain, 2021. [Google Scholar]
- Calise, F.; Cappiello, F.L.; Dentice d’Accadia, M.; Vicidomini, M. Dynamic Simulation, Energy and Economic Comparison between BIPV and BIPVT Collectors Coupled with Micro-Wind Turbines. Energy 2020, 191, 116439. [Google Scholar] [CrossRef]
- Calise, F.; Cappiello, F.L.; Dentice d’Accadia, M.; Petrakopoulou, F.; Vicidomini, M. A Solar-Driven 5th Generation District Heating and Cooling Network with Ground-Source Heat Pumps: A Thermo-Economic Analysis. Sustain. Cities Soc. 2022, 76, 103438. [Google Scholar] [CrossRef]
- Calise, F.; Dentice d’Accadia, M.; Figaj, R.D.; Vanoli, L. A Novel Solar-Assisted Heat Pump Driven by Photovoltaic/Thermal Collectors: Dynamic Simulation and Thermoeconomic Optimization. Energy 2016, 95, 346–366. [Google Scholar] [CrossRef]
- Instituto para la Diversificación y Ahorro de la Energía (IDAE). Biomass Price Report for Thermal Uses; IDEA: Madrid, Spain, 2020. [Google Scholar]
- Acevedo, L.; Uche, J.; Del Almo, A.; Círez, F.; Usón, S.; Martínez, A.; Guedea, I. Dynamic Simulation of a Trigeneration Scheme for Domestic Purposes Based on Hybrid Techniques. Energies 2016, 9, 1013. [Google Scholar] [CrossRef] [Green Version]
- Angrisani, G.; Roselli, C.; Sasso, M.; Tariello, F. Dynamic Performance Assessment of a Micro-Trigeneration System with a Desiccant-Based Air Handling Unit in Southern Italy Climatic Conditions. Energy Convers. Manag. 2014, 80, 188–201. [Google Scholar] [CrossRef]
- Angrisani, G.; Roselli, C.; Sasso, M. Experimental Assessment of the Energy Performance of a Hybrid Desiccant Cooling System and Comparison with Other Air-Conditioning Technologies. Appl. Energy 2015, 138, 533–545. [Google Scholar] [CrossRef]
- Buonomano, A.; Calise, F.; Ferruzzi, G.; Vanoli, L. A Novel Renewable Polygeneration System for Hospital Buildings: Design, Simulation and Thermo-Economic Optimization. Appl. Therm. Eng. 2014, 67, 43–60. [Google Scholar] [CrossRef]
- Calise, F.; Cappiello, F.L.; Vanoli, R.; Vicidomini, M. Economic Assessment of Renewable Energy Systems Integrating Photovoltaic Panels, Seawater Desalination and Water Storage. Appl. Energy 2019, 253, 113575. [Google Scholar] [CrossRef]
- Mouaky, A.; Rachek, A. Thermodynamic and Thermo-Economic Assessment of a Hybrid Solar/Biomass Polygeneration System under the Semi-Arid Climate Conditions. Renew. Energy 2020, 156, 14–30. [Google Scholar] [CrossRef]
- Uche, J.; Acevedo, L.; Círez, F.; Usón, S.; Martínez-Gracia, A.; Bayod-Rújula, Á.A. Analysis of a Domestic Trigeneration Scheme with Hybrid Renewable Energy Sources and Desalting Techniques. J. Clean. Prod. 2019, 212, 1409–1422. [Google Scholar] [CrossRef] [Green Version]
- Gesteira, L.G.; Uche, J.; de Oliveira Rodrigues, L.K. Residential Sector Energy Demand Estimation for a Single-Family Dwelling: Dynamic Simulation and Energy Analysis. J. Sustain. Dev. Energy Water Environ. Syst. 2021, 9, 1–18. [Google Scholar] [CrossRef]
- Serra, L.M.; Lozano, M.-A.; Ramos, J.; Ensinas, A.V.; Nebra, S.A. Polygeneration and Efficient Use of Natural Resources. Energy 2009, 34, 575–586. [Google Scholar] [CrossRef]
- Wetter, M. GenOpt—A Generic Optimization Program. In Proceedings of the Seventh International IBPSA Conference, Rio de Janeiro, Brazil, 13–15 August 2001; pp. 601–608. [Google Scholar]
- Hooke, R.; Jeeves, T.A. “Direct Search” Solution of Numerical and Statistical Problems. J. ACM 1961, 8, 212–229. [Google Scholar] [CrossRef]
Component | Parameter | Symbol | Value | Unit |
---|---|---|---|---|
PV | Slope | θS | 35 | ° |
Azimuth | θA | 0 | ° | |
Module area | APV | 1.93 | m2 | |
Short-circuit current at reference conditions | Isc,ref | 9.38 | A | |
Open-circuit voltage at reference conditions | Voc,ref | 46.2 | V | |
Reference cell temperature | Tc,ref | 25 | ℃ | |
Reference insolation | GT,ref | 1 | kW/m2 | |
Voltage at max power point and reference conditions | Vmp,ref | 37.5 | V | |
Current at max power point and reference conditions | Imp,ref | 8.81 | A | |
Temperature coefficient of Isc at reference condition | μIsc | 0.0032 | 1/℃ | |
Temperature coefficient of Voc at reference condition | μvoc | 25 | ℃ | |
Module temperature at NOCT | Tc,NOCT | 45 | ℃ |
Period | Hours | cel,fix (EUR/kWy) | cel,var (EUR/kWh) |
---|---|---|---|
P1 | 14–23 | 47.816 | 0.173941 |
P2 | 1, 8–13, 24 | 0.099554 | |
P3 | 2–7 | 0.076838 |
cng,fix (EUR/y) | cng,var (EUR/kWh) |
---|---|
61.8 | 0.063125 |
Variables | Ncoll | Npan | VTES1 | VTES2 |
---|---|---|---|---|
Initial Value | 15 | 15 | 2.5 | 0.15 |
Minimum Value | 1 | 1 | 0.3 | 0.05 |
Maximum Value | 30 | 25 | 5 | 0.3 |
Step Size | 1 | 1 | 0.1 | 0.05 |
Parameter | Symbol | Value | Unit |
---|---|---|---|
Freshwater demand | mFW,dem | 151 | m3/yr |
Electricity demand | Pel,dem | 5.11 | MWh/yr |
DHW demand | QDHW,dem | 1.26 | MWh/yr |
Cooling demand | Qcool,dem | 1.45 | MWh/yr |
Heating demand | Qheat,dem | 0.94 | MWh/yr |
RO freshwater production | mRO | 151 | m3/yr |
PV power production | PPV | 16.81 | MWh/yr |
PVT power production | PPVT | 2.91 | MWh/yr |
Power loss | Ploss | 1.97 | MWh/yr |
Total power production | Ptot,prod | 17.75 | MWh/yr |
PVT heat production | QPVT | 9.53 | MWh/yr |
Biomass boiler production | Qboiler | 1.54 | MWh/yr |
Air heater dissipation | QAH | 1.18 | MWh/yr |
Heat loss | Qloss | 3.13 | MWh/yr |
Total useful heat production | Qtot,prod | 6.75 | MWh/yr |
PV efficiency | ηPV | 0.16 | – |
PVT efficiency | ηPVT | 0.49 | – |
DAC thermal COP | COPDAC | 0.37 | – |
Primary energy saving | PES | 12.9 | MWh |
CO2 saving | CO2 | 1.29 | tonCO2 |
Simple payback | SPB | 20.69 | yr |
Parameter | Case 1 | Case 2 | Case 3 | Case 4 | Case 5 |
---|---|---|---|---|---|
Electricity purchase cost | +50% | +100% | +150% | +200% | +250% |
Natural gas purchase cost | +50% | +100% | +150% | +200% | +250% |
Electricity sell-back cost | −10% | −20% | −30% | −40% | −50% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gesteira, L.G.; Uche, J.; Cappiello, F.L.; Cimmino, L. Thermoeconomic Optimization of a Polygeneration System Based on a Solar-Assisted Desiccant Cooling. Sustainability 2023, 15, 1516. https://doi.org/10.3390/su15021516
Gesteira LG, Uche J, Cappiello FL, Cimmino L. Thermoeconomic Optimization of a Polygeneration System Based on a Solar-Assisted Desiccant Cooling. Sustainability. 2023; 15(2):1516. https://doi.org/10.3390/su15021516
Chicago/Turabian StyleGesteira, Luis Gabriel, Javier Uche, Francesco Liberato Cappiello, and Luca Cimmino. 2023. "Thermoeconomic Optimization of a Polygeneration System Based on a Solar-Assisted Desiccant Cooling" Sustainability 15, no. 2: 1516. https://doi.org/10.3390/su15021516
APA StyleGesteira, L. G., Uche, J., Cappiello, F. L., & Cimmino, L. (2023). Thermoeconomic Optimization of a Polygeneration System Based on a Solar-Assisted Desiccant Cooling. Sustainability, 15(2), 1516. https://doi.org/10.3390/su15021516