The Impact of Commercial Medical Insurance Participation on Household Debt
Abstract
:1. Introduction
2. Theoretical Framework and Hypotheses
2.1. Mechanisms of Commercial Medical Insurance
2.2. Households’ Heterogeneity Impact
2.2.1. Difference between Urban and Rural Areas
2.2.2. Age Differences of Household Heads
2.2.3. Health Differences of Household Members
3. Data Source, Variable Selection, and Descriptive Statistics
3.1. Data Source
3.2. Variable Selection
3.2.1. Explained Variable
3.2.2. Explanatory Variable
3.2.3. Control Variables
3.3. Model Design
4. Empirical Results
4.1. Descriptive Statistics
4.2. Regression Results
4.2.1. Household Indebtedness or Not-Indebtedness
4.2.2. Household Indebtedness Degree
4.2.3. Difference between Urban and Rural Areas
4.2.4. Age Differences of Household Heads
4.2.5. Health Differences of Household Members
4.3. Robustness Test
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mishkin, F.S. The Household Balance Sheet and the Great Depression. J. Econ. Hist. 1978, 38, 918–937. [Google Scholar] [CrossRef]
- Lu, X.; Guo, J.; Gan, L. International Comparison of Household Asset Allocation: Micro-Evidence from Cross-Country Comparisons. Emerg. Mark. Rev. 2020, 43, 100691. [Google Scholar] [CrossRef]
- Gallagher, E.A.; Gopalan, R.; Grinstein-Weiss, M. The Effect of Health Insurance on Home Payment Delinquency: Evidence from ACA Marketplace Subsidies. J. Public Econ. 2019, 172, 67–83. [Google Scholar] [CrossRef]
- Finkelstein, A.; Taubman, S.; Wright, B.; Bernstein, M.; Gruber, J.; Newhouse, J.P.; Allen, H.; Baicker, K.; Oregon Health Study Group. The Oregon Health Insurance Experiment: Evidence from the First Year. Q. J. Econ. 2012, 127, 1057–1106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gross, T.; Notowidigdo, M.J. Health Insurance and the Consumer Bankruptcy Decision: Evidence from Expansions of Medicaid. J. Public Econ. 2011, 95, 767–778. [Google Scholar] [CrossRef]
- Cheung, D.; Padieu, Y. Heterogeneity of the Effects of Health Insurance on Household Savings: Evidence from Rural China. World Dev. 2015, 66, 84–103. [Google Scholar] [CrossRef] [Green Version]
- Chou, S.Y.; Liu, J.T.; Hammitt, J.K. National Health Insurance and Precautionary Saving: Evidence from Taiwan. J. Public Econ. 2003, 87, 1873–1894. [Google Scholar] [CrossRef]
- Bai, C.E.; Wu, B. Health Insurance and Consumption: Evidence from China’s New Cooperative Medical Scheme. J. Comp. Econ. 2014, 42, 450–469. [Google Scholar] [CrossRef]
- Gormleyt, T.; Liu, H.; Zhou, G. Limited Participation and Consumption-Saving Puzzles: A Simple Explanation and the Role of Insurance. J. Financ. Econ. 2010, 96, 331–344. [Google Scholar] [CrossRef] [Green Version]
- Atella, V.; Brunetti, M.; Maestas, N. Household Portfolio Choices, Health Status and Health Care Systems: A Cross-Country Analysis Based on SHARE. J. Bank. Financ. 2012, 36, 1320–1335. [Google Scholar] [CrossRef]
- Kantor, S.E.; Fishback, P.V. Precautionary Saving, Insurance and Origins of Workers’ Compensation. J. Polit. Econ. 1996, 104, 419–442. [Google Scholar] [CrossRef]
- Hubbard, R.G.; Skinner, J.; Zeldes, S.P. Precautionary Saving and Social Insurance. J. Polit. Econ. 1995, 103, 360–399. [Google Scholar] [CrossRef] [Green Version]
- Barcellos, S.H.; Jacobson, M. The Effects of Medicare on Medical Expenditure Risk and Financial Strain. Am. Econ. J. Econ. Policy 2015, 7, 41–70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gruber, J.; Yelowitz, A. Public Health Insurance and Private Savings. J. Polit. Econ. 1999, 107, 1249–1274. [Google Scholar] [CrossRef]
- Wang, S.; Liu, A.; Guo, W. Public and Commercial Medical Insurance Enrollment Rates of Rural-to-Urban Migrants in China. Front. Public Health 2021, 9, 749330. [Google Scholar] [CrossRef]
- Choi, W.I.; Shi, H.; Bian, Y.; Hu, H. Development of Commercial Health Insurance in China: A Systematic Literature Review. Biomed Res. Int. 2018, 30, 3163746. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, B.C.; Xu, X.N.; Zhao, J.C.; Zhang, M. Influence of Internet Use on Commercial Health Insurance of Chinese Residents. Front. Public Health 2022, 10, 907124. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Chen, H.; Chen, Y.; Li, Z. Exploring the Relationship Between Migrants’ Purchasing of Commercial Medical Insurance and Urbanisation in China. Health Serv. Res. 2018, 18, 1–7. [Google Scholar] [CrossRef]
- Bressan, S.; Pace, N.; Pelizzon, L. Health Status and Portfolio Choice: Is their Relationship Economically Relevant? Int. Rev. Financ. Anal. 2014, 32, 109–122. [Google Scholar] [CrossRef] [Green Version]
- Leland, H.E. Saving and Uncertainty: The Precautionary Demand for Saving. Uncertain. Econ. 1968, 82, 465–473. [Google Scholar] [CrossRef]
- Browning, M.; Lusardi, A. Household Saving: Micro Theories and Micro Facts. J. Econ. Lit. 1996, 34, 1797–1855. [Google Scholar]
- Deaton, A. Saving and Liquidity Constraints. Econom. 1991, 59, 1221–1248. [Google Scholar] [CrossRef]
- Carroll, C.D.; Samwick, A.A. The Nature of Precautionary Wealth. J. Monet. Econ. 1997, 40, 41–71. [Google Scholar] [CrossRef] [Green Version]
- Islam, A.; Maitra, P. Health Shocks and Consumption Smoothing in Rural Households: Does Microcredit Have a Role to Play? J. Dev. Econ. 2012, 97, 232–243. [Google Scholar] [CrossRef]
- Flavin, M.A. The Adjustment of Consumption to Changing Expectations About Future Income. J. Polit. Econ. 1981, 89, 974–1009. [Google Scholar] [CrossRef] [Green Version]
- Lewis, A. Economic Development with Unlimited Supplies of Labour. Manch. Sch. Econ. Soc. Stud. 1954, 22, 139–191. [Google Scholar] [CrossRef]
- Vendryes, T. Migration Constraints and Development: Hukou and Capital Accumulation in China. China Econ. Rev. 2011, 22, 669–692. [Google Scholar] [CrossRef]
- Chen, B.; Lu, M.; Zhong, N. How Urban Segregation Distorts Chinese Migrants’ Consumption? World Dev. 2015, 70, 133–146. [Google Scholar] [CrossRef]
- Li, Y.; Wang, X.; Zhu, Q.; Zhao, H. Assessing the Spatial and Temporal Differences in the Impacts of Factor Allocation and Urbanization on Urban–Rural Income Disparity in China, 2004–2010. Habitat Int. 2014, 42, 76–82. [Google Scholar] [CrossRef]
- Abay, K.A.; Koru, B.; Chamberlin, J.; Berhane, G. Does Rainfall Variability Explain Low Uptake of Agricultural Credit? Evidence from Ethiopia. Eur. Rev. Agric. Econ. 2022, 49, 182–207. [Google Scholar] [CrossRef]
- Samuelson, P.A. Lifetime Portfolio Selection by Dynamic Stochastic Programming. Rev. Econ. Stat. 1969, 51, 239–246. [Google Scholar] [CrossRef]
- Bodie, Z.; Merton, R.C.; Samuelson, W.F. Labor Supply Flexibility and Portfolio Choice in a Life Cycle Model. J. Econ. Dyn. Control 1992, 16, 427–449. [Google Scholar] [CrossRef] [Green Version]
- Gourinchas, P.O.; Parker, J.A. Consumption over the Life Cycle. Econom. 2002, 70, 47–89. [Google Scholar] [CrossRef] [Green Version]
- Merton, R.C. Lifetime Portfolio Selection Under Uncertainty: The Continuous-Time Case. Rev. Econ. Stat. 1969, 51, 247–257. [Google Scholar] [CrossRef] [Green Version]
- Bodie, Z.; Detemple, J.B.; Otruba, S.; Walter, S. Optimal Consumption-Portfolio Choices and Retirement Planning. J. Econ. Dyn. Control. 2004, 28, 1115–1148. [Google Scholar] [CrossRef]
- Riley Jr., W.B.; Chow, K.V. Asset Allocation and Individual Risk Aversion. Financ. Anal. J. 1992, 48, 32–37. [Google Scholar] [CrossRef]
- Grossman, M. On the Concept of Health Capital and the Demand for Health. J. Polit. Econ. 1972, 80, 223–255. [Google Scholar] [CrossRef] [Green Version]
- Berkowitz, M.K.; Qiu, J. A Further Look at Household Portfolio Choice and Health Status. J. Bank. Financ. 2006, 30, 1201–1217. [Google Scholar] [CrossRef]
- Alam, K.; Mahal, A. Economic Impacts of Health Shocks on Households in Low and Middle Income Countries: A Review of the Literature. Glob. Health 2014, 10, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Rosen, H.S.; Wu, S. Portfolio Choice and Health Status. J. Financ. Econ. 2004, 72, 457–484. [Google Scholar] [CrossRef] [Green Version]
- Brown, S.; Garino, G.; Karl, T.V. Household Debt and Attitudes Toward Risk. Rev. Income Wealth 2013, 59, 283–304. [Google Scholar] [CrossRef]
- Iacoviello, M. Household Debt and Income Inequality, 1963–2003. J. Money Credit Bank. 2008, 40, 929–965. [Google Scholar] [CrossRef] [Green Version]
- Becker, T.A.; Shabani, R. Outstanding Debt and the Household Portfolio. Rev. Financ. Stud. 2010, 23, 2900–2934. [Google Scholar] [CrossRef]
- Ogawa, K.; Wan, J. Household Debt and Consumption: A Quantitative Analysis Based on Household Micro Data for Japan. J. Hous. Econ. 2007, 16, 127–142. [Google Scholar] [CrossRef]
- Cole, S.; Sampson, T.; Zia, B. Prices or Knowledge? What Drives Demand for Financial Services in Emerging Markets? J. Financ. 2011, 66, 1933–1967. [Google Scholar] [CrossRef]
- Klapper, L.; Lusardi, A.; Panos, G.A. Financial Literacy and its Consequences: Evidence from Russia during the Financial Crisis. J. Bank. Financ. 2013, 37, 3904–3923. [Google Scholar] [CrossRef]
- Lusardi, A.; Tufano, P. Debt Literacy, Financial Experiences, and Overindebtedness. J. Pension Econ. Financ. 2015, 14, 332–368. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Wan, G.H. Liquidity Constraint, Uncertainty and Household Consumption in China. Appl. Econ. 2004, 36, 2221–2229. [Google Scholar] [CrossRef]
- Fabbri, D.; Padula, M. Does Poor Legal Enforcement Make Households Credit-Constrained? J. Bank. Financ. 2004, 28, 2369–2397. [Google Scholar] [CrossRef]
- Mazumder, B.; Miller, S. The Effects of the Massachusetts Health Reform on Household Financial Distress. Am. Econ. J. Econ. Policy 2016, 8, 284–313. [Google Scholar] [CrossRef]
Variables | Meaning | N | Mean | SD | Min | Max |
---|---|---|---|---|---|---|
debt_or_not | Household indebtedness or not (1: indebtedness; 0: non-indebtedness) | 11,315 | 0.2977 | 0.4573 | 0 | 1 |
debt degree | The degree of household debt | 11,315 | 0.1873 | 1.6193 | 0 | 90.1786 |
CMI_hh | Commercial medical insurance participation (1: participation; 0: non-participation) | 11,315 | 0.1158 | 0.3200 | 0 | 1 |
rural | Household geographic location (1: rural; 0: urban) | 11,315 | 0.2220 | 0.4156 | 0 | 1 |
income | Household income (take natural logarithm) | 11,315 | 4.7019 | 0.1525 | 0 | 6.3986 |
house | Housing status | 11,315 | 1.2014 | 0.5038 | 0 | 9 |
age | Age of household head | 11,315 | 54.0681 | 14.8414 | 16 | 117 |
gender | Gender of household head (1: male; 0: female) | 11,315 | 0.7681 | 0.4221 | 0 | 1 |
marriage | Marriage status of household head (1: married; 0: unmarried) | 11,315 | 0.9319 | 0.2520 | 0 | 1 |
education | Education level of household head | 11,315 | 3.7689 | 1.8176 | 1 | 9 |
risk attitude | Risk attitude of household head | 11,315 | 4.0785 | 1.1850 | 1 | 5 |
financial knowledge | Financial knowledge of household head | 11,315 | 1.8381 | 1.1884 | 0 | 9.8000 |
count | Household size | 11,315 | 3.0493 | 1.4669 | 1 | 15 |
health_avg | Members’ health status | 11,315 | 3.6038 | 0.8279 | 1 | 5 |
Probit | Probit | IV Probit | |
---|---|---|---|
Variables | (1) | (2) | (3) |
CMI_hh | 0.4000 *** | 0.1780 *** | 0.9678 *** |
(0.0373) | (0.0404) | (0.1994) | |
rural | - | 0.3209 *** | 0.3241 *** |
- | (0.0343) | (0.0349) | |
income | - | 0.1041 | −0.0252 |
- | (0.0856) | (0.0932) | |
house | - | 0.2221 *** | 0.1985 *** |
- | (0.0259) | (0.0270) | |
age | - | −0.0312 *** | −0.0292 *** |
- | (0.0012) | (0.0013) | |
gender | - | 0.0075 | 0.0194 |
- | (0.0330) | (0.0336) | |
marriage | - | 0.1943 *** | 0.1574 *** |
- | (0.0554) | (0.0571) | |
education | - | −0.0162 * | −0.0288 *** |
- | (0.0090) | (0.0097) | |
risk attitude | - | −0.0320 *** | −0.0237 * |
- | (0.0122) | (0.0126) | |
financial knowledge | - | 0.0111 | −0.0076 |
- | (0.0127) | (0.0137) | |
count | - | 0.1411 *** | 0.1382 *** |
- | (0.0097) | (0.0099) | |
health_avg | - | −0.1908 *** | −0.1985 *** |
- | (0.0179) | (0.0183) | |
constant | −0.5809 *** | 0.4579 | 1.0013 ** |
(0.0133) | (0.4079) | (0.4380) | |
N | 11,315 | 11,315 | 11,315 |
Pseudo R2 | 0.0083 | 0.1276 | - |
LR/Wald chi2 | 113.96 | 1758.19 | 1494.03 |
Endogeneity test | - | - | 16.92 *** |
p value (Wald) | - | - | 0.0000 |
F-statistics of first stage | - | - | 129.62 |
Tobit | Tobit | IV Tobit | |
---|---|---|---|
Variables | (1) | (2) | (3) |
CMI_hh | 0.7302 *** | 0.3518 *** | 1.8281 *** |
(0.1140) | (0.1196) | (0.5881) | |
rural | - | 0.8228 *** | 0.8290 *** |
- | (0.1029) | (0.1036) | |
income | - | −0.0325 | −0.2684 |
- | (0.2374) | (0.2561) | |
house | - | 0.3628 *** | 0.3190 *** |
- | (0.0763) | (0.0787) | |
age | - | −0.0750 *** | −0.0711 *** |
- | (0.0036) | (0.0039) | |
gender | - | 0.0876 | 0.1098 |
- | (0.0999) | (0.1009) | |
marriage | - | 0.4761 *** | 0.4061 ** |
- | (0.1671) | (0.1704) | |
education | - | −0.0606 ** | −0.0846 *** |
- | (0.0270) | (0.0287) | |
risk attitude | - | −0.0374 | −0.0218 |
- | (0.0367) | (0.0374) | |
financial knowledge | - | 0.0076 | −0.0284 |
- | (0.0380) | (0.0408) | |
count | - | 0.3050 *** | 0.2997 *** |
- | (0.0289) | (0.0292) | |
health_avg | - | −0.5700 *** | −0.5842 *** |
- | (0.0540) | (0.0546) | |
constant | −2.4786 *** | 1.8725 | 2.8603 ** |
(0.0549) | (1.1409) | (1.2115) | |
N | 11,315 | 11,315 | 11,315 |
Pseudo R2 | 0.0017 | 0.0420 | - |
LR/Wald chi2 | 40.87 | 1004.30 | 808.58 |
Endogeneity test | - | - | 6.67 *** |
p value (Wald) | - | - | 0.0098 |
F-statistics of first stage | - | - | 129.62 |
Rural Households | Urban Households | |||
---|---|---|---|---|
IV Probit | IV Tobit | IV Probit | IV Tobit | |
Variables | debt_or_not | debt_degree | debt_or_not | debt_degree |
CMI_hh | 0.0310 | −1.2190 | 1.0966 *** | 2.2095 *** |
(0.4089) | (1.3103) | (0.2302) | (0.6505) | |
income | −0.4655 ** | −0.9578 * | 0.0630 | −0.1687 |
(0.2239) | (0.5549) | (0.1093) | (0.2887) | |
house | 0.2760 *** | 0.2921 | 0.1775 *** | 0.2849 *** |
(0.0756) | (0.2373) | (0.0292) | (0.0816) | |
age | −0.0249 *** | −0.0625 *** | −0.0301 *** | −0.0708 *** |
(0.0025) | (0.0082) | (0.0015) | (0.0044) | |
gender | 0.1082 | 0.1438 | 0.0063 | 0.0976 |
(0.0939) | (0.3023) | (0.0364) | (0.1048) | |
marriage | 0.1319 | 0.4692 | 0.1785 *** | 0.3901 ** |
(0.1346) | (0.4353) | (0.0639) | (0.1830) | |
education | −0.0537 * | −0.1092 | −0.0334 *** | −0.0975 *** |
(0.0288) | (0.0924) | (0.0105) | (0.0299) | |
risk attitude | −0.0512 ** | −0.1478 * | −0.0077 | 0.0411 |
(0.0256) | (0.0811) | (0.0147) | (0.0421) | |
fFinancial knowledge | −0.0462 | −0.1241 | 0.0055 | −0.0014 |
(0.0289) | (0.0942) | (0.0157) | (0.0447) | |
count | 0.1461 *** | 0.3085 *** | 0.1437 *** | 0.3235 *** |
(0.0170) | (0.0536) | (0.0125) | (0.0354) | |
health_avg | −0.3073 *** | −0.9291 *** | −0.1425*** | −0.4049 *** |
(0.0339) | (0.1087) | (0.0220) | (0.0634) | |
constant | 3.6348 *** | 8.2476 *** | 0.3348 | 1.5049 |
(1.0471) | (2.6612) | (0.5121) | (1.3613) | |
N | 2512 | 2512 | 8803 | 8803 |
Wald chi2 | 271.72 | 158.23 | 1190.47 | 604.26 |
Young Households | Old Households | |||
---|---|---|---|---|
IV Probit | IV Tobit | IV Probit | IV Tobit | |
Variables | debt_or_not | debt_degree | debt_or_not | debt_degree |
CMI_hh | 1.0993 *** | 1.9257 *** | 0.7227 | 2.7602 |
(0.1903) | (0.5276) | (0.9119) | (3.4406) | |
Rural | 0.2773 *** | 0.6589 *** | 0.3587 *** | 1.1193 *** |
(0.0423) | (0.1176) | (0.0631) | (0.2381) | |
income | 0.0059 | −0.1851 | −0.8310 * | −2.9800 * |
(0.0935) | (0.2457) | (0.4553) | (1.6964) | |
house | 0.1529 *** | 0.1733 ** | 0.2465 *** | 0.6207 ** |
(0.0297) | (0.0817) | (0.0651) | (0.2421) | |
gender | 0.0146 | 0.0894 | 0.0665 | 0.2747 |
(0.0395) | (0.1116) | (0.0653) | (0.2472) | |
marriage | −0.0277 | −0.0104 | −0.3642 ** | −0.6915 |
(0.0583) | (0.1657) | (0.1637) | (0.6273) | |
education | 0.0072 | 0.0034 | −0.0455 ** | −0.1683 ** |
(0.0113) | (0.0316) | (0.0200) | (0.0759) | |
risk attitude | −0.0464 *** | −0.0501 | −0.0236 | −0.0708 |
(0.0140) | (0.0391) | (0.0302) | (0.1135) | |
financial knowledge | −0.0016 | 0.0092 | 0.0067 | −0.0949 |
(0.0158) | (0.0442) | (0.0281) | (0.1058) | |
count | 0.1174 *** | 0.2226 *** | 0.2528 *** | 0.7203 *** |
(0.0122) | (0.0338) | (0.0183) | (0.0690) | |
health_avg | −0.1358 *** | −0.4116 *** | −0.2252 *** | −0.8577 *** |
(0.0220) | (0.0614) | (0.0330) | (0.1253) | |
vonstant | −0.4675 | −0.6634 | 2.9459 | 10.3928 |
(0.4503) | (1.1919) | (2.0759) | (7.7360) | |
N | 7284 | 7284 | 4031 | 4031 |
Wald chi2 | 327.04 | 170.69 | 380.57 | 230.55 |
Households with Poor Health Status | Households with Good Health Status | |||
---|---|---|---|---|
IV Probit | IV Tobit | IV Probit | IV Tobit | |
Variables | debt_or_not | debt_degree | debt_or_not | debt_degree |
CMI_hh | 0.2500 | −0.3956 | 1.0458 *** | 1.8266 *** |
(0.5938) | (2.2131) | (0.2103) | (0.5451) | |
rural | 0.4972 *** | 1.5246 *** | 0.2133 *** | 0.4953 *** |
(0.0563) | (0.2095) | (0.0450) | (0.1182) | |
income | −0.6469 ** | −2.4417 ** | 0.0293 | −0.1613 |
(0.3077) | (1.1953) | (0.0979) | (0.2358) | |
house | 0.1431 ** | 0.1919 | 0.2086 *** | 0.2922 *** |
(0.0658) | (0.2565) | (0.0300) | (0.0760) | |
age | −0.0303 *** | −0.0932 *** | −0.0275 *** | −0.0577 *** |
(0.0024) | (0.0090) | (0.0015) | (0.0041) | |
gender | −0.0559 | −0.1623 | 0.0471 | 0.1809 * |
(0.0602) | (0.2271) | (0.0406) | (0.1071) | |
marriage | 0.1067 | 0.4464 | 0.1618 ** | 0.3031 |
(0.0944) | (0.3547) | (0.0719) | (0.1886) | |
education | −0.0548 *** | −0.1682 ** | −0.0211 * | −0.0606 ** |
(0.0197) | (0.0740) | (0.0112) | (0.0293) | |
risk attitude | −0.0339 | −0.0938 | −0.0166 | 0.0110 |
(0.0240) | (0.0881) | (0.0149) | (0.0390) | |
financial knowledge | −0.0083 | −0.1130 | −0.0033 | 0.0093 |
(0.0268) | (0.1010) | (0.0160) | (0.0419) | |
count | 0.1731 *** | 0.4504 *** | 0.1407 *** | 0.2749 *** |
(0.0190) | (0.0683) | (0.0121) | (0.0314) | |
constant | 3.6665 *** | 12.5976 ** | −0.2626 | −0.4628 |
(1.3976) | (5.4374) | (0.4601) | (1.1174) | |
N | 3623 | 3623 | 7692 | 7692 |
Wald chi2 | 580.97 | 334.93 | 946.73 | 475.75 |
Probit | Tobit | IV Probit | IV Tobit | |
---|---|---|---|---|
Variables | debt_or_not | debt_degree | debt_or_not | debt_degree |
lnCMI_exp_avg | 0.0291 *** | 0.0567 *** | 0.1568 *** | 0.2966 *** |
(0.0060) | (0.0178) | (0.0325) | (0.0957) | |
rural | 0.3209 *** | 0.8232 *** | 0.3242 *** | 0.8297 *** |
(0.0343) | (0.1029) | (0.0350) | (0.1037) | |
income | 0.0978 | −0.0475 | −0.0594 | −0.3367 |
(0.0857) | (0.2376) | (0.0963) | (0.2650) | |
house | 0.2208 *** | 0.3598 *** | 0.1920 *** | 0.3062 *** |
(0.0259) | (0.0764) | (0.0274) | (0.0798) | |
age | −0.0312 *** | −0.0750 *** | −0.0292 *** | −0.0712 *** |
(0.0012) | (0.0036) | (0.0013) | (0.0039) | |
gender | 0.0074 | 0.0880 | 0.0188 | 0.1094 |
(0.0330) | (0.0999) | (0.0337) | (0.1009) | |
marriage | 0.1930 *** | 0.4743 *** | 0.1528 *** | 0.3976 ** |
(0.0554) | (0.1671) | (0.0574) | (0.1710) | |
education | −0.0160 * | −0.0601 ** | −0.0274 *** | −0.0819 *** |
(0.0090) | (0.0270) | (0.0096) | (0.0285) | |
risk attitude | −0.0313 ** | −0.0364 | −0.0205 | −0.0161 |
(0.0122) | (0.0367) | (0.0128) | (0.0378) | |
financial knowledge | 0.0107 | 0.0066 | −0.0093 | −0.0320 |
(0.0127) | (0.0380) | (0.0139) | (0.0412) | |
count | 0.1418 *** | 0.3062 *** | 0.1415 *** | 0.3058 *** |
(0.0097) | (0.0289) | (0.0099) | (0.0292) | |
health_avg | −0.1915 *** | −0.5712 *** | −0.2018 *** | −0.5905 *** |
(0.0179) | (0.0540) | (0.0184) | (0.0549) | |
constant | 0.4891 | 1.9495 * | 1.1679 *** | 3.1939 ** |
(0.4085) | (1.1421) | (0.4518) | (1.2504) | |
N | 11,315 | 11,315 | 11,315 | 11,315 |
Wald chi2 | 1762.07 | 1005.85 | 1488.89 | 807.71 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hong, C.; He, D.; Ren, T. The Impact of Commercial Medical Insurance Participation on Household Debt. Sustainability 2023, 15, 1526. https://doi.org/10.3390/su15021526
Hong C, He D, Ren T. The Impact of Commercial Medical Insurance Participation on Household Debt. Sustainability. 2023; 15(2):1526. https://doi.org/10.3390/su15021526
Chicago/Turabian StyleHong, Cancheng, Di He, and Ting Ren. 2023. "The Impact of Commercial Medical Insurance Participation on Household Debt" Sustainability 15, no. 2: 1526. https://doi.org/10.3390/su15021526
APA StyleHong, C., He, D., & Ren, T. (2023). The Impact of Commercial Medical Insurance Participation on Household Debt. Sustainability, 15(2), 1526. https://doi.org/10.3390/su15021526