Regulation of Methane Emissions in a Constructed Wetland by Water Table Changes
Abstract
:1. Introduction
2. Study Methods
2.1. Study Site Description
2.2. Restoration Study Design
2.3. Gas Sampling and Analysis Methods
2.4. Environmental Factor Sampling and Analysis Methods
2.5. Data Analysis
3. Results
3.1. Seasonal Dynamics of CH4-C
3.2. Relationship between Water Height and CH4-C Fluxes
3.3. Relationship between Inundated Time and Methane Flux
4. Discussion
4.1. The Impacts of Water Level Change on CH4-C
4.2. Effects of Soil Moisture on CH4-C
4.3. Effects of Soil Redox Potential on CH4-C
4.4. Impacts of Inundated Time on CH4-C
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Delwiche, K.B.; Knox, S.H.; Malhotra, A.; Fluet-Chouinard, E.; Jackson, R.B. FLUXNET-CH4: A global, multi-ecosystem dataset and analysis of methane seasonality from freshwater wetlands. Earth Syst. Sci. Data 2021, 13, 3607–3689. [Google Scholar] [CrossRef]
- Li, T.; Canadell, J.G.; Yang, X.Q.; Zhai, P.; Chao, Q.; Lu, Y.; Huang, D.; Sun, W.; Qin, Z. Methane Emissions from Wetlands in China and Their Climate Feedbacks in the 21st Century. Env. Sci. Technol. 2022, 56, 12024–12035. [Google Scholar] [CrossRef] [PubMed]
- Tan, L.; Ge, Z.; Zhou, X.; Li, S.; Li, X.; Tang, J. Conversion of coastal wetlands, riparian wetlands, and peatlands increases greenhouse gas emissions: A global meta-analysis. Glob. Chang. Biol. 2020, 26, 1638–1653. [Google Scholar] [CrossRef]
- Hu, M.; Sardans, J.; Yang, X.; Peñuelas, J.; Tong, C. Patterns and environmental drivers of greenhouse gas fluxes in the coastal wetlands of China: A systematic review and synthesis. Environ. Res. 2020, 186, 109576. [Google Scholar] [CrossRef]
- Ajwang’Ondiek, R.; Hayes, D.S.; Kinyua, D.N.; Kitaka, N.; Lautsch, E.; Mutuo, P.; Hein, T. Influence of land-use change and season on soil greenhouse gas emissions from a tropical wetland: A stepwise explorative assessment. Sci. Total Environ. 2021, 787, 147701. [Google Scholar] [CrossRef]
- Laine, A.M.; Mäkiranta, P.; Laiho, R.; Mehtätalo, L.; Penttilä, T.; Korrensalo, A.; Tuittila, E.S. Warming impacts on boreal fen CO2 exchange under wet and dry conditions. Glob. Chang. Biol. 2019, 25, 1995–2008. [Google Scholar] [CrossRef] [Green Version]
- Nielsen, C.S.; Michelsen, A.; Strobel, B.W.; Wulff, K.; Banyasz, I.; Elberling, B. Correlations between substrate availability, dissolved CH4, and CH4 emissions in an arctic wetland subject to warming and plant removal. J. Geophys. Res. Biogeosci. 2017, 122, 645–660. [Google Scholar] [CrossRef]
- Nahlik, A.M.; Mitsch, W.J. Tropical treatment wetlands dominated by free-floating macrophytes for water quality improvement in costa rica. Ecol. Eng. 2006, 28, 246–257. [Google Scholar] [CrossRef]
- Mitsch, W.J.; Nahlik, A.; Wolski, P.; Bernal, B.; Zhang, L.; Ramberg, L. Tropical wetlands: Seasonal hydrologic pulsing, carbon sequestration, and methane emissions. Wetl. Ecol. Manag. 2010, 18, 573–586. [Google Scholar] [CrossRef]
- Sha, C.Y.; Mitsch, W.J.; Mander, Ü.; Lu, J.J.; Batson, J.; Zhang, L.; He, W.S. Methane emissions from freshwater riverine wetlands. Ecol. Eng. 2011, 37, 16–24. [Google Scholar] [CrossRef]
- Audet, J.; Elsgaard, L.; Kjaergaard, C.; Larsen, S.E.; Hoffmann, C.C. Greenhouse gas emissions from a danish riparian wetland before and after restoration. Ecol. Eng. 2013, 57, 170–182. [Google Scholar] [CrossRef] [Green Version]
- Shao, X.; Sheng, X.; Wu, M.; Wu, H.; Ning, X. Methane production potential and emission at different water levels in the restored reed wetland of Hangzhou Bay. PLoS ONE 2017, 12, e0185709. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Li, C.; Dong, J.; Quan, Q.; Liu, J. Magnitudes and environmental drivers of greenhouse gas emissions from natural wetlands in China based on unbiased data. Environ. Sci. Pollut. Res. Int. 2021, 28, 44973–44986. [Google Scholar] [CrossRef] [PubMed]
- Knox, S.H.; Jackson, R.B.; Poulter, B.; McNicol, G.; Fluet-Chouinard, E.; Zhang, Z.; Hugelius, G.; Bousquet, P.; Canadell, J.G.; Saunois, M.; et al. Fluxnet-CH4 synthesis activity: Objectives, observations and future directions. Bull. Am. Meteorol. Soc. 2019, 100, 2607–2632. [Google Scholar]
- Gaberščik, A.; Krek, J.L.; Zelnik, I. Habitat diversity along a hydrological gradient in a complex wetland results in high plant species diversity. Ecol. Eng. 2018, 118, 84–92. [Google Scholar] [CrossRef]
- Sueltenfuss, J.P.; Cooper, D.J. A new approach for hydrologic performance standards in wetland mitigation. J. Environ. Manag. 2019, 231, 1154–1163. [Google Scholar] [CrossRef]
- Mclain, J.; Martens, D.A. Moisture controls on trace gas fluxes in semiarid riparian soils. Soil Sci. Soc. Am. J. 2006, 70, 367–377. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Mitsch, W.J. Methane emissions from created and restored freshwater and brackish marshes in southwest florida, USA. Ecol. Eng. 2016, 91, 529–536. [Google Scholar] [CrossRef] [Green Version]
- Yuan, X.M.; Liu, Q.; Cui, B.S.; Xu, X.F.; Liang, L.Q.; Sun, T.; Yan, S.R.; Wang, X.; Li, C.H.; Li, S.Z.; et al. Effect of water-level fluctuations on methane and carbon dioxide dynamics in a shallow lake of northern china: Implications for wetland restoration. J. Hydrol. 2021, 597, 126169. [Google Scholar] [CrossRef]
- Bridgham, S.D.; Cadillo-Quiroz, H.; Keller, J.K.; Zhuang, Q. Methane emissions from wetlands: Biogeochemical, microbial, and modeling perspectives from local to global scales. Glob. Chang. Biol. 2013, 19, 1325–1346. [Google Scholar] [CrossRef]
- Mcnicol, G.; Sturtevant, C.S.; Knox, S.H.; Dronova, I.; Baldocchi, D.D.; Silver, W.L. Effects of seasonality, transport pathway, and spatial structure on greenhouse gas fluxes in a restored wetland. Glob. Chang. Biol. 2017, 5, 2768–2782. [Google Scholar] [CrossRef] [PubMed]
- Xiong, J.; Sheng, X.C.; Wang, M.; Wu, M.; Shao, X.X. Comparative study of methane emission in the reclamation-restored wetlands and natural marshes in the Hangzhou Bay coastal wetland. Ecol. Eng. 2022, 175, 106473. [Google Scholar] [CrossRef]
- Yan, S.F.; Yu, S.E.; Wu, Y.B.; Pan, D.F.; Dong, J.G. Understanding groundwater table using a statistical model. Water Sci. Eng. 2018, 11, 1–7. [Google Scholar] [CrossRef]
- Fan, Y.; Li, H.; Miguez-Macho, G. Global patterns of groundwater table depth. Science 2013, 339, 940–943. [Google Scholar] [CrossRef] [Green Version]
- Jimenez, K.L.; Starr, G.; Staudhammer, C.L.; Schedlbauer, J.L.; Loescher, H.W.; Malone, S.L.; Oberbauer, S.F. Carbon dioxide exchange rates from short- and long-hydroperiod Everglades freshwater marsh. J. Geophys. Res.-Biogeo. 2012, 117, G04009. [Google Scholar] [CrossRef] [Green Version]
- Bonetti, G.; Trevathan-Tackett, S.M.; Hebert, N.; Carnell, P.E.; Macreadie, P.I. Microbial community dynamics behind major release of methane in constructed wetlands. Appl. Soil Ecol. 2021, 167, 104163. [Google Scholar] [CrossRef]
- Yao, X.; Song, C. Effect of different factors dominated by water level environment on wetland carbon emissions. Environ. Sci. Pollut. Res. 2022, 29, 74150–74162. [Google Scholar] [CrossRef]
- Chowdhury, T.R.; Mitsch, W.J.; Dick, R.P. Seasonal methanotrophy across a hydrological gradient in a freshwater wetland. Ecol. Eng. 2014, 72, 116–124. [Google Scholar] [CrossRef]
- Maietta, C.E.; Hondula, K.L.; Jones, C.N.; Palmer, M.A. Hydrological conditions influence soil and methane-cycling microbial populations in seasonally saturated wetlands. Front. Environ. Sci. 2020, 8, 593942. [Google Scholar] [CrossRef]
- Hoyos-Santillan, J.; Lomax, B.H.; Large, D.; Turner, B.L.; Lopez, O.R.; Boom, A.; Sjögersten, S. Evaluation of vegetation communities, water table, and peat composition as drivers of greenhouse gas emissions in lowland tropical peatlands. Sci. Total Environ. 2019, 688, 1193–1204. [Google Scholar] [CrossRef]
- Furukawa, Y.; Inubushi, K.; Ali, M.; Itang, A.M.; Tsuruta, H. Effect of changing groundwater levels caused by land-use changes on greenhouse gas fluxes from tropical peat lands. Nutr. Cycl. Agroecosyst. 2005, 71, 81–91. [Google Scholar] [CrossRef]
- Yamamoto, A.; Hirota, M.; Suzuki, S.; Zhang, P.; Mariko, S. Surrounding pressure controlled by water table alters CO2 and CH4 fluxes in the littoral zone of a brackish-water lake. Appl. Soil Ecol. 2011, 47, 160–166. [Google Scholar] [CrossRef]
- Liu, L.; Wang, D.; Chen, S.; Yu, Z.; Xu, Y.; Li, Y.; Chen, Z. Methane emissions from estuarine coastal wetlands: Implications for global change effect. Soil Sci. Soc. Am. J. 2019, 83, 1368–1377. [Google Scholar] [CrossRef]
- Altor, A.E.; Mitsch, W.J. Methane and carbon dioxide dynamics in wetland mesocosms: Effects of hydrology and soils. Ecol. Appl. 2008, 18, 1307–1320. [Google Scholar] [CrossRef]
- Yang, J.S.; Liu, J.S.; Hu, X.J.; Li, X.X.; Wang, T.; Li, H.Y. Effect of water table level on CO2, CH4, N2O emissions in a freshwater marsh of northeast china. Soil Biol. Biochem. 2013, 61, 52–60. [Google Scholar] [CrossRef]
- Kroeger, K.D.; Crooks, S.; Moseman-Valtierra, S.; Tang, J.W. Restoring tides to reduce methane emissions in impounded wetlands: A new and potent Blue Carbon climate change intervention. Sci. Rep. 2017, 7, 11914. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Wu, Y.; Yuan, X.; Gao, Y.; Wu, N.; Zhu, D. Methane emissions from newly created marshes in the drawdown area of the Three Gorges Reservoir. J. Geophys. Res. Atmos. 2009, 114. [Google Scholar] [CrossRef]
- Hou, C.C.; Song, C.C.; Li, Y.; Wang, J.Y.; Song, Y.Y.; Wang, X.W. Effects of water table changes on soil CO2, CH4, N2O fluxes during the growing season in freshwater marsh of northeast china. Environ. Earth Sci. 2012, 69, 1963–1971. [Google Scholar] [CrossRef]
- Li, L.I.; Lei, G.C.; Gao, J.Q.; Cai, L.U.; Zhou, Y.; Jia, Y.F.; Suolang, D.E.J. Effect of water table and soil water content on methane emission flux at carexmuliensis marshes in zoige plateau. Wetl. Sci. 2011, 9, 173–178. [Google Scholar]
- Zhao, M.; Han, G.; Li, J.; Song, W.; Qu, W.; Eller, F.; Jiang, C. Responses of soil CO2 and CH4 emissions to changing water table level in a coastal wetland. J. Clean. Prod. 2020, 269, 122316. [Google Scholar] [CrossRef]
- Matysek, M.; Leake, J.; Banwart, S.; Johnson, I.; Page, S.; Kaduk, J.; Zona, D. Impact of fertiliser, water table, and warming on celery yield and CO2 and CH4 emissions from fenland agricultural peat. Sci. Total Environ. 2019, 667, 179–190. [Google Scholar] [CrossRef]
- Olefeldt, D.; Euskirchen, E.S.; Harden, J.; Kane, E.S.; McGuire, A.D.; Waldrop, M.P.; Turetsky, M.R. A decade of boreal rich fen greenhouse gas fuxes in response to natural and experimental water table variability. Glob. Chang. Biol. 2017, 23, 2428–2440. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, A.D.S.; Quintana, B.G.; Janusckiewicz, E.R.; de Figueiredo, B.L.; da Silva Morgado, E.; Reis, R.A.; Ruggieri, A.C. How do methane rates vary with soil moisture and compaction, N compound and rate, and dung addition in a tropical soil? Int. J. Biometeorol. 2019, 63, 1533–1540. [Google Scholar] [CrossRef]
- Song, Y.; Song, C.; Hou, A.; Sun, L.; Gao, J. Temperature, soil moisture, and microbial controls on CO2 and CH4 emissions from a permafrost peatland. Environ. Prog. Sustain. Energy 2021, 40, e13693. [Google Scholar] [CrossRef]
- Peters, V.; Conrad, R. Sequential reduction processes and initiation of CH4 production upon flooding of oxic upland soils. Soil Biol. Biochem. 1996, 28, 371–382. [Google Scholar] [CrossRef]
- Huang, G.H.; Li, X.Z.; Hu, Y.M.; Yi, S.; Xiao, D.N. Methane (CH4) emission from a natural wetland of northern China. J. Environ. Sci. Health Part A 2005, 40, 1227–1238. [Google Scholar] [CrossRef] [PubMed]
- Cicerone, R.J.; Oremland, R.S. Biogeochemical aspects of atmospheric methane. Glob. Biogeochem. Cycles 1988, 2, 299–327. [Google Scholar] [CrossRef] [Green Version]
- Narrowe, A.B.; Borton, M.A.; Hoyt, D.W.; Smith, G.J.; Daly, R.A.; Angle, J.C.; Eder, E.K.; Wong, A.R.; Wolfe, R.A.; Pappas, A.; et al. Uncovering the Diversity and Activity of Methylotrophic Methanogens in Freshwater Wetland Soils. mSystems 2019, 4, e00320-19. [Google Scholar] [CrossRef] [Green Version]
- Conrad, R. Methane Production in Soil Environments-Anaerobic Biogeochemistry and Microbial Life between Flooding and Desiccation. Microorganisms 2020, 8, 881. [Google Scholar] [CrossRef]
- Bansal, S.; Tangen, B.; Finocchiaro, R. Temperature and Hydrology Affect Methane Emissions from Prairie Pothole Wetlands. Wetlands 2016, 36 (Suppl. S2), 371–381. [Google Scholar] [CrossRef]
- Lewis, D.B.; Brown, J.A.; Jimenez, K.L. Effects of fooding and warming on soil organic matter mineralization in Avicennia germinans mangrove forests and Juncus roemerianus salt marshes. Estuar. Coast. Shelf Sci. 2014, 139, 11–19. [Google Scholar] [CrossRef]
- Wei, S.; Han, G.; Chu, X.; Song, W.; He, W.; Xia, J.; Wu, H. Effect of tidal fooding on ecosystem CO2 and CH4 fuxes in a salt marsh in the Yellow River Delta. Estuar. Coast. Shelf Sci. 2020, 232, 106512. [Google Scholar] [CrossRef]
- Gao, G.F.; Li, P.F.; Shen, Z.J.; Qin, Y.Y.; Zhang, X.M.; Ghoto, K.; Zhu, X.Y.; Zheng, H.L. Exotic Spartina alternifora invasion increases CH4 while reduces CO2 emissions from mangrove wetland soils in southeastern China. Sci. Rep. 2018, 8, 9243. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sha, C.; Wang, Q.; Wu, J.; Hu, W.; Shen, C.; Zhang, B.; Wang, M. Regulation of Methane Emissions in a Constructed Wetland by Water Table Changes. Sustainability 2023, 15, 1536. https://doi.org/10.3390/su15021536
Sha C, Wang Q, Wu J, Hu W, Shen C, Zhang B, Wang M. Regulation of Methane Emissions in a Constructed Wetland by Water Table Changes. Sustainability. 2023; 15(2):1536. https://doi.org/10.3390/su15021536
Chicago/Turabian StyleSha, Chenyan, Qiang Wang, Jian Wu, Wenan Hu, Cheng Shen, Beier Zhang, and Min Wang. 2023. "Regulation of Methane Emissions in a Constructed Wetland by Water Table Changes" Sustainability 15, no. 2: 1536. https://doi.org/10.3390/su15021536
APA StyleSha, C., Wang, Q., Wu, J., Hu, W., Shen, C., Zhang, B., & Wang, M. (2023). Regulation of Methane Emissions in a Constructed Wetland by Water Table Changes. Sustainability, 15(2), 1536. https://doi.org/10.3390/su15021536