Digital Financial Inclusion, Cultivated Land Transfer and Cultivated Land Green Utilization Efficiency: An Empirical Study from China
Abstract
:1. Introduction
2. Theoretical Background and Hypotheses Development
2.1. Triple Bottom Line Theory
2.2. Hypotheses Development
2.2.1. Digital Financial Inclusion and Cultivated Land Green Utilization Efficiency
2.2.2. Digital Financial Inclusion and Cultivated Land Transfer
2.2.3. Cultivated Land Transfer and Cultivated Land Green Utilization Efficiency
3. Materials and Methods
3.1. Model Construction
3.1.1. Measurement of CLGUE
3.1.2. Models of Main Effects
3.1.3. Models of Mediating Effects
3.2. Variable Selection and Data Description
3.3. Research Region and Data Source
4. Results
4.1. Measurement and Analysis of CLGUE
4.2. Structural Equation Model Results of the Main Effects
4.3. Structural Equation Model Results of the Mediating Effects
4.4. Robustness Tests
4.5. Heterogeneity Tests of Main Effects
5. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lin, X.; Fu, H. Spatial-Temporal Evolution and Driving Forces of Cultivated Land Based on the PLUS Model: A Case Study of Haikou City, 1980. Sustainability 2022, 14, 14284. [Google Scholar] [CrossRef]
- Fu, G.Z.; Bai, W.Q. Advances and prospects of evaluating cultivated land quality. Resour. Sci. 2015, 37, 0226–0236. [Google Scholar]
- Lichtenberg, E.; Ding, C. Assessing farmland protection policy in China. Land Use Policy 2008, 25, 59–68. [Google Scholar] [CrossRef]
- Abass, K.; Adanu, S.K.; Agyemang, S. Peri-urbanisation and loss of arable land in Kumasi Metropolis in three decades: Evidence from remote sensing image analysis. Land Use Policy 2018, 72, 470–479. [Google Scholar] [CrossRef]
- Gorgan, M.; Hartvigsen, M. Development of agricultural land markets in countries in Eastern Europe and Central Asia. Land Use Policy 2022, 120, 106257. [Google Scholar] [CrossRef]
- Berihun, M.L.; Tsunekawa, A.; Haregeweyn, N.; Meshesha, D.T.; Adgo, E.; Tsubo, M.; Masunaga, T.; Fenta, A.A.; Sultan, D.; Yibeltal, M. Exploring land use/land cover changes, drivers and their implications in contrasting agro-ecological environments of Ethiopia. Land Use Policy 2019, 87, 104052. [Google Scholar] [CrossRef]
- Wu, Y.; Shan, L.; Guo, Z.; Peng, Y. Cultivated land protection policies in China facing 2030: Dynamic balance system versus basic farmland zoning. Habitat Int. 2017, 69, 126–138. [Google Scholar] [CrossRef]
- Niu, S.D.; Fang, B. Cultivated land protection system in china from 1949 to 2019: Historical evolution, realistic origin exploration and path optimization. China Land Sci. 2019, 33, 1–12. [Google Scholar] [CrossRef]
- Feng, Y.G.; Peng, J.; Deng, Z.B.; Wang, J. Spatial-temporal variation of cultivated land’s utilization efficiency in china based on the dual perspective of non-point source pollution and carbon emission. China Popul. Resour. Environ. 2015, 25, 18. [Google Scholar] [CrossRef]
- Guo, F.Y.; Gao, S.Q.; Tong, L.J.; Ren, J.M. Spatio-temporal evolution track and influencing factors of green development efficiency in Yellow River Basin. Geogr. Res. 2022, 41, 167–180. [Google Scholar] [CrossRef]
- Zhou, M.; Zhang, H.; Ke, N. Cultivated Land Transfer, Management Scale, and Cultivated Land Green Utilization Efficiency in China: Based on Intermediary and Threshold Models. Int. J. Environ. Res. Public Health 2022, 19, 12786. [Google Scholar] [CrossRef] [PubMed]
- FAO. The State of Food and Agriculture; Food & Agriculture Organization of the U.N.: Washington, DC, USA, 2016. [Google Scholar]
- Lu, X.; Kuang, B.; Li, J.; Han, J.; Zhang, Z. Dynamic Evolution of Regional Discrepancies in Carbon Emissions from Agricultural Land Utilization: Evidence from Chinese Provincial Data. Sustainability 2018, 10, 552. [Google Scholar] [CrossRef] [Green Version]
- Lu, X.; Qu, Y.; Sun, P.; Yu, W.; Peng, W. Green Transition of Cultivated Land Use in the Yellow River Basin: A Perspective of Green Utilization Efficiency Evaluation. Land 2020, 9, 475. [Google Scholar] [CrossRef]
- Zhang, J.F.; He, S.W.; Zhang, G.H.; Zhang, A.L. Ecological Benefit, Spatial Spillover and Fiscal Transfer of Farmland in Watershed: Evidence from the Yangtze River Economic Belt. Issues Agric. Econ. 2020, 12, 120–132. [Google Scholar] [CrossRef]
- Ren, P.; Hong, B.T.; Ma, W.L.; Yuan, Q.Z.; Zhou, J.M. Ecological value estimation of cultivated land based on the IBIS model: A case study of Chong zhou city. Geogr. Res. 2016, 35, 2395–2406. [Google Scholar]
- Xie, H.; Chen, Q.; Wang, W.; He, Y. Analyzing the green efficiency of arable land use in China. Technol. Forecast. Soc. Chang. 2018, 133, 15–28. [Google Scholar] [CrossRef]
- Ke, N.; Lu, X.H.; Kuang, B.; Han, J. Regional differences and influencing factors of green and low-carbon utilization of cultivated land under the carbon neutrality target in China. China Land Sci. 2021, 35, 67–76. [Google Scholar] [CrossRef]
- Zhou, M.; Kuang, B.; Zhou, M.; Ke, N. The Spatial and Temporal Evolution of the Coordination Degree in Regard to Farmland Transfer and Cultivated Land Green Utilization Efficiency in China. Int. J. Environ. Res. Public Health 2022, 19, 10208. [Google Scholar] [CrossRef] [PubMed]
- Qu, Y.; Lyu, X.; Peng, W.; Xin, Z. How to Evaluate the Green Utilization Efficiency of Cultivated Land in a Farming Household? A Case Study of Shandong Province, China. Land 2021, 10, 789. [Google Scholar] [CrossRef]
- Chen, Q.; Xie, H. Temporal-Spatial Differentiation and Optimization Analysis of Cultivated Land Green Utilization Efficiency in China. Land 2019, 8, 158. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Liu, L.-Y.; Pu, L.-J.; Liu, Y.-M.; Xu, F.; Yu, C. Analysis on farmers’ behavioral intension of cropland use and its influencing factors in the coastal areas of Northern Jiangsu province. J. Nat. Resour. 2022, 37, 1643–1653. [Google Scholar] [CrossRef]
- Lu, X.M.; Wu, Y.F. Land-renting, Farmers’ Agricultural Credit Demands and Credit Constraints: An Analysis of CHFS Data. Financ. Res. 2021, 5, 40–58. [Google Scholar]
- Cheng, Q.W.; Xu, A.X.; Chen, Q. The realization path of agricultural carbon emission reduction under the background of “dual carbon” target. J. Southwest Minzu Univ. (Humanit. Soc. Sci.) 2022, 43, 115–125. [Google Scholar]
- Yan, G.Q.; He, Y.C.; Zhang, X.H. Can the development of digital inclusive finance promote agricultural mechanization? —Based on the perspective of the development of agricultural machinery outsourcing service market. J. Agrotech. Econ. 2022, 1, 51–64. [Google Scholar] [CrossRef]
- Sun, X.T.; Yu, T.; Yu, F.W. The impact of digital finance on agricultural mechanization: Evidence from 1869 counties in China. Chin. Rural Econ. 2022, 2, 76–93. [Google Scholar]
- Zhou, Z.; Zhang, Y.; Yan, Z. Will Digital Financial Inclusion Increase Chinese Farmers’ Willingness to Adopt Agricultural Technology? Agriculture 2022, 12, 1514. [Google Scholar] [CrossRef]
- Zhang, Y.Q. Study on the influence and mechanism of digital inclusive finance on rural land transfer: Empirical evidence from CFPS and PKU-DFIIC. Econ. Manag. 2022, 36, 30–40. [Google Scholar]
- Yìldiz, O.; Coruhlu, Y.E.; Biyik, C. Registration of agricultural areas towards the development of a future Turkish cadastral system. Land Use Policy 2018, 78, 207–218. [Google Scholar] [CrossRef]
- Slack, N.; Brandon-Jones, A.; Johnston, R. Essentials of Operations Management, 7th ed.; Pearson Education Limited: Essex, UK, 2018; pp. 47–49. [Google Scholar]
- Smith, G.; Block, L.B.; Ajami, N.; Pombo, A.; Velasco-Aulcy, L. Trade-offs across the water-energy-food nexus: A triple bottom line sustainability assessment of desalination for agriculture in the San quintín Valley, Mexico. Environ. Sci. Policy 2020, 114, 445–452. [Google Scholar] [CrossRef]
- Ellis, M.J.; Sexton, A.; Dunsford, I.; Stephens, N. The triple bottom line framework can connect people, planet and profit in cellular agriculture. Nat. Food 2022, 3, 804–806. [Google Scholar] [CrossRef]
- Norman, W.; Macdonald, C. Getting to the bottom of the triple bottom line. Bus. Ethics Q 2004, 14, 243–262. [Google Scholar] [CrossRef] [Green Version]
- Isaeva, A.; Salahodjaev, R.; Khachaturov, A.; Tosheva, S. The Impact of Tourism and Financial Development on Energy Consumption and Carbon Dioxide Emission: Evidence from Post-communist Countries. J. Knowl. Econ. 2021, 13, 773–786. [Google Scholar] [CrossRef]
- Shi, F.; Ding, R.; Li, H.; Hao, S. Environmental Regulation, Digital Financial Inclusion, and Environmental Pollution: An Empirical Study Based on the Spatial Spillover Effect and Panel Threshold Effect. Sustainability 2022, 14, 6869. [Google Scholar] [CrossRef]
- Lee, C.-C.; Wang, F.; Lou, R. Digital financial inclusion and carbon neutrality: Evidence from non-linear analysis. Resour. Policy 2022, 79, 102974. [Google Scholar] [CrossRef]
- Lee, C.-C.; Yuan, Z.; Wang, Q. How does information and communication technology affect energy security? International evidence. Energy Econ. 2022, 109, 105969. [Google Scholar] [CrossRef]
- Shen, J.H.; Long, Z.; Lee, C.-C.; Zhang, J. Comparative advantage, endowment structure, and trade imbalances. Struct. Chang. Econ. Dyn. 2021, 60, 365–375. [Google Scholar] [CrossRef]
- Dayioğlu, M.A.; Turker, U. Digital Transformation for Sustainable Future—Agriculture 4.0: A review. J. Agr. Sci. Tarim. Bili. 2021, 27, 373–399. [Google Scholar] [CrossRef]
- Wang, Q. Challenges, opportunities and suggestions for the development of China’s rural digital financial inclusion. Front. Econ. Manag. 2022, 3, 0044. [Google Scholar]
- Warren, P. The role of climate finance beyond renewables: Demand-side management and carbon capture, usage and storage. Clim. Policy 2019, 19, 861–877. [Google Scholar] [CrossRef]
- Ren, X.; Shao, Q.; Zhong, R. Nexus between green finance, non-fossil energy use, and carbon intensity: Empirical evidence from China based on a vector error correction model. J. Clean. Prod. 2020, 277, 122844. [Google Scholar] [CrossRef]
- Guo, Q.; Su, Z.; Chiao, C. Carbon emissions trading policy, carbon finance, and carbon emissions reduction: Evidence from a quasi-natural experiment in China. Econ. Chang. Restruct. 2021, 55, 1445–1480. [Google Scholar] [CrossRef]
- O’Toole, C.M.; Newman, C.; Hennessy, T. Financing Constraints and Agricultural Investment: Effects of the Irish Financial Crisis. J. Agric. Econ. 2013, 65, 152–176. [Google Scholar] [CrossRef]
- Jing, X.; Jiang, R.; Chen, Z.; Deng, Z. Agricultural output effect of rural finance: An extended regression approach. E M Ekon Manag. 2022, 25, 4–22. [Google Scholar] [CrossRef]
- Wang, Y.Q.; Xu, X.J.; Xiong, H.; Fang, X.F. Research on the influence of inter-linked index insurance and credit contract on the adoption of new technologies in family farms. Financ. Perspect. J. 2019, 33, 83–91. [Google Scholar]
- Lu, F.; Wang, W.; Liu, M.; Liu, M.; Qi, D. The non-linear effect of agricultural insurance on agricultural green competitiveness. Technol. Anal. Strat. Manag. 2022, 1–16. [Google Scholar] [CrossRef]
- Skarstein, R. Explaining Productivity Change in Underdeveloped Agriculture. Can the theory of induced innovation do it? Dev. Stud. 2013, 41, 75–90. [Google Scholar] [CrossRef]
- Busato, P.; Berruto, R. Minimising manpower in rice harvesting and transportation operations. Biosyst. Eng. 2016, 151, 435–445. [Google Scholar] [CrossRef]
- Demir, A.; Pesqué-Cela, V.; Altunbas, Y.; Murinde, V. Fintech, financial inclusion and income inequality: A quantile regression approach. Eur. J. Financ. 2020, 28, 86–107. [Google Scholar] [CrossRef]
- Wang, Y.; Li, X.; He, H.; Xin, L.; Tan, M. How reliable are cultivated land assets as social security for Chinese farmers? Land Use Policy 2019, 90, 104318. [Google Scholar] [CrossRef]
- Zhang, F.; Bao, X.; Deng, X.; Xu, D. Rural Land Transfer in the Information Age: Can Internet Use Affect Farmers’ Land Transfer-In? Land 2022, 11, 1761. [Google Scholar] [CrossRef]
- Fang, D.; Zhang, X. The Protective Effect of Digital Financial Inclusion on Agricultural Supply Chain during the COVID-19 Pandemic: Evidence from China. J. Theor. Appl. Electron. Commer. Res. 2021, 16, 3202–3217. [Google Scholar] [CrossRef]
- Wang, X.; Fu, Y. Digital financial inclusion and vulnerability to poverty: Evidence from Chinese rural households. China Agric. Econ. Rev. 2021, 14, 64–83. [Google Scholar] [CrossRef]
- Lorente, J.J.C.; Schmukler, S.L. The fintech revolution: A threat to global banking? Res. Policy Briefs 2018, 1, 105034. [Google Scholar]
- Ozturk, I.; Ullah, S. Does digital financial inclusion matter for economic growth and environmental sustainability in OBRI economies? An empirical analysis. Resour. Conserv. Recy. 2022, 185, 106489. [Google Scholar] [CrossRef]
- Khera, P.; Ng, S.; Ogawa, S.; Sahay, R. Measuring Digital Financial Inclusion in Emerging Market and Developing Economies: A New Index. Asian Econ. Policy Rev. 2022, 17, 213–230. [Google Scholar] [CrossRef]
- Belton, B.; Win, M.T.; Zhang, X.; Filipski, M. The rapid rise of agricultural mechanization in Myanmar. Food Policy 2021, 101, 102095. [Google Scholar] [CrossRef]
- Chari, A.; Liu, E.M.; Wang, S.-Y.; Wang, Y. Property Rights, Land Misallocation, and Agricultural Efficiency in China. Rev. Econ. Stud. 2020, 88, 1831–1862. [Google Scholar] [CrossRef]
- Shang, H.; Yi, X.; Yin, C.; Chen, Y.; Zhang, Z. How Does the Stability of Land Management Right (SLMR) Affect Family Farms’ Cultivated Land Protection and Quality Improvement Behavior (CLPQIB) in China? Land 2021, 10, 1052. [Google Scholar] [CrossRef]
- Lu, H.; Chen, Y.; Huan, H.; Duan, N. Analyzing Cultivated Land Protection Behavior From the Perspective of Land Fragmentation and Farmland Transfer: Evidence From Farmers in Rural China. Front. Environ. Sci. 2022, 10, 901097. [Google Scholar] [CrossRef]
- Wang, H.; Li, C.; Liu, J.; Zhang, S. Research on Farmers’ Willingness of Land Transfer Behavior Based on Food Security. Sustainability 2019, 11, 2338. [Google Scholar] [CrossRef] [Green Version]
- Cao, W.K.; Wu, D.E. Contract system for circulation of the right to rural land contractual management. Asian Agric. Res. 2010, 2, 53–57. [Google Scholar]
- Qiu, T.; Choy, S.B.; Li, S.; He, Q.; Luo, B. Does land renting-in reduce grain production? Evidence from rural China. Land Use Policy 2020, 90, 104311. [Google Scholar] [CrossRef]
- Chen, M.-Q.; Zhong, T.-Y.; Zhou, B.-J.; Huang, H.-S.; He, W.-J. Empirical research on farm households’ attitude and behaviour for cultivated land transferring and it’s influencing factors in China. Agric. Econ. 2010, 56, 409–420. [Google Scholar] [CrossRef] [Green Version]
- Huang, T.; Xiong, B. Space Comparison of Agricultural Green Growth in Agricultural Modernization: Scale and Quality. Agriculture 2022, 12, 1067. [Google Scholar] [CrossRef]
- Wu, Y.; Xi, X.; Tang, X.; Luo, D.; Gu, B.; Lam, S.K.; Vitousek, P.M.; Chen, D. Policy distortions, farm size, and the overuse of agricultural chemicals in China. Proc. Natl. Acad. Sci. USA 2018, 115, 7010–7015. [Google Scholar] [CrossRef] [Green Version]
- Davtalab-Olyaie, M.; Roshdi, I.; Nia, V.P.; Asgharian, M. On characterizing full dimensional weak facets in DEA with variable returns to scale technology. Optimization 2014, 64, 2455–2476. [Google Scholar] [CrossRef]
- Charnes, A.; Cooper, W.W.; Rhodes, E. Measuring the efficiency of decision making units. Eur. J. Oper. Res. 1978, 2, 429–444. [Google Scholar] [CrossRef]
- Banker, R.D.; Morey, R.C. The Use of Categorical Variables in Data Envelopment Analysis. Manag. Sci. 1986, 32, 1613–1627. [Google Scholar] [CrossRef]
- Niu, H.; Zhang, Z.; Xiao, Y.; Luo, M.; Chen, Y. A Study of Carbon Emission Efficiency in Chinese Provinces Based on a Three-Stage SBM-Undesirable Model and an LSTM Model. Int. J. Environ. Res. Public Health 2022, 19, 5395. [Google Scholar] [CrossRef]
- Tone, K. A slacks-based measure of efficiency in data envelopment analysis. Eur. J. Oper. Res. 2001, 130, 498–509. [Google Scholar] [CrossRef]
- Tone, K. Dealing with undesirable outputs in DEA: A slacks-based measure (SBM) approach. Present. NAPW III Tor. 2004, 2004, 44–45. [Google Scholar]
- Ma, D.; Li, G.; He, F. Exploring PM2.5 Environmental Efficiency and Its Influencing Factors in China. Int. J. Environ. Res. Public Health 2021, 18, 12218. [Google Scholar] [CrossRef]
- Bagozzi, R.P.; Yi, Y. Specification, evaluation, and interpretation of structural equation models. J. Acad. Mark. Sci. 2012, 40, 8–34. [Google Scholar] [CrossRef]
- Guo, F.; Wang, J.; Wang, F.; Kong, T.; Zhang, X.; Cheng, Z. Measuring the development of digital financial inclusion in China: Index compilation and spatial characteristics. J. Econ. 2020, 12, 1401–1418. [Google Scholar] [CrossRef]
- Ke, N.; Zhang, X.; Lu, X.; Kuang, B.; Jiang, B. Regional Disparities and Influencing Factors of Eco-Efficiency of Arable Land Utilization in China. Land 2022, 11, 257. [Google Scholar] [CrossRef]
- Zhou, M.; Hu, B. Decoupling of carbon emissions from agricultural land utilisation from economic growth in China. Agric. Econ. 2020, 66, 510–518. [Google Scholar] [CrossRef]
- Huang, H.P.; Wang, Z.P. Spatial—temporal Differences and Influencing Factors of Agricultural Land Eco-efficiency in Jiangxi Province: Based on the Dual Perspective of Non—point Source Pollution and Carbon Emission. Resour. Environ. Yangtze Basin 2022, 29, 412–423. [Google Scholar]
- Kline, R.B. Principles and Practice of Structural Equation Modeling, 4th ed.; The Guilford Press: New York, NY, USA, 2018. [Google Scholar]
- Yang, Y. Structural Equation Model and Stata Application, 1st ed.; Beijing Peking University Press: Beijing, China, 2021; pp. 42–45. [Google Scholar]
- Hong, M.; Tian, M.; Wang, J. Digital Inclusive Finance, Agricultural Industrial Structure Optimization and Agricultural Green Total Factor Productivity. Sustainability 2022, 14, 11450. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, S.G.; Chen, X. Research on the Influence of Digital Finance on Green Pesticide Application by Farmers —Based on the Information Availability Perspective. Chin. J. Agric. Resour. Reg. Plan. 2022. Available online: https://kns.cnki.net/kcms/detail/11.3513.S.20221101.1625.016.html (accessed on 1 August 2022).
- Liu, Y.; Liu, C.; Zhou, M. Does digital inclusive finance promote agricultural production for rural households in China? Research based on the Chinese family database (CFD). China Agric. Econ. Rev. 2021, 13, 475–494. [Google Scholar] [CrossRef]
- Wang, S.; Chen, Y.B. How can digital financial inclusion promote agricultural high-quality development? The mediating and threshold mechanism. J. Manag. 2022, 35, 72–87. [Google Scholar] [CrossRef]
- Coruhlu, Y.E.; Yildiz, O. Geographical database for object-oriented land division modelling in Turkey. Land Use Policy 2017, 68, 212–221. [Google Scholar] [CrossRef]
Variables | Number | Mean | Std. Dev. | Minimum | Maximum |
---|---|---|---|---|---|
dfi | 300 | 217.2 | 96.97 | 18.33 | 431.9 |
clt | 300 | 0.316 | 0.163 | 0.033 | 0.911 |
clgue | 300 | 0.704 | 0.198 | 0.315 | 1 |
Paths | Coefficients | Standard Error | Z Value | p Value | 95% Confidence Interval (CI) | |
---|---|---|---|---|---|---|
lndfi→clgue1 | 0.442 | 0.044 | 10.020 | 0.000 | 0.356 | 0.529 |
constant | 0.059 | 0.415 | 0.140 | 0.886 | −0.754 | 0.873 |
variance (e.clgue) | 0.805 | 0.039 | 0.732 | 0.885 |
Paths | Coefficients | Standard Error | Z Value | p Value | 95% CI | |
---|---|---|---|---|---|---|
dfi→clt | 0.483 | 0.042 | 11.630 | 0.000 | 0.402 | 0.565 |
constant | −1.894 | 0.363 | −5.220 | 0.000 | −2.605 | −1.183 |
clt→clgue | 0.273 | 0.056 | 4.910 | 0.000 | 0.164 | 0.382 |
dfi→clgue | 0.310 | 0.054 | 5.730 | 0.000 | 0.204 | 0.416 |
constant | 0.576 | 0.424 | 1.360 | 0.174 | −0.255 | 1.407 |
variance (e.clt) | 0.766 | 0.040 | 0.691 | 0.849 | ||
variance (e.clgue) | 0.748 | 0.042 | 0.670 | 0.834 |
Paths | Coefficients | Standard Error | Z Value | p Value | 95% CI | |
---|---|---|---|---|---|---|
dfi→clt→clgue | 0.132 | 0.029 | 4.470 | 0.000 | 0.074 | 0.190 |
Paths | Coefficients | Standard Error | Z Value | p Value | 95% CI | |
---|---|---|---|---|---|---|
dfi→clgue (new) | 0.497 | 0.041 | 12.230 | 0.000 | 0.418 | 0.577 |
constant | −0.650 | 0.385 | −1.690 | 0.091 | −1.403 | 0.104 |
variance (e.clgue) | 0.753 | 0.040 | 0.677 | 0.836 |
Paths | Coefficients | Standard Error | Z Value | p Value | 95% CI | |
---|---|---|---|---|---|---|
dfi→clt | 0.483 | 0.042 | 11.630 | 0.000 | 0.402 | 0.565 |
constant | −1.894 | 0.363 | −5.220 | 0.000 | −2.605 | −1.183 |
clt→clgue (new) | 0.282 | 0.053 | 5.280 | 0.000 | 0.177 | 0.386 |
dfi→clgue (new) | 0.361 | 0.051 | 7.070 | 0.000 | 0.261 | 0.461 |
constant | −0.116 | 0.395 | −0.290 | 0.769 | −0.890 | 0.659 |
variance (e.clt) | 0.766 | 0.040 | 0.691 | 0.849 | ||
variance (e.clgue) | 0.692 | 0.042 | 0.614 | 0.779 |
Paths | Coefficients | Standard Error | Z Value | p Value | 95% CI | |
---|---|---|---|---|---|---|
dfi→clt→clgue (new) | 0.136 | 0.029 | 4.750 | 0.000 | 0.080 | 0.192 |
Eastern Areas | Central Areas | Western Areas | MGPAs | MGMAs | GPMBAs | |
---|---|---|---|---|---|---|
Coefficients | 0.633 | 0.228 | 0.415 | 0.408 | 0.586 | 0.360 |
Standard error | 0.051 | 0.105 | 0.075 | 0.070 | 0.071 | 0.084 |
Z value | 12.370 | 2.180 | 5.490 | 5.840 | 8.200 | 4.280 |
p value | 0.000 | 0.029 | 0.000 | 0.000 | 0.000 | 0.000 |
95% CI | 0.532 | 0.024 | 0.267 | 0.271 | 0.446 | 0.195 |
0.733 | 0.433 | 0.563 | 0.546 | 0.726 | 0.525 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, M.; Zhang, H.; Zhang, Z.; Sun, H. Digital Financial Inclusion, Cultivated Land Transfer and Cultivated Land Green Utilization Efficiency: An Empirical Study from China. Sustainability 2023, 15, 1569. https://doi.org/10.3390/su15021569
Zhou M, Zhang H, Zhang Z, Sun H. Digital Financial Inclusion, Cultivated Land Transfer and Cultivated Land Green Utilization Efficiency: An Empirical Study from China. Sustainability. 2023; 15(2):1569. https://doi.org/10.3390/su15021569
Chicago/Turabian StyleZhou, Min, Hua Zhang, Zixuan Zhang, and Hanxiaoxue Sun. 2023. "Digital Financial Inclusion, Cultivated Land Transfer and Cultivated Land Green Utilization Efficiency: An Empirical Study from China" Sustainability 15, no. 2: 1569. https://doi.org/10.3390/su15021569
APA StyleZhou, M., Zhang, H., Zhang, Z., & Sun, H. (2023). Digital Financial Inclusion, Cultivated Land Transfer and Cultivated Land Green Utilization Efficiency: An Empirical Study from China. Sustainability, 15(2), 1569. https://doi.org/10.3390/su15021569