Progress and Applications of Seawater-Activated Batteries
Abstract
:1. Introduction
2. Metal Semi-Fuel Seawater-Activated Batteries
2.1. Dissolved Oxygen (DO) Seawater Batteries (DO-type Seawater Batteries)
2.2. Metal Hydrogen Peroxide Seawater Batteries
3. High-Power Seawater-Activated Batteries
4. Rechargeable Seawater-Activated Batteries
E = 0.77V vs. SHE (Standard Hydrogen Electrode)
E = –2.71V vs. SHE
E = 3.48V vs. Na/Na+
5. Directions for Future Development
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alafnan, S.; Aljawad, M.; Alismail, F.; Almajed, A. Enhanced Recovery from Gas Condensate Reservoirs through Renewable Energy Sources. Energy Fuels 2019, 33, 10115–10122. [Google Scholar] [CrossRef]
- Arif, S.; Rabbi, A.E.; Ahmed, S.U.; Hossain, L.; Molla, S.; Jamal, T.; Aziz, T.q.; Sarker, M.R. Enhancement of Solar PV Hosting Capacity in a Remote Industrial Microgrid: A Methodical Techno-Economic Approach. Sustainability 2022, 14, 8921. [Google Scholar] [CrossRef]
- Megía, P.J.; Vizcaíno, A.J.; Calles, J.A.; Carrero, A. Hydrogen Production Technologies: From Fossil Fuels toward Renewable Sources. A Mini Review. Energy Fuels 2021, 35, 16403–16415. [Google Scholar] [CrossRef]
- König, A.; Ulonska, K.; Mitsos, A.; Viell, J. Optimal Applications and Combinations of Renewable Fuel Production from Biomass and Electricity. Energy Fuels 2019, 33, 1659–1672. [Google Scholar] [CrossRef]
- Yang, C.; Wang, J.; Yang, P.; He, Y.; Wang, S.; Zhao, P.; Wang, H. Recovery of Valuable Metals from Spent LiNi0.8Co0.1Mn0.1O2 Cathode Materials Using Compound Leaching Agents of Sulfuric Acid and Oxalic Acid. Sustainability 2022, 14, 14169. [Google Scholar] [CrossRef]
- Krüner, S.; Hackl, C.M. Nonlinear Modelling and Control of a Power Smoothing System for a Novel Wave Energy Converter Prototype. Sustainability 2022, 14, 13708. [Google Scholar] [CrossRef]
- Bharadwaj, D.; Struchtrup, H. Large scale energy storage using multistage osmotic processes: Approaching high efficiency and energy density. Sustain. Energy Fuels 2022, 10, 935–945. [Google Scholar] [CrossRef]
- Leng, P.S.; Wang, H.B.; Wu, B.F.; Zhao, L.; Deng, Y.J.; Cui, J.T. Ag Decorated Co3O4-Nitrogen Doped Porous Carbon as the Bifunctional Cathodic Catalysts for Rechargeable Zinc-Air Batteries. Sustainability 2022, 14, 13417. [Google Scholar] [CrossRef]
- Tu, N.D.K.; Park, S.O.; Park, J.; Kim, Y.; Kwak, S.K.; Kang, S.J. Pyridinic-Nitrogen-Containing Carbon Cathode: Efficient Electrocatalysis for Seawater Batteries. ACS Appl. Energy Mater. 2020, 3, 1602–1608. [Google Scholar] [CrossRef]
- Abd El-Halim, A.M.; Fawzy, M.H.; Saty, A. Performance characteristics of a pilot sea-water activated battery with Pb/PbC12 cathodes, prepared by cyclic voltammetry. J. Power Sources. 1993, 41, 55–64. [Google Scholar] [CrossRef]
- Zhao, J.; Yu, K.; Hu, Y.N.; Li, S.J.; Tan, X.; Chen, F.W.; Yu, Z.M. Discharge behavior of Mg–4 wt%Ga–2 wt%Hg alloy as anode for seawater activated battery. Electrochim. Acta 2011, 56, 8224–8231. [Google Scholar] [CrossRef]
- Shi, Y.C.; Peng, C.Q.; Feng, Y.; Wang, R.C.; Wang, N.G. Microstructure and electrochemical corrosion behavior of extruded Mg–Al–Pb–La alloy as anode for seawater-activated battery. Mater. Des. 2017, 124, 24–33. [Google Scholar] [CrossRef] [Green Version]
- Wang, N.G.; Mu, Y.C.; Li, Q.; Shi, Z.C. Discharge and corrosion behavior of AP65 magnesium anode plates with different rolling reductions. RSC Adv. 2017, 7, 53226–53235. [Google Scholar] [CrossRef] [Green Version]
- Srimuk, P.; Husmann, S.; Presser, V. Low voltage operation of a silver/silver chloride battery with high desalination capacity in seawater. RSC Adv. 2019, 9, 14849. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mori, R. Recent Developments for Aluminum–Air Batteries. Electrochem. Energy Rev. 2020, 3, 344–369. [Google Scholar] [CrossRef]
- Deng, S.H.; Yuan, L.J.; Chen, Y.B.; Wang, B. Electrochemical synthesis and performance of polyaniline/MnO2/graphene oxide composites cathode for seawater battery. Appl. Surf. Sci. 2022, 581, 152261. [Google Scholar] [CrossRef]
- Lv, Y.Z.; Xu, Y.; Cao, D.X. The electrochemical behaviors of Mg, Mg–Li–Al–Ce and Mg–Li–Al–Ce–Y in sodium chloride solution. J. Power Sources 2011, 196, 8809–8814. [Google Scholar] [CrossRef]
- Lee, B.; Paek, E.; Mitlin, D.; Lee, S. Sodium Metal Anodes: Emerging Solutions to Dendrite Growth. Chem. Rev. 2018, 19, 5416–5460. [Google Scholar] [CrossRef]
- Lin, D.C.; Liu, Y.Y.; Cui, Y. Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol. 2017, 12, 194–206. [Google Scholar] [CrossRef]
- Qin, R.; Wang, Y.; Yao, L.; Yang, L.; Zhao, Q.; Ding, S.; Liu, L.; Pan, F. Progress in interface structure and modification of zinc anode for aqueous batteries. Nano Energy 2022, 98, 107333. [Google Scholar] [CrossRef]
- Sun, H.; Su, G.; Zhang, Y.; Ren, J.-C.; Chen, X.; Hou, H.; Ding, Z.; Zhang, T.; Liu, W. First-principles modeling of the anodic and cathodic polarization to predict the corrosion behavior of Mg and its alloys. Acta Mater. 2023, 244, 118562. [Google Scholar] [CrossRef]
- Li, J.R.; Chen, Z.Y.; Jing, J.P.; Hou, J. Electrochemical behavior of Mg-Al-Zn-Ga-In alloy as the anode for seawater-activated battery. J. Mater. Sci. Technol. 2019, 41, 33–42. [Google Scholar] [CrossRef]
- Wu, Y.; Zhu, Y.; Li, X.; Zhang, D.; Gao, L. Enhanced performance of Al-0.02Mg-0.01Sn-0.004Bi-0.003In alloy as novel anode for Al-air batteries in alkaline electrolyte. J. Alloy. Compd. 2022, 924, 166530. [Google Scholar] [CrossRef]
- Le, Z.; Li, W.; Dang, Q.; Jing, C.; Zhang, W.; Chu, J.; Tang, L. A high-power seawater battery working in a wide temperature range enabled by an ultra-stable Prussian blue analogue cathode. J. Mater. Chem. A. 2021, 9, 8685–8691. [Google Scholar] [CrossRef]
- Vignesh, K.; Abdel-Wahab, A. A short review on hydrogen, bio-fuel and electricity production using seawater as a medium. Energy Fuels 2018, 32, 6423–6437. [Google Scholar]
- Zuo, Y.Y.; Kang, L.L.; Wang, K.L. An ultra-high special energy Mg-Ni seawater battery. Chem. Phys. Lett. 2022, 803, 139852. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, C.G.; Yang, J.; Xue, S.C.; Gao, H.L.; Yan, X.H.; Yan, X.H.; Huo, Q.Y.; Wang, S.W.; Cao, Y.; et al. Advances and challenges in improvement of the electrochemical performance for lead-acid batteries: A comprehensive review. J. Power Sources 2022, 520, 230800. [Google Scholar] [CrossRef]
- Jeong, J.; Lee, J.W.; Shin, H.C. Unique electrochemical behavior of a silver–zinc secondary battery at high rates and low temperatures. Electrochim. Acta 2021, 396, 139256. [Google Scholar] [CrossRef]
- Shang, W.; Yu, W.; Liu, Y.; Li, R.; Dai, Y.; Cheng, C.; Tan, P.; Ni, M. Rechargeable alkaline zinc batteries: Progress and challenges. Energy Storage Mater. 2020, 31, 44–57. [Google Scholar] [CrossRef]
- Wang, R.; Yu, J.; Islam, F.; Tahmasebi, A.; Lee, S.; Chen, Y. State-of-the-Art Research and Applications of Carbon Foam Composite Materials as Electrodes for High-Capacity Lithium Batteries. Energy Fuels 2020, 34, 7935–7954. [Google Scholar] [CrossRef]
- Neaţu, Ş.; Neaţu, F.; Chirica, I.M.; Borbáth, I.; Tálas, E.; Tompos, A.; Somacescu, S.; Osiceanu, P.; Folgado, M.A.; Chaparro, A.M.; et al. Recent progress in electrocatalysts and electrodes for portable fuel cells. J. Mater. Chem. A 2021, 9, 17065–17128. [Google Scholar] [CrossRef]
- Masrufaiyah, D.; Ridho, H.; Gunawan, N.; Totok, R.B.; Nur, L.H. Performance of Seawater Activated Battery as Alternative Energy Resources. J. Eng. 2017, 3, 11–16. [Google Scholar] [CrossRef] [Green Version]
- Shen, P.K.; Tseung, A.C.C. Development of an aluminium sea water battery for sub-sea applications. J. Power Sources 1994, 47, 119–127. [Google Scholar] [CrossRef]
- William, S.D.; Peter, C.K. Development of a seawater battery for deep-water applications. J. Power Sources 1997, 66, 71–75. [Google Scholar]
- Zhang, J.X.; Liu, H.; Huang, J.F.; Liu, Y.; Fang, H.J.; Zhang, Q.; Xuehua, H.; Song, J.; Li, Z.; Xu, X.; et al. In Situ Synthesis of AgCl@Ag Plates as Binder-Free Cathodes in a Magnesium Seawater-Activated Battery. J. Electrochem. Soc. 2022, 169, 050502. [Google Scholar] [CrossRef]
- Liu, Q.; Yan, Z.; Wang, E. A High-specific Energy Magnesium/water Battery for Full-depth Ocean Application. Int. J. Hydrogen Energy 2017, 42, 23045–23053. [Google Scholar] [CrossRef]
- Jiao, W.; Fan, Y.; Huang, C. Effect of Modified Polyacrylonitrile-based Carbon Fiber on the Oxygen Reduction in Seaw ater Batteries. Ionics 2018, 24, 285–296. [Google Scholar] [CrossRef]
- Xu, H.; Xia, G.; Liu, H.; Xia, S.; Lu, Y. Electrochemical Activation of Commercial Polyacrylonitrile-based Carbon Fiber for the Oxygen Reduction Reaction. Phys. Chem. 2015, 17, 7707–7713. [Google Scholar] [CrossRef]
- Hahn, R.; Mainert, J.; Glaw, F.; Lang, K.D. Sea water magnesium fuel cell power supply. J. Power Sources 2015, 288, 26–35. [Google Scholar] [CrossRef]
- Yang, W.; Yang, S.; Sun, W. Nanostructured Silver Catalyzed Nickel Foam Cathode for an Aluminum-hydrogen Peroxide Fuel Cell. J. Power Sources 2006, 160, 1420–1424. [Google Scholar] [CrossRef]
- Bessette, R.R.; Cichon, J.M.; Dischert, D.W.; Dow, E.G. A study of cathode catalysis for the aluminiumrhydrogen peroxide semi-fuel cell. J. Power Sources 1999, 80, 248–253. [Google Scholar] [CrossRef]
- Zhao, H.Y.; Bian, P.; Ju, D.Y. Electrochemical performance of magnesium alloy and its application on the sea water battery. J. Environ. Sci. Suppl. 2009, 21, 88–91. [Google Scholar] [CrossRef]
- Meng, R.W.; Zhang, C.; Lu, Z.Y.; Xie, X.Y.; Liu, Y.X.; Tang, Q.; Li, H.; Kong, D.; Geng, C.N.; Jiao, Y.; et al. An Oxygenophilic Atomic Dispersed Fe-N-C Catalyst for Lean-Oxygen Seawater Batteries. Adv. Energy Mater. 2021, 11, 2100683. [Google Scholar] [CrossRef]
- Hasvold, Ø.; Henriksen, H.; Melvaer, E. Sea-water Battery for Subsea Control Systems. J. Power Sources 1997, 65, 253–261. [Google Scholar] [CrossRef]
- Medeiros, M.G.; Bessette, R.R.; Deschenes, C.M.; Patrissi, C.J.; Carreiro, L.G.; Tucker, S.P.; Atwater, D.W. Magnesium-solution Phase Catholyte semi-fuel Cell for Undersea Vehicles. J. Power Sources 2004, 136, 226–231. [Google Scholar] [CrossRef]
- Zhang, J.L.; Chang, Z.Y.; Zhang, Z.H.; Du, A.B.; Dong, S.M.; Li, Z.C.; Li, G.; Cui, G. Current Design Strategies for Rechargeable Magnesium-Based Batteries. ACS Nano 2021, 15, 15594–15624. [Google Scholar] [CrossRef]
- Chen, X.R.; Liu, X.; Le, Q.C.; Zhang, M.X.; Liu, M.; Atrens, A. A comprehensive review of the development of magnesium anodes for primary batteries. J. Mater. Chem. A 2021, 9, 12367–12399. [Google Scholar] [CrossRef]
- Xi, B.H.; Xia, T. Survey of Power Battery for Torpedo Propulsion. Torpedo Technol. 2005, 13, 7–12. [Google Scholar]
- Sun, L.M.; Wen, F.C.; Shi, L.L.; Li, S. Pd and CoOx decorated reduced graphene oxide self-assembled on Ni foam as Al-H2O2 semi-fuel cells cathodes. J. Alloy Compd. 2020, 185, 152361. [Google Scholar] [CrossRef]
- Sun, L.; Shi, L.; Zhang, S.; He, W.; Zhang, Y. Cu- and Co-Modified Pd/C Nanoparticles as the High Performance Cathodic Catalysts for Mg-H2O2 Semi-Fuel Cell. Fuel Cells 2017, 17, 898–907. [Google Scholar] [CrossRef]
- Dow, E.G.; Yan, S.G.; Medeiros, M.G.; Bessette, R.R. Separated Flow Liquid Catholyte Aluminum Hydrogen Peroxide Seawater Semi Fuel Cell. U.S. Patent 0,124,418, 3 June 2003. [Google Scholar]
- Gonzalez-Guerrero, M.J.; Gomez, F.A. Miniaturized Al/AgO coin shape and self-powered battery featuring painted paper electrodes for portable applications. Sens. Actuators B Chem. 2018, 273, 101–107. [Google Scholar] [CrossRef]
- Balasubramanian, R.; Veluchamy, R.; Venkatakrishnan, N.; Gangadharan, R. Electrochemical characterization of magnesium/silver chloride battery. J. Power Sources 1995, 56, 197–199. [Google Scholar] [CrossRef]
- Han, J.; Lee, S.; Youn, C.; Lee, J.; Kim, Y.; Choi, T. Hybrid photoelectrochemical-rechargeable seawater battery for efficient solar energy storage systems. Electrochim. Acta 2020, 332, 135443. [Google Scholar] [CrossRef]
- Senthilkumar, S.T.; Park, S.O.; Kim, J.; Hwang, S.M.; Kwak, S.K.; Kim, Y. Seawater battery performance enhancement enabled by a defect/edge-rich, oxygen self-doped porous carbon electrocatalyst. J. Mater. Chem. A 2017, 5, 14174–14181. [Google Scholar] [CrossRef]
- Kim, Y.; Kim, G.-T.; Jeong, S.; Dou, X.; Geng, C.; Kim, Y.; Passerini, S. Large-scale stationary energy storage: Seawater batteries with high rate and reversible performance. Energy Storage Mater. 2019, 16, 56–64. [Google Scholar] [CrossRef]
- He, X.; Li, Z.; Wang, Y.; Xu, W.; Zhang, Q.; Wang, X.; Liu, H.; Yang, G.; Zhang, H.; Song, J.; et al. A high-purity AgO cathode active material for high-performance aqueous AgO–Al batteries. J. Power Sources 2022, 551, 232151. [Google Scholar] [CrossRef]
- Kong, M.; Bu, L.; Wang, W. Investigations on the discharge/charge process of a novel AgCl/Ag/carbon felt composite electrode used for seawater batteries. J. Power Sources. 2021, 506, 230210. [Google Scholar] [CrossRef]
- Moghanni-Bavil-Olyaei, H.; Arjomamdi, J. Performance of Al–1Mg–1Zn–0.1Bi–0.02In as anode for the Al–AgO battery. RSC Adv. 2015, 5, 91273–91279. [Google Scholar] [CrossRef]
- Li, Q.F.; Bjerrum, N.J. Aluminum as anode for energy storage and conversion: A review. J. Power Sources. 2002, 110, 1–10. [Google Scholar] [CrossRef]
- Karpinski, A.P.; Russell, S.J.; Serenyi, J.R.; Murphy, J.P. Silver based batteries for high power applications. J. Power Sources. 2000, 91, 77–82. [Google Scholar] [CrossRef]
- Asfia, M.P.; Pourfarzad, H.; Kashani, H.; Olia, M.H.; Badrnezhad, R. Study of Uniform and Localized Corrosion Behaviour of Aluminum Alloy 1050 as Al/AgO Battery Anode in Aerated NaCl in the Presence of an Organosulfur Inhibitor. J. Electrochem. Soc. 2020, 167, 140527. [Google Scholar] [CrossRef]
- Son, M.; Park, S.; Kim, N.; Angeles, A.T.; Kim, Y.; Cho, K.H. Simultaneous Energy Storage and Seawater Desalination using Rechargeable Seawater Battery: Feasibility and Future Directions. Adv. Sci. 2021, 8, 2101289. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Künzel, M.; Steinle, D.; Dong, X.; Kim, G.; Kim, A.; Passerini, S. Anode-less seawater batteries with a Na-ion conducting solid-polymer electrolyte for power to metal and metal to power energy storage. Energy Environ. Sci. 2022, 15, 2610–2618. [Google Scholar] [CrossRef]
- Jung, J.; Hwang, D.; Kristanto, I.; Kwak, S.K.; Kang, S.J. Deterministic growth of a sodium metal anode on a pre-patterned current collector for highly rechargeable seawater batteries. J. Mater. Chem. A 2019, 7, 9773–9781. [Google Scholar] [CrossRef]
- Kim, Y.; Hwanga, S.M.; Yua, H.; Kim, Y. High Energy Density for Rechargeable Metal-Free Seawater Batteries: Phosphorus/Carbon Composite as a Promising Anode Material. J. Mater. Chem. A 2018, 6, 3046–3054. [Google Scholar] [CrossRef]
- Verma, J.; Kumar, D. Recent developments in energy storage systems for marine environment. Mater. Adv. 2021, 2, 6800–6815. [Google Scholar] [CrossRef]
- Kim, Y.; Kim, H.; Park, S.; Seo, I.; Kim, Y. Na-ion Conducting Ceramic as Solid Electrolyte for Rechargeable Seawater Batteries. Electrochim. Acta 2016, 191, 1–7. [Google Scholar] [CrossRef]
- Hwang, S.M.; Park, J.S.; Kim, Y.; Go, W.; Han, J.; Kim, Y.; Kim, Y. Rechargeable Seawater Batteries—From Concept to Applications. Adv. Mater. 2019, 31, 1804936. [Google Scholar] [CrossRef]
- Senthilkumar, S.T.; Go, W.; Han, J.; Thuy LP, T.; Kishor, K.; Kim, Y.; Kim, Y. Emergence of rechargeable seawater batteries. J. Mater. Chem. A 2019, 7, 22803–22825. [Google Scholar] [CrossRef]
- Manikandan, P.; Kishor, K.; Han, J.; Han, Y. Advanced Perspective on Synchronized Bifunctional Activities of P2-Type Material to Implement Interconnected Voltage Profile for Seawater Battery. J. Mater. Chem. A 2018, 6, 11012–11021. [Google Scholar] [CrossRef]
- Mozaffari, S.; Nateghi, M.R. Recent Advances in Solar Rechargeable Seawater Batteries Based on Semiconductor Photoelectrodes. Top. Curr. Chem. 2022, 380, 28. [Google Scholar] [CrossRef] [PubMed]
Type | Working Mechanism | Energy Density | Characteristic | Application |
---|---|---|---|---|
Dissolved oxygen seawater-activated batteries | Anode: M → Mn+ + ne− Cathode:O2 + 2H2O + 4e− → 4OH− | 50–150 Wh/kg | High specific energy; Low output power; Long storage life; High security | deep sea survey operation |
Metal hydrogen peroxide seawater-activated batteries | Anode: M + nOH− → M(OH)n + ne− Cathode: H2O2 + e−→2OH− | 100–500 Wh/kg | High specific energy; Long storage life; High security | Torpedoes; Unmanned Underwater Vehicle |
High-power seawater-activated batteries | Anode:Al + 4OH− → Al(OH)4−l+ e− Cathode:AgO + H2O + 2e− → Ag2O + 2OH− Ag2O + H2O + 2e− → 2Ag + 2OH− | 130 Wh/kg | High current discharge; High output power; Long storage life; High security | Torpedoes |
Anode: Mg → Mg2+ + 2e− Cathode: AgCl + e− → Ag + Cl− | 88 Wh/kg | Low output power; Long discharge time; Long storage life; High security | Underwater sensor network | |
Rechargeable seawater-activated batteries | Anode: Na ↔ Na+ + e− Cathode: O2 + 2H2O + 4e− ↔ 4OH− | Rechargeable; Long cycle lifespan; Low cost | Diverse marine sectors; typical energy storage applications |
Type | Mg/AgCl | Mg/CuCl | Al/AgO |
---|---|---|---|
Anode Cathode | Al + 4OH− → Al(OH)4− + 3e− | Mg → Mg2+ + 2e− | Mg → Mg2+ + 2e− |
AgO + H2O + 2e− → Ag2O + 2e− Ag2O + H2O + 2e− → 2Ag + 2OH− | CuCl + 2e− → Cu+Cl− | AgCl + e− → Ag + Cl− |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, J.; Xu, W.; Wang, X.; Yang, S.; Xiong, C. Progress and Applications of Seawater-Activated Batteries. Sustainability 2023, 15, 1635. https://doi.org/10.3390/su15021635
Chen J, Xu W, Wang X, Yang S, Xiong C. Progress and Applications of Seawater-Activated Batteries. Sustainability. 2023; 15(2):1635. https://doi.org/10.3390/su15021635
Chicago/Turabian StyleChen, Jinmao, Wanli Xu, Xudong Wang, Shasha Yang, and Chunhua Xiong. 2023. "Progress and Applications of Seawater-Activated Batteries" Sustainability 15, no. 2: 1635. https://doi.org/10.3390/su15021635
APA StyleChen, J., Xu, W., Wang, X., Yang, S., & Xiong, C. (2023). Progress and Applications of Seawater-Activated Batteries. Sustainability, 15(2), 1635. https://doi.org/10.3390/su15021635