The Effect of FDI Agglomeration on Carbon Emission Intensity: Evidence from City-Level Data in China
Abstract
:1. Introduction
2. Literature Review
3. Theoretical Analysis and Research Hypothesis
3.1. The Influencing Mechanism of FDI Agglomeration on Carbon Emission Intensity
3.2. Regulation Mechanism of the Level of Technological Innovation
3.3. Spatial Spillover Mechanism of FDI Agglomeration on Carbon Emission Intensity
4. Empirical Study Design
4.1. Model Setup
4.2. Variable Selection
4.2.1. Explained Variables
4.2.2. Core Explanatory Variables
4.2.3. Control Variables
4.3. Data Sources and Descriptions
5. Analysis of Empirical Results
5.1. Spatial and Temporal Characteristics of FDI Agglomeration and Carbon Emission Intensity
5.1.1. Temporal Trends of FDI Agglomeration and Carbon Emission Intensity
5.1.2. Spatial Distribution and Change Trend of FDI Concentration and Carbon Emission Intensity
5.2. Benchmark Regression Results
5.3. Endogeneity Problems and Robustness Tests
5.4. Heterogeneity Test
5.5. Spatial Spillover Effect Test
5.5.1. Spatial Autocorrelation Test
5.5.2. Selection of Spatial Econometric Models
5.5.3. Spatial Econometric Model Estimation Results
6. Conclusions and Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yuan, H.; Feng, Y.; Lee, C.-C.; Cen, Y. How does manufacturing agglomeration affect green economic efficiency? Energy Econ. 2020, 92, 104944. [Google Scholar] [CrossRef]
- Zhang, Y.-J.; Liu, Z.; Qin, C.-X.; Tan, T.-D. The direct and indirect CO2 rebound effect for private cars in China. Energy Policy 2017, 100, 149–161. [Google Scholar] [CrossRef]
- Xu, X.; Shen, Y.; Liu, H. What Cause Large Spatiotemporal Differences in Carbon Intensity of Energy-Intensive Industries in China? Evidence from Provincial Data during 2000–2019. Int. J. Environ. Res. Public Health 2022, 19, 10235. [Google Scholar] [CrossRef] [PubMed]
- Liang, S.; Zhao, J.; He, S.; Xu, Q.; Ma, X. Spatial econometric analysis of carbon emission intensity in Chinese provinces from the perspective of innovation-driven. Environ. Sci. Pollut. Res. 2019, 26, 13878–13895. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Ren, H.; Liang, L.; Li, J.; Wang, Z. The effect of economic development on carbon intensity of human well-being: Evidence from spatial econometric analyses. J. Clean. Prod. 2022, 364, 132632. [Google Scholar] [CrossRef]
- Han, X.; Cao, T.; Sun, T. Analysis on the variation rule and influencing factors of energy consumption carbon emission intensity in China’s urbanization construction. J. Clean. Prod. 2019, 238, 117958. [Google Scholar] [CrossRef]
- Wen, S.; Liu, H. Research on energy conservation and carbon emission reduction effects and mechanism: Quasi-experimental evidence from China. Energy Policy 2022, 169, 113180. [Google Scholar] [CrossRef]
- Yan, B.; Wang, F.; Liu, J.; Fan, W.; Chen, T.; Liu, S.; Ning, J.; Wu, C. How financial geo-density mitigates carbon emission intensity: Transmission mechanisms in spatial insights. J. Clean. Prod. 2022, 367, 133108. [Google Scholar] [CrossRef]
- Ding, X.; Tang, N.; He, J. The Threshold Effect of Environmental Regulation, FDI Agglomeration, and Water Utilization Efficiency under " Double Control Actions"-An Empirical Test Based on Yangtze River Economic Belt. Water 2019, 11, 452. [Google Scholar] [CrossRef] [Green Version]
- Yu, D.; Li, X.; Yu, J.; Li, H. The impact of the spatial agglomeration of foreign direct investment on green total factor productivity of Chinese cities. J. Environ. Manag. 2021, 290, 112666. [Google Scholar] [CrossRef]
- Ali, S.; Ali, S.; Muhammad, T. Determinants of CO2 emissions: Exploring the unexplored in low-income countries. Environ. Sci. Pollut. Res. Int. 2022, 29, 48276–48284. [Google Scholar]
- Liu, X.; Wahab, S.; Hussain, M.; Sun, Y.; Kirikkaleli, D. China carbon neutrality target: Revisiting FDI-trade-innovation nexus with carbon emissions. J. Environ. Manag. 2021, 294, 113043. [Google Scholar] [CrossRef]
- Bulus, G.C.; Koc, S. The effects of FDI and government expenditures on environmental pollution in Korea: The pollution haven hypothesis revisited. Environ. Sci. Pollut. Res. 2021, 28, 38238–38253. [Google Scholar] [CrossRef]
- Andrew, K. Does Foreign Investment Harm the Air We Breathe and the Water We Drink? A Cross-National Study of Carbon Dioxide Emissions and Organic Water Pollution in Less-Developed Countries, 1975 to 2000. Organ. Environ. 2007, 20, 137–156. [Google Scholar]
- Lee, J.W. The contribution of foreign direct investment to clean energy use, carbon emissions and economic growth. Energy Policy 2013, 55, 483–489. [Google Scholar] [CrossRef]
- Bakhsh, K.; Rose, S.; Ali, M.F.; Ahmad, N.; Shahbaz, M. Economic growth, CO2 emissions, renewable waste and FDI relation in Pakistan: New evidences from 3SLS. J. Environ. Manag. 2017, 196, 627–632. [Google Scholar] [CrossRef]
- Konisky, D.M. Assessing U.S. State Susceptibility to Environmental Regulatory Competition. State Politics-Policy Q. 2009, 9, 404–428. [Google Scholar] [CrossRef]
- Haider, M. The spatial analyses of consumption-based CO2 emissions, exports, imports, and FDI nexus in GCC countries. Environ. Sci. Pollut. Res. Int. 2022, 29, 48301–48311. [Google Scholar]
- Wang, Z.; Gao, L.; Wei, Z.; Majeed, A.; Alam, I. How FDI and technology innovation mitigate CO2 emissions in high-tech industries: Evidence from province-level data of China. Environ. Sci. Pollut. Res. 2021, 29, 4641–4653. [Google Scholar] [CrossRef]
- Shao, Y. Does FDI affect carbon intensity? New evidence from dynamic panel analysis. Int. J. Clim. Change Strat. Manag. 2018, 10, 27–42. [Google Scholar] [CrossRef] [Green Version]
- Abid, A.; Mehmood, U.; Tariq, S.; Haq, Z.U. The effect of technological innovation, FDI, and financial development on CO2 emission: Evidence from the G8 countries. Environ. Sci. Pollut. Res. Int. 2021, 29, 11654–11662. [Google Scholar] [CrossRef] [PubMed]
- Hayat, K.; Liu, W.; Itbar, K. The role of institutional quality in FDI inflows and carbon emission reduction: Evidence from the global developing and belt road initiative countries. Environ. Sci. Pollut. Res. Int. 2022, 29, 30594–305621. [Google Scholar]
- Gong, M.; Zhen, S.; Liu, H. Research on the nonlinear dynamic relationship between FDI and CO2 emissions in the "One Belt, One Road " countries. Environ. Sci. Pollut. Res. 2021, 28, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Shahbaz, M.; Nasreen, S.; Abbas, F.; Anis, O. Does foreign direct investment impede environmental quality in high-, middle-, and low-income countries? Energy Econ. 2015, 51, 275–287. [Google Scholar] [CrossRef]
- Pazienza, P. The impact of FDI in the OECD manufacturing sector on CO2 emission: Evidence and policy issues. Environ. Impact Assess. Rev. 2019, 77, 60–68. [Google Scholar] [CrossRef]
- Sarkodie, S.A.; Strezov, V. Effect of foreign direct investments, economic development and energy consumption on greenhouse gas emissions in developing countries. Sci. Total Environ. 2018, 646, 862–871. [Google Scholar] [CrossRef]
- Xie, Q.; Wang, X.; Cong, X. How does foreign direct investment affect CO2 emissions in emerging countries?New findings from a nonlinear panel analysis. J. Clean. Prod. 2019, 249, 119422. [Google Scholar] [CrossRef]
- Duranton, G.; Puga, D. Micro-foundations of Urban Agglomeration Economies. In Handbook of Regional and Urban Economics; Elsevier: Amsterdam, The Netherlands, 2004; pp. 2063–2117. [Google Scholar]
- Xie, R.; Yao, S.; Han, F.; Fang, J. Land Finance, Producer Services Agglomeration, and Green Total Factor Productivity. Int. Reg. Sci. Rev. 2019, 42, 550–579. [Google Scholar] [CrossRef]
- Chen, Y.; Zhu, Z.; Cheng, S. Industrial agglomeration and haze pollution: Evidence from China. Sci. Total Environ. 2022, 845, 157392. [Google Scholar] [CrossRef]
- Hong, Y.; Lyu, X.; Chen, Y.; Li, W. Industrial agglomeration externalities, local governments’ competition and environmental pollution: Evidence from Chinese prefecture-level cities. J. Clean. Prod. 2020, 277, 123455. [Google Scholar] [CrossRef]
- Lanre, I.; Bello, A. Disaggregated environmental impacts of non-renewable energy and trade openness in selected G-20 countries: The conditioning role of technological innovation. Environ. Sci. Pollut. Res. Int. 2021, 28, 67496–674510. [Google Scholar]
- Hille, E.; Lambernd, B. The role of innovation in reducing South Korea’s energy intensity: Regional-data evidence on various energy carriers. J. Environ. Manag. 2020, 262, 110293. [Google Scholar] [CrossRef]
- Cheng, C.; Ren, X.; Dong, K.; Dong, X.; Wang, Z. How does technological innovation mitigate CO2 emissions in OECD countries? Heterogeneous analysis using panel quantile regression. J. Environ. Manag. 2020, 280, 111818. [Google Scholar] [CrossRef]
- Zeng, W.; Li, L.; Huang, Y. Industrial collaborative agglomeration, marketization, and green innovation: Evidence from China’s provincial panel data. J. Clean. Prod. 2021, 279, 123598. [Google Scholar] [CrossRef]
- Holzinger, K.; Sommerer, T. ‘Race to the Bottom’ or ‘Race to Brussels’? Environmental Competition in Europe. J. Common Mark. Stud. 2011, 49, 315–339. [Google Scholar] [CrossRef]
- Bai, Y.; Deng, X.; Gibson, J.; Zhao, Z.; Xu, H. How does urbanization affect residential CO2 emissions? An analysis on urban agglomerations of China. J. Clean. Prod. 2018, 209, 876–885. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, S.; Bae, J. Nonlinear analysis of technological innovation and electricity generation on carbon dioxide emissions in China. J. Clean. Prod. 2022, 343, 131021. [Google Scholar] [CrossRef]
- Zhu, X. Have carbon emissions been reduced due to the upgrading of industrial structure? Analysis of the mediating effect based on technological innovation. Environ. Sci. Pollut. Res. 2022, 29, 54890–54901. [Google Scholar] [CrossRef]
- Wang, S.; Wang, H.; Sun, Q. The Impact of Foreign Direct Investment on Environmental Pollution in China: Corruption Matters. Int. J. Environ. Res. Public Health 2020, 17, 6477. [Google Scholar] [CrossRef]
- Jiang, L.; Zhou, H.-F.; Bai, L.; Zhou, P. Does foreign direct investment drive environmental degradation in China? An empirical study based on air quality index from a spatial perspective. J. Clean. Prod. 2018, 176, 864–872. [Google Scholar] [CrossRef]
- Hao, Y.; Wu, Y.; Wu, H.; Ren, S. How do FDI and technical innovation affect environmental quality? Evidence from China. Environ. Sci. Pollut. Res. 2019, 27, 7835–7850. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.-C.; Li, Y.-W.; Miao, Y.-M.; Gao, C.; He, Z.-X.; Shen, W.-X.; Long, R.-Y.; Chen, H.; Zhao, B.; Wang, S.-X. Regional differences in nonlinear impacts of economic growth, export and FDI on air pollutants in China based on provincial panel data. J. Clean. Prod. 2019, 228, 455–466. [Google Scholar] [CrossRef]
- Muhammad, K.; Ilhan, O. Examining the direct and indirect effects of financial development on CO2 emissions for 88 developing countries. J. Environ. Manag. 2021, 293, 112812. [Google Scholar]
- Yang, X.; Li, C. Industrial environmental efficiency, foreign direct investment and export—Evidence from 30 provinces in China. J. Clean. Prod. 2019, 212, 1490–1498. [Google Scholar] [CrossRef]
Variable | Obs | Mean | Std. Dev | Min | Max |
---|---|---|---|---|---|
lnCI | 3780 | 8.329 | 0.821 | 5.469 | 12.128 |
lnFDIA | 3780 | 2.333 | 2.361 | −7.065 | 8.633 |
lnTI | 3780 | 7.158 | 1.781 | 2.197 | 12.388 |
lnPGDP | 3780 | 10.454 | 0.719 | 4.595 | 15.675 |
lnOPEN | 3780 | 2.090 | 1.569 | −9.492 | 6.701 |
lnPOP | 3780 | 5.950 | 0.803 | 3.769 | 14.393 |
lnIS | 3780 | 3.845 | 0.246 | 0.657 | 4.450 |
lnFIN | 3780 | 4.403 | 0.585 | 2.418 | 7.423 |
lnGOV | 3780 | 2.809 | 0.530 | 1.451 | 6.404 |
Variable | lnCI |
---|---|
lnFDIA | 0.103 *** (3.339) |
lnTI | 0.092 ** (2.518) |
lnFDIA lnTI | −0.016 *** (−3.960) |
lnPGDP | 0.177 (0.835) |
(lnPGDP)2 | −0.006 (−0.575) |
lnOPEN | 0.051 ** (2.016) |
lnPOP | 0.006 (0.263) |
lnIS | 0.022 (0.196) |
lnFIN | 0.401 *** (4.200) |
lnGOV | 0.684 *** (6.344) |
cons | 3.393 *** (2.986) |
Year fixed effect | yes |
City fixed effects | yes |
Sample size | 3780 |
R2 | 0.656 |
Variable | (1) 2SLS | (2) During Sample Replacement | (3) Shrinkage Processing | (4) Replacement Indicators |
---|---|---|---|---|
lnFDIA | 0.132 *** (4.008) | 0.317 *** (5.396) | 0.109 *** (2.917) | 0.096 *** (3.371) |
lnTI | 0.098 *** (5.212) | 0.159 *** (2.640) | 0.0947 ** (2.490) | 0.134 *** (3.917) |
lnFDIA lnTI | −0.022 *** (−5.420) | −0.045 *** (−5.497) | −0.017 *** (−3.500) | −0.016 *** (−4.102) |
lnPGDP | 0.218 (1.366) | 2.041 *** (3.442) | 0.165 (0.229) | 0.138 (0.670) |
(lnPGDP)2 | −0.007 (−0.934) | −0.083 *** (−3.335) | −0.003 (−0.081) | −0.004 (−0.448) |
lnOPEN | 0.057 *** (5.389) | 0.097 ** (2.411) | 0.089 *** (3.118) | 0.049 ** (1.987) |
lnPOP | 0.004 (0.275) | −0.002 (−0.113) | −0.017 (−0.181) | 0.006 (0.336) |
lnIS | 0.105 * (1.716) | 0.033 (0.301) | −0.052 (−0.347) | 0.015 (0.138) |
lnFIN | 0.387 *** (10.784) | 0.381 *** (2.858) | 0.462 *** (4.736) | 0.396 *** (4.198) |
lnGOV | 0.721 *** (17.719) | 0.825 *** (5.558) | 0.584 *** (6.026) | 0.6945 *** (6.511) |
cons | 2.620 *** (3.012) | −9.514 *** (−2.863) | 3.535 (0.997) | 3.489 *** (3.209) |
Year fixed effect | yes | yes | yes | yes |
City fixed effects | yes | yes | yes | yes |
Wald F | 573.401 | |||
LM statistic | [0.000] | |||
Sample size | 3510 | 2160 | 3780 | 3780 |
R2 | 0.770 | 0.655 | 0.658 |
Variable | East | Middle | West |
---|---|---|---|
lnFDIA | −0.027 (−0.740) | 0.136 *** (2.734) | 0.146 *** (2.917) |
lnTI | −0.031 (−0.653) | 0.100 ** (2.292) | 0.128 * (1.686) |
lnFDIA lnTI | −0.005 (−1.032) | −0.011 (−1.576) | −0.022 *** (−3.074) |
lnPGDP | 1.392 * (1.768) | 2.026 ** (2.612) | 0.148 (0.633) |
(lnPGDP)2 | −0.051 (−1.421) | −0.091 ** (−2.509) | −0.008 (−0.850) |
lnOPEN | 0.209 *** (2.774) | 0.002 (0.152) | 0.089 * (1.680) |
lnPOP | −0.009 (−0.289) | 0.288 (1.155) | 0.278 (0.571) |
lnIS | −0.210 (−0.932) | 0.084 (0.823) | 0.102 (0.310) |
lnFIN | 0.224 * (1.887) | 0.308 * (1.933) | 0.586 *** (4.480) |
lnGOV | 0.782 *** (5.245) | 0.782 *** (4.013) | 0.531 *** (3.298) |
cons | −2.402 (−0.609) | −7.962 * (−1.742) | 1.376 (0.419) |
Year fixed effect | yes | yes | yes |
City fixed effects | yes | yes | yes |
Sample size | 1414 | 1386 | 980 |
R2 | 0.688 | 0.720 | 0.631 |
Year | CI |
---|---|
2006 | −0.015 *** |
2007 | −0.018 *** |
2008 | −0.017 *** |
2009 | −0.013 *** |
2010 | −0.014 *** |
2011 | −0.017 *** |
2012 | −0.013 *** |
2013 | −0.014 *** |
2014 | −0.017 *** |
2015 | −0.025 *** |
2016 | −0.041 *** |
2017 | −0.016 *** |
2018 | −0.025 *** |
2019 | −0.026 *** |
Variable | lnCI |
---|---|
lnFDIA | 0.172 *** (9.00) |
lnTI | 0.0413 ** (2.62) |
lnFDIA lnTI | −0.0219 *** (−8.69) |
lnPGDP | 0.799 *** (3.32) |
(lnPGDP)2 | −0.0316 ** (−2.78) |
lnOPEN | 0.0380 *** (4.41) |
lnPOP | −0.172 *** (−11.10) |
lnIS | 0.539 *** (10.12) |
lnFIN | 0.517 *** (17.73) |
lnGOV | 0.110 ** (2.79) |
WlnFDIA | 1.279 *** (3.63) |
WlnTI | 2.221 *** (3.60) |
WlnFDIAlnTI | −0.175 *** (−4.58) |
WlnPGDP | −40.82 *** (−6.43) |
W (lnPGDP)2 | 1.610 *** (5.20) |
WlnOPEN | 0.173 (0.33) |
WlnPOP | −9.228 *** (−9.05) |
WlnIS | 19.38 *** (9.83) |
WlnFIN | 7.819 *** (7.80) |
WlnGOV | −6.600 *** (−3.88) |
−0.499 * (−1.73) | |
Sample size | 3780 |
R2 | 0.3626 |
Variable | Direct Effect | Indirect Effects | Total Effect |
---|---|---|---|
lnFDIA | 0.171 *** (8.86) | 0.884 * (2.23) | 1.055 ** (2.64) |
lnTI | 0.0367 * (2.57) | 1.576 * (2.37) | 1.613 * (2.41) |
lnFDIA lnTI | −0.0215 *** (−8.92) | −0.123 * (−2.48) | −0.144 ** (−2.88) |
lnPGDP | 0.880 *** (3.44) | −29.38 ** (−3.06) | −28.50 ** (−2.96) |
(lnPGDP)2 | −0.0352 ** (−2.95) | 1.152 ** (2.96) | 1.117 ** (2.86) |
lnOPEN | 0.0384 *** (4.53) | 0.150 (0.34) | 0.188 (0.43) |
lnPOP | −0.159 *** (−9.06) | −6.545 ** (−2.93) | −6.704 ** (−2.99) |
lnIS | 0.506 *** (10.11) | 13.77 ** (3.01) | 14.27 ** (3.11) |
lnFIN | 0.506 *** (18.28) | 5.339 ** (3.10) | 5.844 *** (3.37) |
lnGOV | 0.113 ** (2.85) | −4.816 * (−2.16) | −4.703 * (−2.10) |
Sample size | 3780 | 3780 | 3780 |
R2 | 0.3626 | 0.3626 | 0.3626 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Y.; Xu, H. The Effect of FDI Agglomeration on Carbon Emission Intensity: Evidence from City-Level Data in China. Sustainability 2023, 15, 1716. https://doi.org/10.3390/su15021716
Wu Y, Xu H. The Effect of FDI Agglomeration on Carbon Emission Intensity: Evidence from City-Level Data in China. Sustainability. 2023; 15(2):1716. https://doi.org/10.3390/su15021716
Chicago/Turabian StyleWu, Yunyun, and Han Xu. 2023. "The Effect of FDI Agglomeration on Carbon Emission Intensity: Evidence from City-Level Data in China" Sustainability 15, no. 2: 1716. https://doi.org/10.3390/su15021716
APA StyleWu, Y., & Xu, H. (2023). The Effect of FDI Agglomeration on Carbon Emission Intensity: Evidence from City-Level Data in China. Sustainability, 15(2), 1716. https://doi.org/10.3390/su15021716