How Did the Pandemic Affect Our Perception of Sustainability? Enlightening the Major Positive Impact on Health and the Environment
Abstract
:1. Introduction
1.1. Human Sustainability
1.2. Social Sustainability
1.3. Economic Sustainability
1.4. Environmental Sustainability
2. Effects of COVID-19
2.1. Effects on Air
2.2. Effects on Water
2.3. Effects on Animals
2.4. Effects on Seafood and Meat
2.5. Effects on Soil
2.6. Effects on Plants
3. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bautista-Puig, N.; Lozano, R.; Barreiro-Gen, M. Developing a sustainability implementation framework: Insights from academic research on tools, initiatives and approaches. Environ. Dev. Sustain. 2022, 24, 1–21. [Google Scholar] [CrossRef]
- Feeney, M.; Grohnert, T.; Gijselaers, W.; Martens, P. Organizations, Learning, and Sustainability: A Cross-Disciplinary Review and Research Agenda. J. Bus. Ethics 2022, 1–19. [Google Scholar] [CrossRef]
- Camilleri, M.A. Corporate sustainability and responsibility: Creating value for business, society and the environment. Asian J. Sustain. Soc. Responsib. 2017, 2, 59–74. [Google Scholar] [CrossRef]
- Hambali, A.; Adhariani, D. Sustainability performance at stake during COVID-19 pandemic? Evidence from Sharia-compliant companies in emerging markets. J. Islam. Account. Bus. Res. 2022. ahead-of-print. [Google Scholar] [CrossRef]
- Diesendorf, M. Sustainability: The Corporate Challenge of the 21st Century; Allen & Unwin: Sydney, Australia, 2000; Volume Chapter 2, pp. 19–37. [Google Scholar]
- Benn, S.; Edwards, M.; Williams, T. Organizational Change for Corporate Sustainability, 4th ed.; Routledge: London, UK, 2018. [Google Scholar] [CrossRef]
- Benn, S.; Edwards, M.; Williams, T. Organizational Change for Corporate Sustainability, 3rd ed.; Routledge: London, UK, 2014. [Google Scholar] [CrossRef]
- Khalaf, A.T.; Wei, Y.; Wan, J.; Zhu, J.; Peng, Y.; Kadir, S.Y.A.; Zainol, J.; Oglah, Z.; Cheng, L.; Shi, Z. Bone Tissue Engineering through 3D Bioprinting of Bioceramic Scaffolds: A Review and Update. Life 2022, 12, 903. [Google Scholar] [CrossRef]
- Starik, M.; Stubbs, W.; Benn, S. Synthesising environmental and socio-economic sustainability models: A multi-level approach for advancing integrated sustainability research and practice. Australas. J. Environ. Manag. 2016, 23, 402–425. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, R.; Shi, H.; Li, X.; Li, Y.; Taha, A.; Xu, C. Protective effect of curcumin against ultraviolet A irradiation-induced photoaging in human dermal fibroblasts. Mol. Med. Rep. 2018, 17, 7227–7237. [Google Scholar] [CrossRef] [Green Version]
- Wei, Y.; Khalaf, A.T.; Ye, P.; Fan, W.; Su, J.; Chen, W.; Hu, H.; Menhas, R.; Wang, L.; Oglah, Z. Therapeutic Benefits of Pomegranate Flower Extract: A Novel Effect That Reduces Oxidative Stress and Significantly Improves Diastolic Relaxation in Hyperglycemic In Vitro in Rats. Evidence-Based Complement. Altern. Med. 2022, 2022, 4158762. [Google Scholar] [CrossRef]
- Available online: https://COVID-19virus-resources.esri.com/datasets/bda7594740fd40299423467b48e9ecf6 (accessed on 28 November 2022).
- Rodríguez-Urrego, D.; Rodríguez-Urrego, L. Air quality during the COVID-19: PM2.5 analysis in the 50 most polluted capital cities in the world. Environ. Pollut. 2020, 266, 115042. [Google Scholar] [CrossRef]
- Khalaf, A.T.; Sun, Y.; Wang, F.; Sheng, M.; Li, Y.; Liu, X. Photodynamic Therapy Using HMME for Port-Wine Stains: Clinical Effectiveness and Sonographic Appearance. BioMed Res. Int. 2020, 2020, 6030581. [Google Scholar] [CrossRef]
- Sarkodie, S.A.; Owusu, P.A. Global assessment of environment, health and economic impact of the novel coronavirus (COVID-19). Environ. Dev. Sustain. 2020, 23, 5005–5015. [Google Scholar] [CrossRef] [PubMed]
- Cheng, L.; Lin, T.; Khalaf, A.T.; Zhang, Y.; He, H.; Yang, L.; Yan, S.; Zhu, J.; Shi, Z. The preparation and application of calcium phosphate biomedical composites in filling of weight-bearing bone defects. Sci. Rep. 2021, 11, 4283. [Google Scholar] [CrossRef] [PubMed]
- Khalaf, A.T.; Wei, Y.; Alneamah, S.J.A.; Al-Shawi, S.G.; Kadir, S.Y.A.; Zainol, J.; Liu, X. What Is New in the Preventive and Therapeutic Role of Dairy Products as Nutraceuticals and Functional Foods? BioMed Res. Int. 2021, 2021, 8823222. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Khalaf, A.T.; Lei, D.; Gale, M.; Li, J.; Jiang, P.; Du, J.; Yinayeti, X.; Abudureheman, M.; Wei, Y. Structured oral examination as an effective assessment tool in lab-based physiology learning sessions. Adv. Physiol. Educ. 2020, 44, 453–458. [Google Scholar] [CrossRef] [PubMed]
- Shakil, M.H.; Munim, Z.H.; Tasnia, M.; Sarowar, S. COVID-19 and the environment: A critical review and research agenda. Sci. Total Environ. 2020, 745, 141022. [Google Scholar] [CrossRef]
- Domingo, J.L.; Marquès, M.; Rovira, J. Influence of airborne transmission of SARS-CoV-2 on COVID-19 pandemic. A review. Environ. Res. 2020, 188, 109861. [Google Scholar] [CrossRef]
- Cheng, L.; Khalaf, A.T.; Lin, T.; Ran, L.; Shi, Z.; Wan, J.; Zhou, X.; Zou, L. Exercise Promotes the Osteoinduction of HA/β-TCP Biomaterials via the Wnt Signaling Pathway. Metabolites 2020, 10, 90. [Google Scholar] [CrossRef] [Green Version]
- Khalaf, A.T.; Wan, J. The Influence of Polysaccharide Nucleic Acid of BCG on Serum sIL-2R, IL-10 and TNF-α in Patients with Vitiligo. Basic Clin. Pharmacol. Toxicol. 2020, 126, 64–65. [Google Scholar]
- Huang, J.; Khalaf, A.T.; Zhang, R.; Xu, C.; Liu, X. Evolving Understanding of Palisaded Encapsulated Neuroma: An Unusual Presentation of Multiple Lesions on the Lips. Basic Clin. Pharmacol. Toxicol. 2019, 125 (Suppl. 6), 4–5. [Google Scholar]
- Daughton, C.G. Wastewater surveillance for population-wide Covid-19: The present and future. Sci. Total Environ. 2020, 736, 139631. [Google Scholar] [CrossRef]
- Liu, F.; Wang, M.; Zheng, M. Effects of COVID-19 lockdown on global air quality and health. Sci. Total Environ. 2021, 755, 142533. [Google Scholar] [CrossRef] [PubMed]
- Khalaf, A.T.; Liu, J.; Wang, Y.; Samiah, A.K.; Zainol, J.; Doustjalali, S.R.; Sabet, N.S.; Appalanaidu, V.; Al-Jashamy, K.; Bhuiyan, M.; et al. Emotional and Social Wellbeing in Middle and Primary Schools: Hubei, China. Res. J. Med. Sci. 2017, 11, 138–142. [Google Scholar]
- Sharma, S.; Zhang, M.; Anshika; Gao, J.; Zhang, H.; Kota, S.H. Effect of restricted emissions during COVID-19 on air quality in India. Sci. Total. Environ. 2020, 728, 138878. [Google Scholar] [CrossRef] [PubMed]
- Shehzad, K.; Sarfraz, M.; Shah, S.G.M. The impact of COVID-19 as a necessary evil on air pollution in India during the lockdown. Environ. Pollut. 2020, 266 Pt 1, 115080. [Google Scholar] [CrossRef] [PubMed]
- Shen, X.; Cai, C.; Li, H. Socioeconomic restrictions slowdown COVID-19 far more effectively than favorable weather-evidence from the satellite. Sci. Total Environ. 2020, 748, 141401. [Google Scholar] [CrossRef]
- Vîrghileanu, M.; Săvulescu, I.; Mihai, B.-A.; Nistor, C.; Dobre, R. Nitrogen Dioxide (NO2) Pollution Monitoring with Sentinel-5P Satellite Imagery over Europe during the Coronavirus Pandemic Outbreak. Remote Sens. 2020, 12, 3575. [Google Scholar] [CrossRef]
- Shrestha, A.M.; Shrestha, U.B.; Sharma, R.; Bhattarai, S.; Tran, H.N.T.; Rupakheti, M. Lockdown Caused by COVID-19 Pandemic Reduces Air Pollution in Cities Worldwide. 2020. Available online: https://eartharxiv.org/repository/view/304/ (accessed on 28 November 2022).
- Zambrano-Monserrate, M.A.; Ruano, M.A.; Sanchez-Alcalde, L. Indirect effects of COVID-19 on the environment. Sci. Total Environ. 2020, 728, 138813. [Google Scholar] [CrossRef]
- Khalaf, A.T.; Wan, J.; Hu, W.; Wang, J.; Liu, X.; Tang, S.; Zhang, M.; Shen, F.; Hai, T. Gene Anti-Tumor Therapy Applications to Lung Carcinoma: Adenovirus TOA2 Shows Low Toxicity and Inhibition Effects on Tumor Growth in Nude Mice. Basic Clin. Pharmacol. Toxicol. 2019, 125, 215. [Google Scholar]
- Venter, Z.S.; Aunan, K.; Chowdhury, S.; Lelieveld, J. COVID-19 lockdowns cause global air pollution declines. Proc. Natl. Acad. Sci. USA 2020, 117, 18984–18990. [Google Scholar] [CrossRef]
- Sicard, P.; De Marco, A.; Agathokleous, E.; Feng, Z.; Xu, X.; Paoletti, E.; Rodriguez, J.J.D.; Calatayud, V. Amplified ozone pollution in cities during the COVID-19 lockdown. Sci. Total Environ. 2020, 735, 139542. [Google Scholar] [CrossRef]
- Khalaf, A.T.; Wan, J.; Al-Jashamy, K.; Kadir, S.Y.A.; Zainol, J.; Doustjalali, S.R.; Sabet, N.S.; Aung, M.K.; Arafeh, Y.H.; Shin, J.L.X.; et al. Nicotine Replacement Therapy and Electronic Cigarettes: Awareness among Medical Students. J. Pharm. Res. Int. 2019, 31, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Cheval, S.; Adamescu, C.M.; Georgiadis, T.; Herrnegger, M.; Piticar, A.; Legates, D.R. Observed and Potential Impacts of the COVID-19 Pandemic on the Environment. Int. J. Environ. Res. Public Health 2020, 17, 4140. [Google Scholar] [CrossRef]
- Friedlingstein, P.; Houghton, R.A.; Marland, G.; Hackler, J.; Boden, T.A.; Conway, T.J.; Canadell, J.G.; Raupach, M.R.; Ciais, P.; Le Quéré, C. Update on CO2 emissions. Nat. Geosci. 2010, 3, 811–812. [Google Scholar] [CrossRef]
- Berman, J.D.; Ebisu, K. Changes in US air pollution during the COVID-19 pandemic. Sci. Total Environ. 2020, 739, 139864. [Google Scholar] [CrossRef]
- Arora, S.; Bhaukhandi, K.D.; Mishra, P.K. Coronavirus lockdown helped the environment to bounce back. Sci. Total Environ. 2020, 742, 140573. [Google Scholar] [CrossRef] [PubMed]
- Saadat, S.; Rawtani, D.; Hussain, C.M. Environmental perspective of COVID-19. Sci. Total Environ. 2020, 728, 138870. [Google Scholar] [CrossRef]
- Anjum, N. Good in The Worst: COVID-19 Restrictions and Ease in Global Air Pollution. Preprints 2020, 2020, 040069. [Google Scholar] [CrossRef] [Green Version]
- Muhammad, S.; Long, X.; Salman, M. COVID-19 pandemic and environmental pollution: A blessing in disguise? Sci. Total Environ. 2020, 728, 138820. [Google Scholar] [CrossRef]
- Chauhan, A.; Singh, R.P. Decline in PM2.5 concentrations over major cities around the world associated with COVID-19. Environ. Res. 2020, 187, 109634. [Google Scholar] [CrossRef]
- Sharma, M.; Jain, S.; Lamba, B.Y. Epigrammatic study on the effect of lockdown amid Covid-19 pandemic on air quality of most polluted cities of Rajasthan (India). Air Qual. Atmos. Health 2020, 3, 1157–1165. [Google Scholar] [CrossRef]
- Connerton, P.; De Assunção, J.V.; De Miranda, R.M.; Slovic, A.D.; Pérez-Martínez, P.J.; Ribeiro, H. Air Quality during COVID-19 in Four Megacities: Lessons and Challenges for Public Health. Int. J. Environ. Res. Public Health 2020, 17, 5067. [Google Scholar] [CrossRef]
- Le, V.V.; Huynh, T.T.; Ölçer, A.; Hoang, A.T.; Le, A.T.; Nayak, S.K.; Pham, V.V. A remarkable review of the effect of lockdowns during COVID-19 pandemic on global PM emissions. Energy Sources Part A Recovery Util. Environ. Eff. 2020, 42, 1–16. [Google Scholar] [CrossRef]
- Wijnands, J.S.; Nice, K.A.; Seneviratne, S.; Thompson, J.; Stevenson, M. The impact of the COVID-19 pandemic on air pollution: A global assessment using machine learning techniques. Atmospheric Pollut. Res. 2022, 13, 101438. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Ding, A.; Gao, J.; Zheng, B.; Zhou, D.; Qi, X.; Tang, R.; Ren, C.; Nie, W.; Chi, X.; et al. Enhanced Secondary Pollution Offset Reduction of Primary Emissions during COVID-19 Lockdown in China. Natl. Sci. Rev. 2021, 8, nwaa137. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Chen, K.; Zhu, S.; Wang, P.; Zhang, H. Severe air pollution events not avoided by reduced anthropogenic activities during COVID-19 outbreak. Resour. Conserv. Recycl. 2020, 158, 104814. [Google Scholar] [CrossRef]
- Isaan, R.J. The dramatic impact of Coronavirus outbreak on air quality: Have it saved as much as it has killed so far? Glob. J. Environ. Sci. Manag. 2020, 6, 275–288. [Google Scholar]
- He, G.; Pan, Y.; Tanaka, T. COVID-19, city lockdowns, and air pollution: Evidence from China. medRxiv 2020, 727, 138704. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.; Xie, J.; Huang, F.; Cao, L. Association between short-term exposure to air pollution and COVID-19 infection: Evidence from China. Sci. Total Environ. 2020, 727, 138704. [Google Scholar] [CrossRef]
- Khalaf, A.T.; Feng, L.L.; Samiah, A.K.; Zainol, J.; Doustjalali, S.R.; Sabet, N.S.; Appalanaidu, V.; Al-Jashamy, K.; Muftah, A.E. Integrative and Holistic Approach for Immunological Disorders using Electroacupuncture. Int. J. Appl. Bus. Econ. Res. 2017, 15, 255–261. [Google Scholar]
- Mahato, S.; Pal, S.; Ghosh, K.G. Effect of lockdown amid COVID-19 pandemic on air quality of the megacity Delhi, India. Sci. Total Environ. 2020, 730, 139086. [Google Scholar] [CrossRef]
- Gautam, S. The Influence of COVID-19 on Air Quality in India: A Boon or Inutile. Bull. Environ. Contam. Toxicol. 2020, 104, 724–726. [Google Scholar] [CrossRef]
- Kanniah, K.D.; Zaman, N.A.F.K.; Kaskaoutis, D.G.; Latif, M.T. COVID-19’s impact on the atmospheric environment in the Southeast Asia region. Sci. Total Environ. 2020, 736, 139658. [Google Scholar] [CrossRef]
- Stratoulias, D.; Nuthammachot, N. Air quality development during the COVID-19 pandemic over a medium-sized urban area in Thailand. Sci. Total Environ. 2020, 746, 141320. [Google Scholar] [CrossRef] [PubMed]
- Chang, H.-H.; Meyerhoefer, C.; Yang, F.-A. COVID-19 Prevention and Air Pollution in the Absence of a Lockdown. No. w27604; National Bureau of Economic Research: Cambridge, MA, USA, 2020. [Google Scholar] [CrossRef]
- Bashir, M.F.; Ma, B.; Komal, B.; Bashir, M.A.; Tan, D.; Bashir, M. Correlation between climate indicators and COVID-19 pandemic in New York, USA. Sci. Total Environ. 2020, 728, 138835. [Google Scholar] [CrossRef] [PubMed]
- Nakada, L.Y.K.; Urban, R.C. COVID-19 pandemic: Impacts on the air quality during the partial lockdown in São Paulo state, Brazil. Sci. Total. Environ. 2020, 730, 139087. [Google Scholar] [CrossRef] [PubMed]
- Tobías, A.; Carnerero, C.; Reche, C.; Massagué, J.; Via, M.; Minguillón, M.C.; Alastuey, A.; Querol, X. Changes in air quality during the lockdown in Barcelona (Spain) one month into the SARS-CoV-2 epidemic. Sci. Total Environ. 2020, 726, 138540. [Google Scholar] [CrossRef]
- Coccia, M. Factors determining the diffusion of COVID-19 and suggested strategy to prevent future accelerated viral infectivity similar to COVID. Sci. Total Environ. 2020, 729, 138474. [Google Scholar] [CrossRef]
- Collivignarelli, M.C.; Abbà, A.; Bertanza, G.; Pedrazzani, R.; Ricciardi, P.; Miino, M.C. Lockdown for CoViD-2019 in Milan: What are the effects on air quality? Sci. Total Environ. 2020, 732, 139280. [Google Scholar] [CrossRef]
- Otmani, A.; Benchrif, A.; Tahri, M.; Bounakhla, M.; El Bouch, M.; Krombi, M.H. Impact of Covid-19 lockdown on PM10, SO2 and NO2 concentrations in Salé City (Morocco). Sci. Total Environ. 2020, 735, 139541. [Google Scholar] [CrossRef]
- Khan, I.; Shah, D.; Shah, S.S. COVID-19 pandemic and its positive impacts on environment: An updated review. Int. J. Environ. Sci. Technol. 2020, 18, 521–530. [Google Scholar] [CrossRef]
- Khalaf, A.T.; Song, J.-Q.; Gao, T.-T.; Yu, X.-P.; Lei, T.-C. CTLA-4 Gene Polymorphism and the Risk of Systemic Lupus Erythematosus in the Chinese Population. J. Biomed. Biotechnol. 2011, 2011, 167395. [Google Scholar] [CrossRef] [Green Version]
- Khalaf, A.T.; Liu, X.M.; Sheng, W.X.; Tan, J.Q.; Abdalla, A.N. Efficacy and safety of desloratadine combined with dipyridamole in the treatment of chronic urticarial. J. Eur. Acad. Dermatol. Venereol. 2008, 22, 487–492. [Google Scholar] [CrossRef] [PubMed]
- Loh, H.C.; Looi, I.; Ch’Ng, A.S.H.; Goh, K.W.; Ming, L.C.; Ang, K.H. Positive global environmental impacts of the COVID-19 pandemic lockdown: A review. Geojournal 2021, 87, 4425–4437. [Google Scholar] [CrossRef] [PubMed]
- Khalaf, A.T.; Li, W.; Jinquan, T. Current advances in the management of urticarial. Arch. Immunol. Ther. Exp. 2008, 56, 103. [Google Scholar] [CrossRef]
- Addas, A.; Maghrabi, A. The Impact of COVID-19 Lockdowns on Air Quality—A Global Review. Sustainability 2021, 13, 10212. [Google Scholar] [CrossRef]
- Jiquan, S.; Khalaf, A.T.; Jinquan, T.; Xiaoming, L. Necrobiosis lipoidica: A case with histopathological findings revealed asteroid bodies and was successfully treated with dipyridamole plus intralesional triamcinolone. J. Dermatol. Treat. 2008, 19, 54–57. [Google Scholar] [CrossRef]
- Rupani, P.F.; Nilashi, M.; Abumalloh, R.A.; Asadi, S.; Samad, S.; Wang, S. Coronavirus pandemic (COVID-19) and its natural environmental impacts. Int. J. Environ. Sci. Technol. 2020, 17, 4655–4666. [Google Scholar] [CrossRef]
- Gregg, E.A.; Kusmanoff, A.M.; Garrard, G.E.; Kidd, L.R.; Bekessy, S.A. Biodiversity conservation cannot afford COVID-19 communication bungles. Trends Ecol. Evol. 2021, 36, 879–882. [Google Scholar] [CrossRef]
- McNeely, J.A. Nature and COVID-19: The pandemic, the environment, and the way ahead. Ambio 2021, 50, 767–781. [Google Scholar] [CrossRef]
- Gope, S.; Dawn, S.; Das, S.S. Effect of COVID-19 pandemic on air quality: A study based on Air Quality Index. Environ. Sci. Pollut. Res. 2021, 28, 35564–35583. [Google Scholar] [CrossRef]
- Saha, L.; Kumar, A.; Kumar, S.; Korstad, J.; Srivastava, S.; Bauddh, K. The impact of the COVID-19 lockdown on global air quality: A review. Environ. Sustain. 2022, 5, 5–23. [Google Scholar] [CrossRef]
- Grange, S.K.; Lee, J.D.; Drysdale, W.S.; Lewis, A.C.; Hueglin, C.; Emmenegger, L.; Carslaw, D.C. COVID-19 lockdowns highlight a risk of increasing ozone pollution in European urban areas. Atmospheric Meas. Tech. 2021, 21, 4169–4185. [Google Scholar] [CrossRef]
- Wang, Q.; Su, M. A preliminary assessment of the impact of COVID-19 on environment—A case study of China. Sci. Total Environ. 2020, 728, 138915. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Tan, J.; Li, X. Global NO 2 dynamics During the COVID-19 pandemic: A comparison between two waves of the coronavirus. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 4310–4320. [Google Scholar] [CrossRef]
- Mandal, A.; Roy, R.; Ghosh, D.; Dhaliwal, S.; Toor, A.; Mukhopadhyay, S.; Majumder, A. COVID-19 pandemic: Sudden restoration in global environmental quality and its impact on climate change. EnerarXiv Prepr. 2020. [Google Scholar]
- Kraemer, M.U.; Yang, C.H.; Gutierrez, B.; Wu, C.H.; Klein, B.; Pigott, D.M.; Scarpino, S.V. The effect of human mobility and control measures on the COVID-19 epidemic in China. Science 2020, 368, 493–497. [Google Scholar] [CrossRef] [Green Version]
- Le Quéré, C.; Jackson, R.B.; Jones, M.W.; Smith, A.J.; Abernethy, S.; Andrew, R.M.; De-Gol, A.J.; Willis, D.R.; Shan, Y.; Canadell, J.G.; et al. Temporary reduction in daily global CO2 emissions during the COVID-19 forced confinement. Nat. Clim. Chang. 2020, 10, 647–653. [Google Scholar] [CrossRef]
- Braga, F.; Scarpa, G.M.; Brando, V.E.; Manfè, G.; Zaggia, L. COVID-19 lockdown measures reveal human impact on water transparency in the Venice Lagoon. Sci. Total Environ. 2020, 736, 139612. [Google Scholar] [CrossRef]
- Bar, H. COVID-19 lockdown: Animal life, ecosystem and atmospheric environment. Environ. Dev. Sustain. 2020, 23, 8161–8178. [Google Scholar] [CrossRef]
- Dalezios, N.R. Remote Sensing Applications in Environmental and Earth System Sciences; CRC Press: Boca Raton, FL, USA, 2021. [Google Scholar]
- Zhong, B.-L.; Luo, W.; Li, H.-M.; Zhang, Q.-Q.; Liu, X.-G.; Li, W.-T.; Li, Y. Knowledge, attitudes, and practices towards COVID-19 among Chinese residents during the rapid rise period of the COVID-19 outbreak: A quick online cross-sectional survey. Int. J. Biol. Sci. 2020, 16, 1745–1752. [Google Scholar] [CrossRef] [Green Version]
- Acter, T.; Uddin, N.; Das, J.; Akhter, A.; Choudhury, T.R.; Kim, S. Evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as coronavirus disease 2019 (COVID-19) pandemic: A global health emergency. Sci. Total Environ. 2020, 730, 138996. [Google Scholar] [CrossRef]
- Yoo, H.S.; Yoo, D. COVID-19 and veterinarians for one health, zoonotic-and reverse-zoonotic transmissions. J. Vet. Sci. 2020, 21, e51. [Google Scholar] [CrossRef]
- Singla, R.; Mishra, A.; Joshi, R.; Jha, S.; Sharma, A.R.; Upadhyay, S.; Sarma, P.; Prakash, A.; Medhi, B. Human Animal interface of SARS-COV-2(COVID-19) transmission: A critical appraisal of scientific evidences. Vet. Res. Commun. 2020, 44, 119–130. [Google Scholar] [CrossRef] [PubMed]
- Hayward, J.A.; Tachedjian, G. Retroviruses of Bats: A Threat Waiting in the Wings? mBio 2021, 12, e01941-e21. [Google Scholar] [CrossRef] [PubMed]
- Lavialle, C.; Cornelis, G.; Dupressoir, A.; Esnault, C.; Heidmann, O.; Vernochet, C.; Heidmann, T. Paleovirology of ‘syncytins’, retroviral env genes exapted for a role in placentation. Philos. Trans. R. Soc. B Biol. Sci. 2013, 368, 20120507. [Google Scholar] [CrossRef] [Green Version]
- Arora, N.K.; Pandey, P.; Egamberdieva, D.; Fatima, T. COVID-19 pandemic: Aggressive research, vaccination, testing, and environmental sustainability are the way forward. Environ. Sustain. 2021, 4, 443–445. [Google Scholar] [CrossRef]
- Philavong, C.; Pruvot, M.; Reinharz, D.; Mayxay, M.; Khammavong, K.; Milavong, P.; Rattanavong, S.; Horwood, P.F.; Dussart, P.; Douangngeun, B.; et al. Perception of health risks in Lao market vendors. Zoonoses Public Health 2020, 67, 796–804. [Google Scholar] [CrossRef]
- Ranjan, A.K.; Patra, A.; Gorai, A. Effect of lockdown due to SARS COVID-19 on aerosol optical depth (AOD) over urban and mining regions in India. Sci. Total Environ. 2020, 745, 141024. [Google Scholar] [CrossRef] [PubMed]
- Jalava, K. First respiratory transmitted food borne outbreak? Int. J. Hyg. Environ. Health 2020, 226, 113490. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.Y.; Guan, J.X.; Zhao, Y.; Shen, S.P.; Chen, F. Inference of start time of resurgent COVID-19 epidemic in Beijing with SEIR dynamics model and evaluation of control measure effect. Zhonghua Liu Xing Bing Xue Za Zhi 2020, 41, 1772–1776. [Google Scholar] [CrossRef] [PubMed]
- Lu, M.; Wang, X.; Ye, H.; Wang, H.; Qiu, S.; Zhang, H.; Liu, Y.; Luo, J.; Feng, J. Does public fear that bats spread COVID-19 jeopardize bat conservation? Biol. Conserv. 2021, 254, 108952. [Google Scholar] [CrossRef]
- Fenton, M.B.; Mubareka, S.; Tsang, S.M.; Simmons, N.B.; Becker, D.J. COVID-19 and threats to bats. FACETS 2020, 5, 349–352. [Google Scholar] [CrossRef]
- Upham, N.; Agosti, D.; Poelen, J.; Penev, L.; Paul, D.; Reeder, D.; Simmons, N.B.; Csorba, G.; Groom, Q.; Dimitrova, M.; et al. Liberating Biodiversity Data From COVID-19 Lockdown: Toward a knowledge hub for mammal host-virus information. Biodivers. Inf. Sci. Stand. 2020, 4, e59199. [Google Scholar] [CrossRef]
- Velavan, T.P.; Meyer, C.G. The COVID-19 epidemic. Trop. Med. Int. Health 2020, 25, 278. [Google Scholar] [CrossRef] [PubMed]
- Andersen, K.G.; Rambaut, A.; Lipkin, W.I.; Holmes, E.C.; Garry, R.F. The proximal origin of SARS-CoV-2. Nat. Med. 2020, 26, 450–452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- E Brook, C.; Boots, M.; Chandran, K.; Dobson, A.P.; Drosten, C.; Graham, A.L.; Grenfell, B.T.; A Müller, M.; Ng, M.; Wang, L.-F.; et al. Accelerated viral dynamics in bat cell lines, with implications for zoonotic emergence. Elife 2020, 9, e48401. [Google Scholar] [CrossRef]
- Navel, V.; Chiambaretta, F.; Dutheil, F. Will environmental impacts of social distancing due to the pandemic caused by SARS-CoV-2 decrease allergic disease? J. Allergy Clin. Immunol. 2020, 146, 70–71. [Google Scholar] [CrossRef] [PubMed]
- Schraufnagel, D.E.; Balmes, J.R.; Cowl, C.T.; De Matteis, S.; Jung, S.-H.; Mortimer, K.; Perez-Padilla, R.; Rice, M.B.; Riojas-Rodriguez, H.; Sood, A.; et al. Air Pollution and Noncommunicable Diseases: A Review by the Forum of International Respiratory Societies’ Environmental Committee, Part 1&2: Air Pollution and Organ Systems. Chest 2019, 155, 417–426. [Google Scholar] [CrossRef]
- Pasquale, S.; Gregorio, G.L.; Caterina, A.; Francesco, C.; Beatrice, P.M.; Vincenzo, P.; Caterina, P.M. COVID-19 in Low- and Middle-Income Countries (LMICs): A Narrative Review from Prevention to Vaccination Strategy. Vaccines 2021, 9, 1477. [Google Scholar] [CrossRef]
- Green, H.; Fernandez, R.; MacPhail, C. The social determinants of health and health outcomes among adults during the COVID-19 pandemic: A systematic review. Public Health Nurs. 2021, 38, 942–952. [Google Scholar] [CrossRef]
- Ward, J.L.; Azzopardi, P.S.; Francis, K.L.; Santelli, J.S.; Skirbekk, V.; Sawyer, S.M.; Kassebaum, N.J.; Mokdad, A.H.; I Hay, S.; Abd-Allah, F.; et al. Global, regional, and national mortality among young people aged 10–24 years, 1950–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet 2021, 398, 1593–1618. [Google Scholar] [CrossRef] [PubMed]
- ARCplus. Available online: https://www.acrplus.org/en/municipal-waste-management-covid-19 (accessed on 5 April 2020).
- Rume, T.; Islam, S.D.-U. Environmental effects of COVID-19 pandemic and potential strategies of sustainability. Heliyon 2020, 6, e04965. [Google Scholar] [CrossRef] [PubMed]
- Bai, C.; Quayson, M.; Sarkis, J. COVID-19 pandemic digitization lessons for sustainable development of micro-and small- enterprises. Sustain. Prod. Consum. 2021, 27, 1989–2001. [Google Scholar] [CrossRef]
- Clemente-Suárez, V.J.; Rodriguez-Besteiro, S.; Cabello-Eras, J.J.; Bustamante-Sanchez, A.; Navarro-Jiménez, E.; Donoso-Gonzalez, M.; Beltrán-Velasco, A.I.; Tornero-Aguilera, J.F. Sustainable Development Goals in the COVID-19 Pandemic: A Narrative Review. Sustainability 2022, 14, 7726. [Google Scholar] [CrossRef]
- Kanda, W.; Kivimaa, P. What opportunities could the COVID-19 outbreak offer for sustainability transitions research on electricity and mobility? Energy Res. Soc. Sci. 2020, 68, 101666. [Google Scholar] [CrossRef]
- Ermolina, M.; Anna, M.; Mikhail, B. Climate change and the UN 2030 agenda for sustainable development. In Topical Issues in International Political Geography; Springer: Cham, Switzerland, 2021; pp. 226–237. [Google Scholar]
Country/Region | Environmental Effects/Consequences | Research Papers |
---|---|---|
Major cities around the world | Various | [31,37,40,41,42,43] |
The analysis showed a decline in PM2.5 concentration due to the lockdown; the low concentrations of PM2.5 reflect the efforts made in the cities to curb the spread of infection that improves air quality. | [44,45] | |
The study analyzed the effects of quarantine and social distancing policies implemented due to the COVID-19 virus Disease 2019 (COVID-19) pandemic on air pollution levels in four western megacities: São Paulo, Brazil, and Paris in France, Los Angeles, and New York in the United States. | [46,47,48] | |
This study observed PM2.5 analysis in the world’s 50 most polluted capital cities. | [13] | |
China | The effect of changes in the pattern of human activity on changing air pollution. | [49] |
Improved secondary pollution offset reduction for primary emissions during the COVID-19 lockdown. | [50] | |
Reduced anthropogenic activities did not avoid severe air pollution events during the COVID-19 outbreak. | [51] | |
Areas with poor air quality are associated with a higher death rate. | [52] | |
In some cities, lockdowns have improved air quality and reduced premature deaths. | [53] | |
It found a significant relationship between air pollution and COVID-19 infection. | [54] | |
India | The impact of restricted activities during COVID-19 on India’s air quality, air quality gradations, and reduced excessive Allied risks was observed. | [27] |
The impact of lockdown and COVID-19 pandemic on Delhi air quality. | [55] | |
The influence of COVID-19 on air quality in India. | [56] | |
The impact of COVID-19 as an undesirable necessity on air pollution in India during the lockdown. | [28] | |
Southeast Asia region | The impact of COVID-19 on the atmospheric environment. | [57] |
Thailand | The improving air quality during the COVID-19 pandemic. | [58] |
Taiwan | COVID-19 Prevention and Air Pollution in the Absence of a Lockdown | [59] |
USA | Average temperature, minimum, and air quality were significantly associated with the COVID-19 pandemic. | [60] |
Changes in U.S. air pollution during the COVID-19 pandemic | [39] | |
Global assessment of the environment, health, and economic impact of the novel COVID-19 virus (COVID-19) | [15] | |
Brazil | Impacts on the air quality during the partial lockdown in São Paulo state, Brazil | [61] |
Ecuador | Has air quality improved during the COVID-19 pandemic? | [32] |
Spain | A significant reduction of most pollutants and an increase in O3 concentrations during the lockdown | [62] |
Italy | Rapid COVID-19 transmissions are mainly due to pollution. | [63] |
Effects of the COVID-19 pandemic lockdown on Milan’s air quality. | [64] | |
Africa/Morocco | Impact of COVID-19 lockdown on PM10, SO2, and NO2 concentrations. | [65] |
Socioeconomic restrictions slow down COVID-19 far more effectively than favorable weather evidence from the satellite. | [29] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khalaf, A.T.; Wei, Y.; Wan, J.; Abdul Kadir, S.Y.; Zainol, J.; Jiang, H.; Abdalla, A.N. How Did the Pandemic Affect Our Perception of Sustainability? Enlightening the Major Positive Impact on Health and the Environment. Sustainability 2023, 15, 892. https://doi.org/10.3390/su15020892
Khalaf AT, Wei Y, Wan J, Abdul Kadir SY, Zainol J, Jiang H, Abdalla AN. How Did the Pandemic Affect Our Perception of Sustainability? Enlightening the Major Positive Impact on Health and the Environment. Sustainability. 2023; 15(2):892. https://doi.org/10.3390/su15020892
Chicago/Turabian StyleKhalaf, Ahmad Taha, Yuanyuan Wei, Jun Wan, Samiah Yasmin Abdul Kadir, Jamaludin Zainol, Hua Jiang, and Ahmed N. Abdalla. 2023. "How Did the Pandemic Affect Our Perception of Sustainability? Enlightening the Major Positive Impact on Health and the Environment" Sustainability 15, no. 2: 892. https://doi.org/10.3390/su15020892
APA StyleKhalaf, A. T., Wei, Y., Wan, J., Abdul Kadir, S. Y., Zainol, J., Jiang, H., & Abdalla, A. N. (2023). How Did the Pandemic Affect Our Perception of Sustainability? Enlightening the Major Positive Impact on Health and the Environment. Sustainability, 15(2), 892. https://doi.org/10.3390/su15020892