Study of the Influence of Damage Structures in Coal Seam Floors on the Damage of Small Hidden Faults
Abstract
:1. Introduction
2. Analysis of the Mechanism of Sudden Water Damage
- (1)
- Single structure sudden water disaster type: under the coupling of high stress and strong seepage, the small hidden faults of the coal seam bottom plate are subjected to the action of compression and shear stress to produce extended cracks. The crack extension zones at the two ends of the small hidden faults are connected to the pressurized water conduction zone and the damage zone of the bottom plate, which results in the complete failure of the water-insulating layer and the formation of a bottom-plate water conduction channel, which leads to the occurrence of the water disaster accident.
- (2)
- Damage structure sudden water disaster type: the rock of the base plate water barrier, containing a small hidden fault, has a damage structure, which leads to changes in the hydraulic properties of the base plate rock and changes the water resistance performance of the base plate water barrier. A large number of damage structures are connected with the hidden structure in the water barrier, which promotes the formation of a water conduction channel, and increases the possibility of the occurrence of a sudden water disaster at the base plate.
3. Exploring the Pattern of Bottom-Slab Water Emergence
3.1. Modeling
3.2. Analysis of Results
3.2.1. Plastic Zone
3.2.2. Shear Stress Distribution
3.2.3. Displacement Division
3.2.4. Pore Water Pressure
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, X.C.; Liu, R.T.; Zhang, C.Y. Experimental study on concentration distribution of fracture grouting and discussion on its mechanis. J. China Coal Soc. 2020, 45, 2872–2879. [Google Scholar]
- Wang, E.; Zhang, J.; Yan, G.; Yang, Q.; Zhao, W.; Xie, C.; He, R. Concealed-Fault Detection in Low-Amplitude Tectonic Area—An Example of Tight Sandstone Reservoir. J. Miner. 2021, 11, 1122. [Google Scholar] [CrossRef]
- Punzo, M.; Cianflone, G.; Cavuoto, G.; De Rosa, R.; Dominici, R.; Gallo, P.; Lirer, F.; Pelosi, N.; Di Fiore, V. Active and passive seismic methods to explore areas of active faulting. The case of Lamezia Terme (Calabria, southern Italy). J. Appl. Geophys. 2021, 188, 104316. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Zhang, Z.W.; Xiao, J.; Li, Y.W.; Yu, Q.G. Study on mining water inrush mechanism of buried fault under coal seam floor above confined water body. J. Coal Sci. Technol. 2023, 51, 283–291. [Google Scholar]
- Chen, J.T.; Wu, Q.; Yin, L.M.; Zhang, W.Q.; Tan, W.F. Law of crack evolution in floor rock mass above high confined wate. J. Coal Sci. Technol. 2018, 46, 54–60+140. [Google Scholar]
- Wang, L.G.; Han, M.; Wang, Z.S.; Ou, S.B. Stress distribution and damage law of mining floor. J. Min. Saf. Eng. 2013, 30, 317–322. [Google Scholar]
- Li, H.L.; Bai, H.B. Simulation research on the mechanism of water inrush from fractured floor under the dynamic load induced by roof caving: Taking the Xin Ji Second Coal Mine as an example. J. Arab. J. Geosci. 2019, 12, 466. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Yang, D.F.; Chen, G.Q.; Li, Q.L. Numerical Simulation Research on Activation Water Inrush Mechanism of Mining Floor with Concealed Minor Faults. J. Coal Sci. Technol. 2014, 42, 45–47+52. [Google Scholar]
- Feng, Y.; Lin, Z.B.; Wang, W.Z. Research on water inrush disaster law from coal mine floor with concealed small fault under mining. J. Saf. Coal Mines 2022, 53, 200–209. [Google Scholar]
- Feng, Z.Y.; Song, X.X. Study on Water Inrush from Roadway Floor Induced by Buried Fault. J. Coal Technol. 2022, 41, 168–171. [Google Scholar]
- Zhang, Z.W.; Zhang, Y.J.; Zhang, F.D. Characteristics of floor failure under the double action of mining and hidden faults. J. Saf. Coal Mines 2021, 52, 194–199. [Google Scholar]
- Zhang, X.; Liu, Z.X.; Zhang, X.D.; Guo, H.; Cui, B.Q. Numerical Simulation of Floor Failure Depth in Mining-induce Coal Floor with Hidden Fault. J. Coal Technol. 2018, 37, 192–194. [Google Scholar]
- Wu, N.; Tang, C.A.; Dong, Z. Numerical Simulation Research on Water Inrush Process of Seam Floor with Concealed Small Faults. J. Coal Technol. 2016, 35, 166–168. [Google Scholar]
- Zhang, Y.J.; Zhang, Z.W.; Li, Y.W. Study on the mechanism of confined water mining lifting in coal seam floor with a hidden fault. J. Min. Saf. Eng. 2023, 40, 17–24. [Google Scholar]
- Ding, J.X. Simulative Study on Floor Water Bursting in Conditions of Buried Fault with Different Dip Angles. J. Coal Geol. China 2021, 33, 47–53. [Google Scholar]
- Yang, D.F.; Chai, M.; Jiang, B.W.; Li, B.; Chai, C.; Zhao, X.W. Fracture Mechanics Analysis on Water Inrush by Mining induced Activation of Floor Containing. J. Saf. Coal Mines 2016, 47, 198–201. [Google Scholar]
- Chen, Z.H.; Hu, Z.P.; Li, H.; Chen, Q.F. Fracture mechanical model and criteria of insidious fault water inrush in coal mines. J. China Univ. Min. Technol. 2011, 40, 673–677. [Google Scholar]
- Meng, F.; Zhang, G.; Qi, Y.; Zhou, Y.; Zhao, X.; Ge, K. Application of combined electrical resistivity tomography and seismic reflection method to explore hidden active faults in Sichuan, China. J. Open Geosci. 2020, 12, 174–189. [Google Scholar] [CrossRef]
- Nemati, S.F.; Hafezi Moghadas, N.; Lashkaripour, G.R.; Sadeghi, H. Identification of hidden faults using determining velocity structure profile by spatial autocorrelation method in the west of Mashhad plain (Northeast of Iran). J. Mt. Sci. 2021, 18, 3261–3274. [Google Scholar] [CrossRef]
- Famiani, D.; Cara, F.; Di Giulio, G.; Vassallo, M.; Milana, G. Detection of hidden faults within the Fucino basin from single-station ambient noise measurements: The case study of the Trasacco fault system. J. Front. Earth Sci. 2022, 10, 937848. [Google Scholar] [CrossRef]
- Merkulova, T.V.; Gil’manova, G.Z.; Tusikova, S.A. Mapping of NW-Trending Hidden Faults in the Priamurye Region via Relief Analysis and Geophysical Fields. J. Russ. J. Pac. Geol. 2021, 15, 224–235. [Google Scholar] [CrossRef]
- Zheng, L.M.; Fan, X.P.; Zhang, P.; Hao, J.; Qian, H.; Zheng, T. Detection of urban hidden faults using group-velocity ambient noise tomography beneath Zhenjiang area. J. Sci. Rep. 2021, 11, 987. [Google Scholar] [CrossRef] [PubMed]
- Yin, L.M.; Guo, W.J.; Lu, C. Patterns of the water-inrush hazard in the floor strata in deep mines and its catastrophic characteristics. J. Min. Saf. Eng. 2017, 34, 459–463. [Google Scholar]
- Wang, J.S.; Yao, D.X.; Huang, H. Critical criterion and physical simulation research on progressive ascending water inrush in hidden faults of coal mines. J. China Coal Soc. 2018, 43, 2014–2020. [Google Scholar]
- Yang, D.F.; Chen, Z.H.; Liu, X.; Gao, Q.; Wang, L.N. Numerical Simulation of Mining-induced Water Bursting Law of Coal Floor with Hidden Faults. J. Saf. Coal Mines 2015, 46, 193–195+199. [Google Scholar]
- Zhang, P.S.; Yan, W.; Zhang, W.Q.; Yang, Y.W.; An, Y.F. Study on factors influencing groundwater inrush induced by backstopping of a coal seam with a hidden fault. J. Min. Saf. Eng. 2018, 35, 765–772. [Google Scholar]
- Tan, K.J.; Zhao, J.G.; Teng, T.Y.; Liu, X.Z.; Yan, B.H. Research on effectiveness of effective pore aspect ratio based on pore-throat characteristics of digital core. J. Chin. J. Geophys. 2022, 65, 4433–4447. [Google Scholar]
- Gao, M.Z.; Xie, J.; Yang, B.A.; Tang, R.; Deng, H.; Liu, Y.; Ye, S.; Zhou, X.; Wang, S.L. Characteristics and mechanism of rock 3D volume fracturing in microwave field. J. China Coal Soc. 2022, 47, 1122–1137. [Google Scholar]
- Xu, Z.H.; Li, Q.S.; Li, X.B.; Zhang, G.; Yang, Y.; He, W.; Wu, X. Structural evolution of overburden and surface damage caused by high-intensity mining with shallow depth. J. China Coal Soc. 2020, 45, 2728–2739. [Google Scholar]
- Zhang, N.; Wang, S.B.; Yan, C.G.; Gao, J.J.; Guo, R.; Wang, H. Pore structure evolution of hydration damage of mudstone based on NMR technology. J. China Coal Soc. 2019, 44, 110–117. [Google Scholar]
- Li, H.W.; Wang, L.G.; Zhang, H.; Zhang, C.H.; Zhou, H.; Geng, Y.Y. Investigation on damage laws of loading coal samples under cyclic cooling treatment. J. China Coal Soc. 2017, 42, 2345–2352. [Google Scholar]
- Ma, K.; Yin, L.M.; Chen, J.T.; Chen, M.; Wang, Z.Q.; Cui, B.Q. Theoretical analysis on failure of water-resisting key strata in the floor by local high confined water in deep mining. J. Rock Soil Mech. 2018, 39, 3213–3222. [Google Scholar]
Thickness/m | Bulk Modulus/GPa | Shear Modulus/GPa | Tensile Strength/MPa | Bond Strength/MPa | Internal Friction Angle/° | Porosity/% | Permeability Coefficient/cm·s | |
---|---|---|---|---|---|---|---|---|
R9 | 30.00 | 5.8 | 4.5 | 3.6 | 4.2 | 37 | 0.3 | 3.0 × 10−7 |
R8 | 9.00 | 5.1 | 4.2 | 3.8 | 4.1 | 36 | 0.2 | 2.4 × 10−7 |
R7 | 5.00 | 4.8 | 4.3 | 3.9 | 3.6 | 34 | 0.4 | 1.4 × 10−7 |
R6 | 5.00 | 4.5 | 2.6 | 3.6 | 3.9 | 34 | 0.3 | 1.9 × 10−7 |
R5 | 4.00 | 4.8 | 3.9 | 3.8 | 4.3 | 37 | 0.5 | 2.8 × 10−7 |
R4 | 3.00 | 4.2 | 4.5 | 3.2 | 3.7 | 43 | 0.4 | 3.1 × 10−7 |
R3 | 2.00 | 4.5 | 4.9 | 3.9 | 3.9 | 40 | 0.4 | 2.1 × 10−7 |
R2 | 3.00 | 3.9 | 4.2 | 3.8 | 3.7 | 34 | 0.3 | 1.8 × 10−7 |
R1 | 3.00 | 3.8 | 4.3 | 1.9 | 4.6 | 43 | 0.4 | 2.8 × 10−7 |
C | 2.00 | 3.1 | 2.2 | 3.8 | 2.1 | 34 | 0.2 | 1.2 × 10−7 |
F1 | 7.00 | 3.9 | 3.9 | 3.6 | 3.7 | 43 | 0.5 | 3.2 × 10−7 |
F2 | 6.00 | 3.4 | 3.4 | 4.2 | 4.1 | 40 | 0.6 | 1.5 × 10−7 |
F3 | 14.50 | 3.9 | 3.8 | 3.9 | 3.6 | 37 | 0.4 | 2.5 × 10−7 |
F4 | 5.00 | 4.0 | 4.2 | 3.4 | 3.7 | 34 | 0.5 | 2.1 × 10−7 |
F5 | 13.00 | 5.9 | 3.6 | 3.1 | 4.1 | 37 | 0.4 | 1.5 × 10−7 |
F6 | 11.00 | 4.9 | 4.8 | 3.8 | 3.6 | 43 | 0.5 | 1.2 × 10−7 |
F7 | 8.00 | 5.7 | 4.7 | 3.9 | 3.7 | 36 | 0.2 | 1.0 × 10−7 |
F8 | 50.00 | 5.3 | 3.9 | 4.2 | 3.9 | 43 | 1.0 | 1.5 × 10−7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yin, L.; Zhang, Y.; Chen, J.; Wang, B.; Zeng, Y.; Liu, Q. Study of the Influence of Damage Structures in Coal Seam Floors on the Damage of Small Hidden Faults. Sustainability 2023, 15, 15010. https://doi.org/10.3390/su152015010
Yin L, Zhang Y, Chen J, Wang B, Zeng Y, Liu Q. Study of the Influence of Damage Structures in Coal Seam Floors on the Damage of Small Hidden Faults. Sustainability. 2023; 15(20):15010. https://doi.org/10.3390/su152015010
Chicago/Turabian StyleYin, Liming, Yuanhang Zhang, Juntao Chen, Borui Wang, Yifeng Zeng, and Qianhui Liu. 2023. "Study of the Influence of Damage Structures in Coal Seam Floors on the Damage of Small Hidden Faults" Sustainability 15, no. 20: 15010. https://doi.org/10.3390/su152015010
APA StyleYin, L., Zhang, Y., Chen, J., Wang, B., Zeng, Y., & Liu, Q. (2023). Study of the Influence of Damage Structures in Coal Seam Floors on the Damage of Small Hidden Faults. Sustainability, 15(20), 15010. https://doi.org/10.3390/su152015010