Decentralized Wetland-Aquaponics Addressing Environmental Degradation and Food Security Challenges in Disadvantaged Rural Areas: A Nature-Based Solution Driven by Mediterranean Living Labs
Abstract
:1. Introduction
2. Methodological Framework
2.1. Living Labs Deployment and Operation
2.2. Bottom-Up Feasibility and Impact Assessment
3. Synergies of Mediterranean Living Labs for Agri-Environmental Nature-Based Solutions: The Case of Wetland-Aquaponics
4. Participatory Assessment of Feasibility and Potential Impacts
4.1. Public Perception and Feasibility
4.2. Environmental and Socioeconomic Impact Assessment
5. Discussion and Recommendations
- Size between 50 and 150 m2, depending on the preferred level of operation (farm, neighborhood or small community).
- Construction that uses locally sourced materials and workforce to minimize capital costs and maximize green job opportunities.
- Exploitation of harvested rainwater in the production process if and where possible.
- Promotion of energy autonomy through the use of renewable energy sources (e.g., photovoltaics, biogas from waste).
- Use of natural systems and processes for the quality improvement of the recirculated water (e.g., constructed wetlands)
- Efficient management systems that will lower the operational costs while ensuring the delivery of quality products able to satisfy both the consumption needs of the owner as well as the market needs for commercial exploitation of production.
- Mobilization and engagement of local society in demonstration actions through participatory processes of co-design, co-development and co-evaluation of pilot systems (e.g., Living Labs) that will allow the community to embrace and support relevant initiatives for the benefit of the local economy.
- Deployment of a multi-actor cooperation network in and beyond the area, supporting the establishment and operation of the decentralized systems through communication and publicity actions, knowledge transfer, market exploitation, capital leverage, entrepreneurship support, lifelong learning, and skills development.
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Antonelli, M.; Basile, L.; Gagliardi, F.; Isernia, P. The future of the Mediterranean agri-food systems: Trends and perspectives from a Delphi survey. Land Use Policy 2022, 120, 106263. [Google Scholar] [CrossRef]
- Aslam, R.W.; Shu, H.; Yaseen, A.; Sajjad, A.; Ul Abidin, S.Z. Identification of time-varying wetlands neglected in Pakistan through remote sensing techniques. Environ. Sci. Pollut. Res. 2023, 30, 74031–74044. [Google Scholar] [CrossRef]
- Yu, L.; Liu, T. The Impact of Artificial Wetland Expansion on Local Temperature in the Growing Season—The Case Study of the Sanjiang Plain, China. Remote Sens. 2019, 11, 2915. [Google Scholar] [CrossRef]
- Gunacti, M.C.; Gul, G.O.; Cetinkaya, C.P.; Gul, A.; Barbaros, F. Evaluating Impact of Land Use and Land Cover Change Under Climate Change on the Lake Marmara System. Water Resour. Manag. 2023, 37, 2643–2656. [Google Scholar] [CrossRef]
- Harmanny, K.S.; Malek, Ž. Adaptations in irrigated agriculture in the Mediterranean region: An overview and spatial analysis of implemented strategies. Reg. Environ. Chang. 2019, 19, 1401–1416. [Google Scholar] [CrossRef]
- Takavakoglou, V.; Pana, E.; Skalkos, D. Constructed Wetlands as Nature-Based Solutions in the Post-COVID Agri-Food Supply Chain: Challenges and Opportunities. Sustainability 2022, 14, 3145. [Google Scholar] [CrossRef]
- Chen, R.Z.; Wong, M.H. Integrated wetlands for food production. Environ. Res. 2016, 148, 429–442. [Google Scholar] [CrossRef]
- Mchunu, N.; Odindo, A.; Muchaonyerwa, P. The effects of urine and urine-separated plant nutrient sources on growth and dry matter production of perennial rye-grass (Lolium perenne. L.). Agric. Water Manag. 2018, 207, 37–43. [Google Scholar] [CrossRef]
- Yep, B.; Zheng, Y. Aquaponic trends and challenges—A review. J. Clean. Prod. 2019, 228, 1586–1599. [Google Scholar] [CrossRef]
- Kotzen, B.; Emerenciano, M.G.C.; Moheimani, N.; Burnell, G.M. Aquaponics: Alternative types and approaches. In Aquaponics Food Production Systems; Springer: Cham, Switzerland, 2019; pp. 301–330. [Google Scholar]
- Love, D.C.; Fry, J.P.; Li, X.; Hill, E.S.; Genello, L.; Semmens, K.; Thompson, R.E. Commercial aquaponics production and profitability: Findings from an international survey. Aquaculture 2015, 435, 67–74. [Google Scholar] [CrossRef]
- Love, D.C.; Genello, L.; Li, X.; Thompson, R.E.; Fry, J.P. Production and consumption of homegrown produce and fish by noncommercial aquaponics gardeners. J. Agric. Food Syst. Community Dev. 2015, 6, 161–173. [Google Scholar] [CrossRef]
- Adeleke, B.; Cassim, S.; Taylor, S. Pathways to low-cost aquaponic systems for sustainable livelihoods and economic development in poor communities: Defining critical success factors. Aquac. Int. 2022, 30, 1575–1591. [Google Scholar] [CrossRef]
- Purcell, W.M.; Henriksen, H.; Spengler, J.D. Universities as the engine of transformational sustainability toward delivering the SDGs: “Living labs” for sustainability. Int. J. Sustain. High. Educ. 2019, 20, 1343–1357. [Google Scholar] [CrossRef]
- Leal Filho, W.; Ozuyar, P.G.; Dinis, M.A.P.; Azul, A.M.; Alvarez, M.G.; da Silva Neiva, S.; Salvia, A.L.; Borsari, B.; Danila, A.; Vasconcelos, C.R. Living labs in the context of the UN sustainable development goals: State of the art. Sustain. Sci. 2023, 18, 1163–1179. [Google Scholar] [CrossRef]
- Von Wirth, T.; Fuenfschilling, L.; Frantzeskaki, N.; Coenen, L. Impacts of urban living labs on sustainability transitions: Mechanisms and strategies for systemic change through experimentation. Eur. Plann. Stud. 2019, 27, 229–257. [Google Scholar] [CrossRef]
- Kok, P.W.K.; Van der Meij, M.G.; Wagner, P.; Cesuroglu, P.; Broerse, E.W.J.; Regeer, J.B. Exploring the practice of Labs for sustainable transformation: The challenge of ‘creating impact’. J. Clean. Prod. 2023, 388, 135994. [Google Scholar] [CrossRef]
- Van der Jagt, A.P.N.; Buijs, A.; Dobbs, C.; van Lierop, M.; Pauleit, S.; Randrup, T.B.; Wild, T. An action framework for the participatory assessment of nature-based solutions in cities. Ambio 2023, 52, 54–67. [Google Scholar] [CrossRef]
- Gott, J.; Morgenstern, R.; Turnšek, M. Aquaponics for the Anthropocene: Towards a ‘Sustainability First’ Agenda. In Aquaponics Food Production Systems; Goddek, S., Joyce, A., Kotzen, B., Burnell, G.M., Eds.; Springer: Cham, Switzerland, 2019. [Google Scholar] [CrossRef]
- Compagnucci, L.; Spigarelli, F.; Coelho, J.; Duarte, C. Living Labs and user engagement for innovation and sustainability. J. Clean. Prod. 2021, 289, 125721. [Google Scholar] [CrossRef]
- Fischer, J.; Riechers, M.; Loos, J.; Martin-Lopez, B.; Temperton, V.M. Making the UN decade on ecosystem restoration a social-ecological endeavour. Trends Ecol. Evol. 2021, 36, 20–28. [Google Scholar] [CrossRef]
- Brewer, A.; Alfaro, J.F.; Malheiros, T.F. Evaluating the capacity of small farmers to adopt aquaponics systems: Empirical evidence from Brazil. Renew. Agric. Food Syst. 2021, 36, 1–9. [Google Scholar] [CrossRef]
- Schwartz, M.F.; Boyd, C.E. Constructed wetlands for treatment of channel catfish pond effluents. Prog. Fish Cult. 1995, 57, 255–267. [Google Scholar] [CrossRef]
- Lin, Y.F.; Jing, S.R.; Lee, D.Y.; Wang, T.W. Removal of solids and oxygen demand from aquaculture wastewater with a constructed wetland system in the start-up phase. Water Environ. Res. 2002, 74, 136–141. [Google Scholar] [CrossRef] [PubMed]
- Turcios, A.E.; Papenbrock, J. Sustainable Treatment of Aquaculture Effluents—What Can We Learn from the Past for the Future? Sustainability 2014, 6, 836–856. [Google Scholar] [CrossRef]
- Takavakoglou, V.; Georgiadis, A.; Pana, E.; Georgiou, P.E.; Karpouzos, D.K.; Plakas, K.V. Screening Life Cycle Environmental Impacts and Assessing Economic Performance of Floating Wetlands for Marine Water Pollution Control. J. Mar. Sci. Eng. 2021, 9, 1345. [Google Scholar] [CrossRef]
- Baiyin, B.; Tagawa, K.; Gutierrez, J. Techno-Economic Feasibility Analysis of a Stand-Alone Photovoltaic System for Combined Aquaponics on Drylands. Sustainability 2020, 12, 9556. [Google Scholar] [CrossRef]
- European Network of Living Labs (ENoLL). What Are Living Labs. 2023. Available online: https://enoll.org/about-us/ (accessed on 12 May 2023).
- Somerville, C.; Cohen, M.; Pantanella, E.; Stankus, A.; Lovatelli, A. Small-Scale Aquaponic Food Production. Integrated Fish and Plant Farming; FAO Fisheries and Aquaculture Technical Paper No. 589; FAO: Rome, Italy, 2014; p. 262. [Google Scholar]
- Adeleke, B.; Robertson-Andersson, D.; Moodley, G.; Taylor, S. Economic viability of a small scale low-cost aquaponic system in South Africa. J. Appl. Aquac. 2023, 35, 285–304. [Google Scholar]
- Joyce, A.; Goddek, S.; Kotzen, B.; Wuertz, S. Aquaponics: Closing the Cycle on Limited Water, Land and Nutrient Resources. In Aquaponics Food Production Systems; Goddek, S., Joyce, A., Kotzen, B., Burnell, G.M., Eds.; Springer: Cham, Switzerland, 2019. [Google Scholar] [CrossRef]
- Dalsgaard, J.; Lund, I.; Thorarinsdottir, R.; Drengstig, A.; Arvonen, K.; Pedersen, P.B. Farming different species in RAS in Nordic countries: Current status and future perspectives. Aquac. Eng. 2013, 53, 2–13. [Google Scholar] [CrossRef]
- Milliken, S.; Stander, H. Aquaponics and Social Enterprise. In Aquaponics Food Production Systems; Goddek, S., Joyce, A., Kotzen, B., Burnell, G.M., Eds.; Springer: Cham, Switzerland, 2019; pp. 607–619. [Google Scholar] [CrossRef]
- Chowdhury, R.; Stevens, S.; Gorman, D.; Pan, A.; Warnakula, S.; Chowdhury, S.; Ward, H.; Johnson, L.; Crowe, F.; Hu, F.B.; et al. Association between fish consumption, long chain omega 3 fatty acids, and risk of cerebrovascular disease: Systematic review and meta-analysis. BMJ 2012, 345, e6698. [Google Scholar] [CrossRef]
- Fritz, L.; Binder, C.R. Participation as Relational Space: A Critical Approach to Analysing Participation in Sustainability Research. Sustainability 2018, 10, 2853. [Google Scholar] [CrossRef]
- Verner, D.; Vellani, S.; Goodman, E.; Love, D.C. Frontier Agriculture: Climate-Smart and Water-Saving Agriculture Technologies for Livelihoods and Food Security. In New Forms of Urban Agriculture: An Urban Ecology Perspective; Diehl, J.A., Kaur, H., Eds.; Springer: Singapore, 2021. [Google Scholar] [CrossRef]
Cost Per Month in USD | ||
---|---|---|
Variable costs |
| 80 USD/Month |
Fixed costs | 1 Worker | 100 USD/Month |
Electricity (15–20 kW) | 10 USD/Month | |
Total cost: | 190 USD/Month | |
Gross profit per month in USD | ||
Production of lettuce (french lettuce) as lolloroso, lolloverde, oak leaf lettuce (Lactuca sativa var. crispa) red and green, endive, kale, etc…) | Carton trays number to be sold on a on monthly basis: 128
| 365 USD/Month |
* Production of Tilapia Fish | 10 kg of Tilapia fish −1 kg of Tilapia 8 USD | 80 USD/Month |
Gross profit: | 445 USD/month | |
Net Monthly Profit: | 255 USD/month |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yahya, F.; El Samrani, A.; Khalil, M.; Abdin, A.E.-D.; El-Kholy, R.; Embaby, M.; Negm, M.; De Ketelaere, D.; Spiteri, A.; Pana, E.; et al. Decentralized Wetland-Aquaponics Addressing Environmental Degradation and Food Security Challenges in Disadvantaged Rural Areas: A Nature-Based Solution Driven by Mediterranean Living Labs. Sustainability 2023, 15, 15024. https://doi.org/10.3390/su152015024
Yahya F, El Samrani A, Khalil M, Abdin AE-D, El-Kholy R, Embaby M, Negm M, De Ketelaere D, Spiteri A, Pana E, et al. Decentralized Wetland-Aquaponics Addressing Environmental Degradation and Food Security Challenges in Disadvantaged Rural Areas: A Nature-Based Solution Driven by Mediterranean Living Labs. Sustainability. 2023; 15(20):15024. https://doi.org/10.3390/su152015024
Chicago/Turabian StyleYahya, Fatima, Antoine El Samrani, Mohamad Khalil, Alaa El-Din Abdin, Rasha El-Kholy, Mohamed Embaby, Mohab Negm, Dirk De Ketelaere, Anna Spiteri, Eleanna Pana, and et al. 2023. "Decentralized Wetland-Aquaponics Addressing Environmental Degradation and Food Security Challenges in Disadvantaged Rural Areas: A Nature-Based Solution Driven by Mediterranean Living Labs" Sustainability 15, no. 20: 15024. https://doi.org/10.3390/su152015024
APA StyleYahya, F., El Samrani, A., Khalil, M., Abdin, A. E. -D., El-Kholy, R., Embaby, M., Negm, M., De Ketelaere, D., Spiteri, A., Pana, E., & Takavakoglou, V. (2023). Decentralized Wetland-Aquaponics Addressing Environmental Degradation and Food Security Challenges in Disadvantaged Rural Areas: A Nature-Based Solution Driven by Mediterranean Living Labs. Sustainability, 15(20), 15024. https://doi.org/10.3390/su152015024