Error Influence Simulation of the 500 m Aperture Spherical Radio Telescope Cable-Net Structure Based on Random Combinations
Abstract
:1. Introduction
2. Error Influence Computing Method
- (1)
- Build the error model, which is the basis of analyzing random error.
- (2)
- Determine the probability distribution of the corresponding structural error according to the characteristics of the error source and its influence on the structural error.
- (3)
- Randomly generate a group of structural error combinations and substitute them into the error model to calculate the structural internal force errors according to the probability distribution determined in step (2).
- (4)
- Repeat the above process n times to obtain n error values. If n is large enough, the distribution of error values tends to the real probability distribution. Therefore, these error values can be used to describe the probability characteristics of the real error.
2.1. Selection of Single Random Error
2.2. Multiple Random Error Combinations
3. Establishment of the Giant Cable-Net Model
4. Error Combination Computing
- (1)
- The error distribution models of , , , and are determined by a normal distribution.
- (2)
- According to the statistical data-based Monte Carlo method [40], a sufficient number of error samples are generated in which each error sample is an error condition of the structure. Figure 8 shows the distribution of 1000 error samples randomly generated by one of the control cables. Set the range of control cable error to [−15 mm, 15 mm], the average value to 0 mm, and the variance to 25. The maximum value of the actual sample is 14.91 mm, the minimum value is −15 mm, the average value is −0.055 mm, and the variance is 27.03, which follows a normal distribution.
- (3)
- Introduce each error sample into the cable net to form the defective structure condition.
- (4)
- Obtain the error influence of the cable net under each working condition.
- (5)
- Compare the stresses of cables under the conditions of defective and ideal working conditions and count the maximum cable stress error.
- (6)
- Judge whether the maximum cable stress error meets the requirements. According to the provisions of Technical Specification for Prestressed Steel Structures [46], the maximum error is taken to be ±10%. If it meets the requirements, this indicates that the allowable range of error parameters is set reasonably. Otherwise, the allowable range of error parameters is adjusted, and steps (1) through (5) are repeated until a reasonable allowable range of error parameters is obtained.
5. Error Computing Results
5.1. Single-Error Influence Computing
5.2. Multi-Error Coupling Influence Computing
6. Discussion
6.1. Advantages and Innovations of the Methods
6.2. Limitations
- The usability of the error sensitivity computing method, currently based on the 500 m giant cable-net structure, needs to be tested and validated in further work to expand its applicability.
- According to Jin et al. [30], the error of cable cross-sectional areas is also an important parameter that affects the constructional forming forces of cables. In this study, the error influence computing is conducted on the premise that the cross-sectional areas of all the cables are known in advance, which is suitable for the 500 m giant cable-net structure based on the relatively more important requirements for structural mechanical performance, but this assumption may not be fully applicable to all situations.
- Several published studies [48,49] have stated the influence of the outer compressive ring beam (boundary) on the internal forces of cable nets. In this study, this part is implemented by analyzing the installation coordinates of external nodes on the outer compressive ring after tensioning the cables, while the stiffness of the outer ring beam is not considered, which may cause minor second-order deformations to change the forces of the cables.
6.3. Adaptability and Reproducibility
7. Conclusions
- (1)
- When conducting single-error influence computing, the length error of surface cables has the greatest influence on the force errors of passive surface cables, control cables, and external cables and is a sensitive factor. The tensioning force error of the active surface cables and the installation error of the external nodes have slightly smaller effects, and thus, these two errors are also sensitive factors. The length error of the control cables has the least influence on the force error of all the cables and thus is an insensitive factor.
- (2)
- When performing multi-error coupling influence computing, the coupling effect of multiple errors is not the linear superposition of independent error influences but has a certain reduction for the superposition value. Therefore, the main error factors should be comprehensively considered for coupling computing to reasonably determine the control index of each error.
- (3)
- Through multi-error coupling computing, the main error control index of the giant cable-net structure is determined: the length error limits of the surface cable and control cable are ± 1.5 mm and ± 20 mm, respectively; the tension error limit of the active surface cable is ± 10%; and the installation error limit of the external node is ± 50 mm.
- (4)
- As a natural extension of this research, while this manuscript provides valuable insights into the error influence simulation of an enormous cable-net structure based on random combinations, it would be beneficial to include suggestions for future research directions. The error sensitivity computing method proposed in this study will be utilized to analyze other types of cable-strut structures, such as the cable dome, the cable truss, the suspen-dome, etc.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dong, F.H.; Zhang, H.H. Probabilistic Safety Factor Calculation of the Lateral Overturning Stability of a Single-Column Pier Curved Bridge under Asymmetric Eccentric Load. Symmetry 2022, 14, 1534. [Google Scholar] [CrossRef]
- Duan, M.J.; Suo, X.C.; Dong, F.H.; Li, J.H.; Li, G.F. Research on the Control Method for the Reasonable State of Self-Anchored Symmetry Suspension Bridge Stiffening Girders. Symmetry 2022, 14, 935. [Google Scholar] [CrossRef]
- Li, Q.W.; Jiang, P.; Li, H. Prognostics and health management of FAST cable-net structure based on digital twin technology. Res. Astron. Astrophys. 2020, 20, 49–56. [Google Scholar] [CrossRef]
- Yu, Y.Z.; Peng, B.; Liu, K.; Zhang, C.M.; Wang, L.; Kou, F.F.; Lu, J.G.; Yu, M. FAST Ultrawideband Observation of Abnormal Emission-shift Events of PSR B0919+06. Sci. China Phys. Mech. Astron. 2019, 62, 95904. [Google Scholar] [CrossRef]
- Lu, J.G.; Peng, B.; Xu, R.X.; Yu, M.; Dai, S.; Zhu, W.W.; Yu, Y.Z.; Jiang, P.; Yue, Y.L.; Wang, L. The Radiation Structure of PSR B2016+28 observed with FAST. Sci. China Phys. Mech. Astron. 2019, 62, 959505. [Google Scholar] [CrossRef]
- Lu, J.G.; Peng, B.; Liu, K.; Jiang, P.; Yue, Y.L.; Yu, M.; Yu, Y.Z.; Kou, F.F.; Wang, L. Study of Three Rotating Radio Transients with FAST. Sci. China Phys. Mech. Astron. 2019, 62, 959503. [Google Scholar] [CrossRef]
- Luo, B.; Ding, M.M.; Xie, G.R.; Guo, Z.X. Accumulative Traction Construction Analysis of the FAST Cable-net Structure. KSCE J. Civ. Eng. 2018, 22, 3707–3717. [Google Scholar] [CrossRef]
- Li, D.; Pan, Z. The Five-hundred-meter Aperture Spherical Radio Telescope project. Radio Sci. 2016, 51, 1060–1064. [Google Scholar] [CrossRef]
- Li, G.Q.; Shen, L.Y.; Luo, Y.F.; Deng, C.G.; He, Y.M. Analysis for Reflector Aluminum Mesh Panels of Five-Hundred Meter Aperture Spherical Telescope. Astrophys. Space Sci. 2001, 278, 225–230. [Google Scholar] [CrossRef]
- Jiang, P.; Yue, Y.L.; Gan, H.Q.; Yao, R.; Li, H.; Pan, G.F.; Sun, J.H.; Yu, D.J.; Liu, H.F.; Tang, N.Y.; et al. Commissioning Progress of the FAST. Sci. China Phys. Mech. Astron. 2019, 62, 959502. [Google Scholar] [CrossRef]
- Zhu, W.X.; Jia, K.F.; Fu, F.; Lan, D.Q.; Qian, K. A new design of cable anchor for ultrahigh fatigue stress cable net of largest telescope in the world. Thin-Walled Struct. 2021, 159, 107280. [Google Scholar] [CrossRef]
- Zhang, Y.; Wei, Y.; Bing, L.; Wang, G.; Huang, L. A novel seawater and sea sand concrete-filled FRP-carbon steel composite tube column: Seismic behavior and Finite-Element Analysis. Eng. Struct. 2022, 270, 114872. [Google Scholar] [CrossRef]
- Wei, Y.; Zhu, C.; Miao, K.; Chai, J.; Zheng, K. Compressive behavior of rectangular concrete-filled fiber-reinforced polymer and steel composite tube columns with stress-release grooves. Compos. Struct. 2022, 281, 114984. [Google Scholar] [CrossRef]
- Chen, S.; Wei, Y.; Ding, M.; Zhao, K.; Zheng, K. Combinatorial design and flexural behavior of laminated bamboo-timber composite beams. Thin-Walled Struct. 2022, 181, 109993. [Google Scholar] [CrossRef]
- Zhao, L.; Cao, Z.; Wang, Z.; Fan, F. Initial prestress design and optimization of cable-stiffened latticed shells. J. Constr. Steel Res. 2021, 184, 106759. [Google Scholar] [CrossRef]
- Wan, Z.; Cao, Z.; Sun, Y.; Fan, F. Experimental and numerical research on the structural behaviour of a Tensairity dome. Eng. Struct. 2021, 248, 113225. [Google Scholar] [CrossRef]
- Liu, F.; Wang, L.; Jin, D.; Wen, H. Equivalent continuum modeling of beam-like truss structures with flexible joints. Acta Mech. Sinica 2019, 35, 1067–1078. [Google Scholar] [CrossRef]
- Liu, F.; Wang, L.; Jin, D.; Liu, X.; Lu, P. Equivalent micropolar beam model for spatial vibration analysis of planar repetitive truss structure with flexible joints. Int. J. Mech. Sci. 2020, 165, 105202. [Google Scholar] [CrossRef]
- Bäck, J.; Nobile, F.; Tamellini, L.; Tempone, R. Stochastic spectral Galerkin and collocation methods for PDEs with random coefficients: A numerical comparison. In Spectral and High Order Methods for Partial Differential Equations; Springer: Berlin/Heidelberg, Germany, 2011; pp. 43–62. [Google Scholar]
- Nobile, F.; Tempone, R.; Webster, C.G. A sparse grid stochastic collocation method for partial differential equations with random input data. SIAM J. Numer. Anal. 2008, 46, 2309–2345. [Google Scholar] [CrossRef]
- Bonizzoni, F.; Nobile, F. Regularity and sparse approximation of the recursive first moment equations for the lognormal Darcy problem. Comput. Math. Appl. 2020, 80, 2925–2947. [Google Scholar] [CrossRef]
- Bonizzoni, F.; Nobile, F.; Kressner, D. Tensor train approximation of moment equations for elliptic equations with lognormal coefficient. Comput. Method. Appl. Mech. Eng. 2016, 308, 349–376. [Google Scholar] [CrossRef]
- Chen, L.M.; Deng, H.; Ye, X.G.; Dong, S.L.; Zhou, Y.Y. Theoretical analysis and experimental research on element-length error sensitivity of cable-bar tensile structures. J. Build. Struct. 2015, 36, 93–100. (In Chinese) [Google Scholar]
- Zong, Y.L.; Hu, N.G.; Duan, B.Y.; Yang, G.G.; Cao, H.J.; Xu, W.Y. Manufacturing error sensitivity analysis and optimal design method of cable-network antenna structures. Acta Astronaut. 2016, 120, 182–191. [Google Scholar] [CrossRef]
- Luo, B.; Sun, Y.; Guo, Z.X.; Pan, H.T. Multiple random-error effect analysis of cable length and tension of cable–strut tensile structure. Adv. Struct. Eng. 2016, 19, 1289–1301. [Google Scholar] [CrossRef]
- Chen, L.; Hu, D.; Deng, H.; Cui, Y.; Zhou, Y. Optimization of the construction scheme of the cable-strut tensile structure based on error sensitivity analysis. Steel Compos. Struct. 2016, 21, 1031–1043. [Google Scholar] [CrossRef]
- Chen, L.M.; Gao, W.F.; Hu, D.; Zhou, Y.Y.; Zhang, F.B.; Dong, S.L. Determination of a Monitoring Scheme for Controlling Construction Errors of a Cable-strut Tensile Structure. KSCE J. Civ. Eng. 2018, 22, 4030–4037. [Google Scholar] [CrossRef]
- Yang, Y. Optimal topology design of replaceable bar dampers of a reticulated shell based on sensitivity analysis. Earthq. Eng. Eng. Vib. 2014, 1, 113–124. [Google Scholar] [CrossRef]
- Sun, Z.H.; Duan, B.Y.; Zhang, Y.Q.; Yang, D.W. Influence and experiment of cable-net manufacturing errors on surface accuracy of mesh reflector antennas. Chin. J. Aeronaut. 2023, 36, 363–376. [Google Scholar] [CrossRef]
- Jin, X.F.; Fan, F.; Shen, S.Z. Parameter sensitivity analysis of the cable-net structure supporting the reflector of a large radio telescope-FAST. Tumu Gongcheng Xuebao/China Civ. Eng. J. 2010, 2, 12–19. (In Chinese) [Google Scholar]
- Xu, K.; Peng, J.; Wang, Q.M. A Study of Influences of Value Variations of Structural Parameters on Forces in Cables in the Net Structure of Cables of the FAST. Astron. Res. Technol. 2015, 2, 159–165. (In Chinese) [Google Scholar]
- Yang, C.; Xia, Y. Interval Uncertainty-oriented Optimal Control Method for Spacecraft Attitude Control. IEEE Trans. Aerosp. Electron. Syst. 2023, 59, 5460–5471. [Google Scholar] [CrossRef]
- Yang, C.; Lu, W.; Xia, Y. Uncertain optimal attitude control for space power satellite based on interval Riccati equation with non-probabilistic time-dependent reliability. Aerosp. Sci. Technol. 2023, 139, 108406. [Google Scholar] [CrossRef]
- Yang, C.; Lu, W.; Xia, Y. Reliability-constrained optimal attitude-vibration control for rigid-flexible coupling satellite using interval dimension-wise analysis. Reliab. Eng. Syst. Safe. 2023, 237, 109382. [Google Scholar] [CrossRef]
- Yang, C.; Yu, Q. Placement and size-oriented heat dissipation optimization for antenna module in space solar power satellite based on interval dimension-wise method. Aerosp. Sci. Technol. 2023, 134, 108155. [Google Scholar] [CrossRef]
- Yang, C. An adaptive sensor placement algorithm for structural health monitoring based on multi-objective iterative optimization using weight factor updating. Mech. Syst. Signal Process. 2021, 151, 107363. [Google Scholar] [CrossRef]
- Yang, C.; Ouyang, H. A novel load-dependent sensor placement method for model updating based on time-dependent reliability optimization considering multi-source uncertainties. Mech. Syst. Signal Process. 2022, 165, 108386. [Google Scholar] [CrossRef]
- Yang, C.; Xia, Y. A novel two-step strategy of non-probabilistic multi-objective optimization for load-dependent sensor placement with interval uncertainties. Mech. Syst. Signal Process. 2022, 176, 109173. [Google Scholar] [CrossRef]
- Shen, Y.; Luo, B.; Jiang, P.; Ding, M.; Li, Q.; Wei, Y. Development of a Pre-Evaluation and Health Monitoring System for FAST Cable-Net Structure. Appl. Sci. 2022, 12, 332. [Google Scholar] [CrossRef]
- Betancur, D.; Duarte, L.F.; Revollo, J.; Restrepo, C.; Díez, A.E.; Isaac, I.A.; López, G.J.; González, J.W. Methodology to Evaluate the Impact of Electric Vehicles on Electrical Networks Using Monte Carlo. Energies 2021, 14, 1300. [Google Scholar] [CrossRef]
- JGJ 257-2012, J1402—2012; Technical Specification for Cable Structures. China Architecture & Building Press: Beijing, China, 2012. (In Chinese)
- ASCE/SEI STANDARD 19-10; Structural Applications of Steel Cables for Buildings. The American Society of Civil Engineers: Reston, VA, USA, 2010.
- Gao, Q.Y.; Zhang, Q.B.; Tang, Q.G.; Feng, Z.W. Form optimization design of space net using small elastic modulus method. J. Natl. Univ. Def. Technol. 2017, 39, 1–5. [Google Scholar] [CrossRef]
- Zheng, X.L.; Xiong, J.M.; Zhou, J.Z. Application of APDL Parametric Language in FAST Main Cable Network Structure Modeling. J. Hubei Univ. Technol. 2018, 33, 112–114. [Google Scholar] [CrossRef]
- Zhao, Y.; Guo, J.; Jiang, Z.; Chen, W.; Zhou, G. Control method for determining feasible prestresses of cable-struts structure. Thin-Walled Struct. 2022, 174, 109159. [Google Scholar] [CrossRef]
- CECS 212: 2006; Technical Specification for Prestressed Steel Structures. The Chinese Overseas Publishing House: Beijing, China, 2006. (In Chinese)
- Xie, G. Research on the Key Technology of Accumulative Sliding along Guide-Rope of Serial Cables at High Altitude of FAST; Southeast University: Nanjing, China, 2015. [Google Scholar]
- Asghari, R.; Abedi, K.; Chenaghlou, M.R. Investigation into pre-stress modes and optimal layout of a new hybrid cable-strut system. Adv. Struct. Eng. 2020, 23, 1259–1275. [Google Scholar] [CrossRef]
- Diaz, J.J.D.C.; Nieto, P.J.G.; Fresno, D.C.; Fernández, E.B. Non-linear analysis of cable networks by FEM and experimental validation. Int. J. Comput. Math. 2009, 86, 301–313. [Google Scholar] [CrossRef]
Standard | Total Cable Length L0 (m) | Error Limit ΔL (mm) |
---|---|---|
Chinese specification (JGJ 257-2012) [41] | ≤50 | ±15 |
50 < L0 ≤ 100 | ±20 | |
>100 | L0/5000 | |
American specification (ASCE/SEI STANDARD 19-10) [42] | ≤8.54 | ±2.54 |
8.54 < L0 ≤ 36.59 | ±0.03% L0 | |
>36.59 |
No. | Specification | Cable Body | Cable Head | Crossing Node | ||||
---|---|---|---|---|---|---|---|---|
Area (cm2) | Linear Weight (kg/m) | Outside Diameter (mm) | Ultimate Bearing Force (kN) | Mass (kg) | Length (mm) | Mass (kg) | ||
1 | OVM.ST15-1 | 1.4 | 1.37 | 23 | 260 | 10.5 | 390 | 41 |
2 | OVM.ST15-2 | 2.8 | 3.29 | 44 | 520 | 40 | 640 | 41 |
3 | OVM.ST15-2J3 | 3.4 | 3.65 | 44 | 629.5 | 40 | 640 | 41 |
4 | OVM.ST15-3 | 4.2 | 4.52 | 47 | 782 | 52 | 700 | 55 |
5 | OVM.ST15-3J3 | 4.8 | 4.87 | 47 | 891.5 | 52 | 700 | 55 |
6 | OVM.ST15-4 | 5.6 | 5.71 | 51 | 1040 | 70 | 800 | 90 |
7 | OVM.ST15-4J3 | 6.2 | 6.07 | 51 | 1149.5 | 70 | 800 | 90 |
8 | OVM.ST15-5 | 7 | 7.29 | 62 | 1300 | 87 | 830 | 115 |
9 | OVM.ST15-5J3 | 7.6 | 7.75 | 62 | 1409.5 | 87 | 830 | 115 |
10 | OVM.ST15-6 | 8.4 | 8.29 | 62 | 1560 | 92 | 880 | 132 |
11 | OVM.ST15-6J3 | 9 | 8.75 | 62 | 1669.5 | 92 | 880 | 132 |
12 | OVM.ST15-7 | 9.8 | 9.29 | 62 | 1820 | 108 | 880 | 172 |
13 | OVM.ST15-7J3 | 10.4 | 9.75 | 62 | 1929.5 | 108 | 880 | 172 |
14 | OVM.ST15-8 | 11.2 | 11.22 | 74 | 2080 | 151 | 1020 | 194 |
15 | OVM.ST15-8J3 | 11.8 | 11.68 | 74 | 2189.5 | 151 | 1020 | 194 |
16 | OVM.ST15-9 | 12.6 | 12.52 | 80 | 2340 | 185 | 1030 | 253 |
17 | OVM.ST15-9J3 | 13.2 | 12.99 | 80 | 2449.5 | 185 | 1030 | 253 |
18 | OVM.ST15-10 | 14 | 13.52 | 80 | 2600 | 199 | 1120 | 268 |
19 | OVM.ST15-10J3 | 14.6 | 13.99 | 80 | 2709.5 | 199 | 1120 | 268 |
20 | OVM.ST15-11 | 15.4 | 14.74 | 81 | 2860 | 212 | 1150 | 307 |
21 | OVM.ST15-11J3 | 16 | 15.2 | 81 | 2969.5 | 212 | 1150 | 307 |
Error Combination | Length Error of Passive Surface Cable Δ1L (mm) | Length Error of Control Cable Δ2L (mm) | External Cable | |
---|---|---|---|---|
Installation Error ΔC(mm) | Tensioning Force Error Ratio ΔT (%) | |||
1 | ≤1 | — | — | — |
2 | ≤1.5 | — | — | — |
3 | — | ≤10 | — | — |
4 | — | ≤15 | — | — |
5 | — | ≤20 | — | — |
6 | — | — | ≤2 | — |
7 | — | — | ≤3 | — |
8 | — | — | ≤4 | — |
9 | — | — | — | ≤5 |
10 | — | — | — | ≤10 |
11 | ≤1.5 | ≤20 | — | — |
12 | ≤1.5 | ≤20 | — | ≤5 |
13 | ≤1.5 | ≤20 | — | ≤10 |
Error Combination | Force Error Ratio of Passive Surface Cable (%) | Force Error Ratio of Control Cable (%) | External Cable | |||||
---|---|---|---|---|---|---|---|---|
Force Error Ratio (%) | Required Adjustment of Cable Length (mm) | |||||||
This Study | Chen et al., 2018 [27] | This Study | Chen et al., 2018 [27] | This Study | Chen et al., 2018 [27] | This Study | Chen et al., 2018 [27] | |
1 | 3.97 | 3.18 | 1.22 | 0.49 | 1.33 | 0.40 | — | |
2 | 5.96 | 2.38 | 1.84 | 0.37 | 1.99 | 0.40 | — | |
3 | 3.48 | 0.70 | 1.16 | 0.81 | 0.71 | 0.21 | — | |
4 | 2.22 | 1.55 | 4.23 | 1.27 | 1.06 | 0.64 | — | |
5 | 2.9 | 0.87 | 6.31 | 1.26 | 1.41 | 0.99 | — | |
6 | 2.90 | 0.58 | 1.72 | 0.52 | 2.00 | 1.40 | — | |
7 | 4.35 | 1.31 | 2.58 | 1.55 | 3.00 | 2.40 | — | |
8 | 5.80 | 3.48 | 3.43 | 2.40 | 4.00 | 0.80 | — | |
9 | 6.16 | 4.31 | 5.90 | 4.13 | — | ±23.4 | ±16.4 | |
10 | 12.32 | 8.62 | 11.82 | 9.46 | — | ±46.9 | ±37.5 |
Error Type | Force Error of Passive Surface Cable | Force Error of Control Cable | Tensioning Force Error of External Cable |
---|---|---|---|
Length error of surface cable (%/mm) | 3.97 | 1.23 | 1.33 |
Length error of control cable (%/mm) | 0.15 | 0.62 | 0.07 |
Installation error of external node (%/mm) | 1.45 | 0.86 | 1.00 |
Tensioning force error ratio of external cable (%/%) | 1.23 | 1.18 | — |
Error Combination | Force Error Ratio of Passive Surface Cable (%) | Force Error Ratio of Control Cable (%) | External Cable | |||||
---|---|---|---|---|---|---|---|---|
Force Error Ratio (%) | Required Adjustment of Cable Length (mm) | |||||||
This Study | Chen et al., 2018 [27] | This Study | Chen et al., 2018 [27] | This Study | Chen et al., 2018 [27] | This Study | Chen et al., 2018 [27] | |
11 | 6.48 | 4.86 | 12.07 | 9.66 | 2.31 | 1.39 | — | |
12 | 8.64 | 5.18 | 12.56 | 7.54 | — | ±23.7 | ±20.7 | |
13 | 13.56 | 9.49 | 14.99 | 10.49 | — | ±47.4 | ±39.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Ding, M.; Ruan, Y.; Luo, B.; Guo, J. Error Influence Simulation of the 500 m Aperture Spherical Radio Telescope Cable-Net Structure Based on Random Combinations. Sustainability 2023, 15, 15061. https://doi.org/10.3390/su152015061
Wang L, Ding M, Ruan Y, Luo B, Guo J. Error Influence Simulation of the 500 m Aperture Spherical Radio Telescope Cable-Net Structure Based on Random Combinations. Sustainability. 2023; 15(20):15061. https://doi.org/10.3390/su152015061
Chicago/Turabian StyleWang, Lulu, Mingmin Ding, Yangjie Ruan, Bin Luo, and Jianchen Guo. 2023. "Error Influence Simulation of the 500 m Aperture Spherical Radio Telescope Cable-Net Structure Based on Random Combinations" Sustainability 15, no. 20: 15061. https://doi.org/10.3390/su152015061
APA StyleWang, L., Ding, M., Ruan, Y., Luo, B., & Guo, J. (2023). Error Influence Simulation of the 500 m Aperture Spherical Radio Telescope Cable-Net Structure Based on Random Combinations. Sustainability, 15(20), 15061. https://doi.org/10.3390/su152015061