Revealing the Environmental Characteristics of Towns in the Middle Himalayas Using a Geographic Information System and Self-Organizing Map
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources and Processing
2.3. Method
3. Result
3.1. Analysis of Town Environmental Characteristics Factors
3.2. SOM Clustering of Town Environmental Characteristics
4. Discussion
4.1. Influence of Different Environmental Factors on Towns
4.2. Combined Influence of Environmental Factors on Towns
4.3. Policy Implications
4.4. Limitations and Shortcomings
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, L. Landscape Geoscience Study of the Middle the Himalayas Mountains in Tibet; Wuhan University Press: Wuhan, China, 2018. [Google Scholar]
- Singh, C. Himalayan Histories: E Conomy, Polity, Religious Traditions; SUNY Press: Albany, NY, USA, 2018. [Google Scholar]
- Ali, A.; Mottaleb, K.A. Understanding the determinants of alternate energy options for cooking in the Himalayas: Empirical evidence from the Himalayan region of Pakistan. J. Clean. Prod. 2017, 149, 528–539. [Google Scholar] [CrossRef]
- Knox, P.; Mayer, H. Small Town Sustainability: Economic, Social, and Environmental Innovation; Walter de Gruyter: Berlin, Germany, 2013. [Google Scholar]
- Diaz-Sarachaga, J.M. Linking Sustainable Urban Development With Town Planning Through Proximity Trade. Eur. J. Sustain. Dev. 2021, 10, 121. [Google Scholar] [CrossRef]
- Payne, P.R.; Kaye-Blake, W.H.; Kelsey, A.; Brown, M.; Niles, M.T. Measuring rural community resilience: Case studies in New Zealand and Vermont, USA. Ecol. Soc. 2021, 26, 2. [Google Scholar] [CrossRef]
- Haq, S.M.; Hassan, M.; Bussmann, R.W.; Calixto, E.S.; Rahman, I.U.; Sakhi, S.; Ijaz, F.; Hashem, A.; Al-Arjani, A.-B.F.; Almutairi, K.F.; et al. A Cross-Cultural Analysis of Plant Resources among Five Ethnic Groups in the Western Himalayan Region of Jammu and Kashmir. Biology 2022, 11, 491. [Google Scholar] [CrossRef]
- Hassan, M.; Haq, S.M.; Ahmad, R.; Majeed, M.; Sahito, H.A.; Shirani, M.; Mubeen, I.; Aziz, M.A.; Pieroni, A.; Bussmann, R.W.; et al. Traditional Use of Wild and Domestic Fauna among Different Ethnic Groups in the Western Himalayas—A Cross Cultural Analysis. Animals 2022, 12, 2276. [Google Scholar] [CrossRef]
- Sujakhu, N.M.; Ranjitkar, S.; He, J.; Schmidt-Vogt, D.; Su, Y.; Xu, J. Assessing the Livelihood Vulnerability of Rural Indigenous Households to Climate Changes in Central Nepal, Himalaya. Sustainability 2019, 11, 2977. [Google Scholar] [CrossRef]
- Dade, M.C.; Mitchell, M.G.; Brown, G.; Rhodes, J.R. The effects of urban greenspace characteristics and socio-demographics vary among cultural ecosystem services. Urban For. Urban Green. 2020, 49, 126641. [Google Scholar] [CrossRef]
- Lehnert, M.; Savić, S.; Milošević, D.; Dunjić, J.; Geletič, J. Mapping Local Climate Zones and Their Applications in European Urban Environments: A Systematic Literature Review and Future Development Trends. ISPRS Int. J. Geo-Inf. 2021, 10, 260. [Google Scholar] [CrossRef]
- Zhang, M.; Tan, S.; Zhang, X. How do varying socio-economic factors affect the scale of land transfer? Evidence from 287 cities in China. Environ. Sci. Pollut. Res. 2022, 29, 40865–40877. [Google Scholar] [CrossRef]
- Yang, C.; Zeng, W.; Yang, X. Coupling coordination evaluation and sustainable development pattern of geo-ecological environment and urbanization in Chongqing municipality, China. Sustain. Cities Soc. 2020, 61, 102271. [Google Scholar] [CrossRef]
- Wang, Z.; Liang, L.; Sun, Z.; Wang, X. Spatiotemporal differentiation and the factors influencing urbanization and ecological environment synergistic effects within the Beijing-Tianjin-Hebei urban agglomeration. J. Environ. Manag. 2019, 243, 227–239. [Google Scholar] [CrossRef]
- Chen, Y.; Tian, W.; Zhou, Q.; Shi, T. Spatiotemporal and driving forces of Ecological Carrying Capacity for high-quality development of 286 cities in China. J. Clean. Prod. 2021, 293, 126186. [Google Scholar] [CrossRef]
- Cetin, M. Climate comfort depending on different altitudes and land use in the urban areas in Kahramanmaras City. Air Qual. Atmos. Health 2020, 13, 991–999. [Google Scholar] [CrossRef]
- Gungor, S.; Cetin, M.; Adiguzel, F. Calculation of comfortable thermal conditions for Mersin urban city planning in Turkey. Air Qual. Atmos. Health 2021, 14, 515–522. [Google Scholar] [CrossRef]
- Kilicoglu, C. GIS-based multicriteria decision analysis for settlement areas: A case study in Canik. Environ. Sci. Pollut. Res. 2022, 29, 35746–35759. [Google Scholar] [CrossRef]
- Zhang, M.; Tan, S.; Zhang, Y.; He, J.; Ni, Q. Does land transfer promote the development of new-type urbanization? New evidence from urban agglomerations in the middle reaches of the Yangtze River. Ecol. Indic. 2022, 136, 108705. [Google Scholar]
- Saadi, S.; Antoni, J.P.; Karimzadeh, H.; Badri, S.A.; Aghayarihir, M. Determining the proportions of the ecovillage based on the resident’s preferences in relation to the geographical location in France. Sustain. Cities Soc. 2022, 87, 104226. [Google Scholar]
- Jia, X.; Lee, H.F.; Cui, M.; Cheng, G.; Zhao, Y.; Ding, H.; Ricci, P.H.; Lu, H. Differentiations of geographic distribution and subsistence strategies between Tibetan and other major ethnic groups are determined by the physical environment in Hehuang Valley. Sci. China Earth Sci. 2019, 62, 412–422. [Google Scholar] [CrossRef]
- Wu, Y.; Wu, M.; Wang, Z.; Zhang, B.; Li, C.; Zhang, B. Distribution of Chinese traditional villages and influencing factors for regionalization. Cienc. Rural 2021, 51, 7. [Google Scholar] [CrossRef]
- Douglass, K.; Cooper, J. Archaeology, environmental justice, and climate change on islands of the Caribbean and southwestern Indian Ocean. Proc. Natl. Acad. Sci. USA 2020, 117, 8254–8262. [Google Scholar] [CrossRef]
- Wu, L.; Xie, B.; Xiao, X.; Xue, B.; Li, J. Classification method and determination of mountainous area types at township scales: A case study of Yuxi City, Yunnan Province. Complexity 2020, 2020, 3484568. [Google Scholar] [CrossRef]
- Wang, C.; Wu, D.; Shen, Z.; Peng, M.; Ou, X. How do physical and social factors affect urban landscape patterns in intermountain basins in Southwest China? Landsc. Ecol. 2021, 36, 1893–1911. [Google Scholar] [CrossRef]
- Liang, Y.; Song, W. Integrating potential ecosystem services losses into ecological risk assessment of land use changes: A case study on the Qinghai-Tibet Plateau. J. Environ. Manag. 2022, 318, 115607. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhao, Z.; Fu, B.; Ma, R.; Yang, Y.; Lü, Y.; Wu, X. Identifying ecological security patterns based on the supply, demand and sensitivity of ecosystem service: A case study in the Yellow River Basin, China. J. Environ. Manag. 2022, 315, 115158. [Google Scholar] [CrossRef]
- Krause, R.M.; Hawkins, C.V.; Park, A.Y.; Feiock, R.C. Drivers of policy instrument selection for environmental management by local governments. Public Adm. Rev. 2019, 79, 477–487. [Google Scholar] [CrossRef]
- Moraci, F.; Errigo, M.F.; Fazia, C.; Campisi, T.; Castelli, F. Cities under Pressure: Strategies and Tools to Face Climate Change and Pandemic. Sustainability 2020, 12, 7743. [Google Scholar] [CrossRef]
- Okunuki, K.I. Urban analysis with GIS. GeoJournal 2000, 52, 181–188. [Google Scholar] [CrossRef]
- Shao, Z.; Zhang, L.; Han, C.; Meng, L. Measurement and Prediction of Urban Land Traffic Accessibility and Economic Contact Based on GIS: A Case Study of Land Transportation in Shandong Province, China. Int. J. Environ. Res. Public Health 2022, 19, 14867. [Google Scholar] [CrossRef]
- Wiatkowska, B.; Słodczyk, J.; Stokowska, A. Spatial-Temporal Land Use and Land Cover Changes in Urban Areas Using Remote Sensing Images and GIS Analysis: The Case Study of Opole, Poland. Geosciences 2021, 11, 312. [Google Scholar] [CrossRef]
- Vardopoulos, I.; Ioannides, S.; Georgiou, M.; Voukkali, I.; Salvati, L.; Doukas, Y.E. Shaping Sustainable Cities: A Long-Term GIS-Emanated Spatial Analysis of Settlement Growth and Planning in a Coastal Mediterranean European City. Sustainability 2023, 15, 11202. [Google Scholar] [CrossRef]
- Xu, X.; Zhang, Z.; Long, T.; Sun, S.; Gao, J. Mega-city region sustainability assessment and obstacles identification with GIS–entropy–TOPSIS model: A case in Yangtze River Delta urban agglomeration, China. J. Clean. Prod. 2021, 294, 126147. [Google Scholar] [CrossRef]
- Quan, S.J.; Bansal, P. A systematic review of GIS-based local climate zone mapping studies. Build. Environ. 2021, 196, 107791. [Google Scholar] [CrossRef]
- Xu, X.; Qiu, W.; Li, W.; Huang, D.; Li, X.; Yang, S. Comparing satellite image and GIS data classified local climate zones to assess urban heat island: A case study of Guangzhou. Front. Environ. Sci. 2022, 10, 29445. [Google Scholar] [CrossRef]
- Oliveira, A.; Lopes, A.; Niza, S. Local climate zones in five southern European cities: An improved GIS-based classification method based on Copernicus data. Urban Clim. 2020, 33, 100631. [Google Scholar] [CrossRef]
- Stein, L.; Pianosi, F.; Woods, R. Event-based classification for global study of river flood generating processes. Hydrol. Process. 2020, 34, 1514–1529. [Google Scholar] [CrossRef]
- Gugulica, M.; Burghardt, D. Mapping indicators of cultural ecosystem services use in urban green spaces based on text classification of geosocial media data. Ecosyst. Serv. 2023, 60, 101508. [Google Scholar] [CrossRef]
- Devi, K.J.; Singh, N.H.; Thongam, K. Automatic speaker recognition from speech signals using self organizing feature map and hybrid neural network. Microprocess. Microsyst. 2020, 79, 103264. [Google Scholar] [CrossRef]
- Ferro, S.; Bottigliengo, D.; Gregori, D.; Fabricio, A.S.C.; Gion, M.; Baldi, I. Phenomapping of Patients with Primary Breast Cancer Using Machine Learning-Based Unsupervised Cluster Analysis. J. Pers. Med. 2021, 11, 272. [Google Scholar] [CrossRef]
- Wang, X.; Li, Z.; Feng, Z. Classification of Shrinking Cities in China Based on Self-Organizing Feature Map. Land 2022, 11, 1525. [Google Scholar] [CrossRef]
- Haghshenas, M.; Mitra, P.; Santo, N.D.; Schmidt, D.P. Acceleration of Chemical Kinetics Computation with the Learned Intelligent Tabulation (LIT) Method. Energies 2021, 14, 7851. [Google Scholar] [CrossRef]
- Dai, D.; Qiao, G.; Zhang, C.; Tian, R.; Zhang, S. A Sorting Method of SAR Emitter Signal Sorting Based on Self-Supervised Clustering. Remote Sens. 2023, 15, 1867. [Google Scholar] [CrossRef]
- Osé, R.B.; Alok, K.B.; Kira, V. Paths to Development? Rural Roads and Multidimensional Poverty in the Hills and Plains of Nepal. J. Int. Dev. 2017, 30, 430–456. [Google Scholar] [CrossRef]
- Narayan, K. Challenges to developing the economy of Nepal. Contemp. S. Asia 1998, 7, 147–165. [Google Scholar] [CrossRef]
- Gyan, P.N.; Netra, C. Vulnerability to Climate Change of Nature-Based Tourism in the Nepalese Himalayas. Tour. Geogr. 2009, 11, 95–119. [Google Scholar] [CrossRef]
- Jeong, C.; Ozga, A.T.; Witonsky, D.B.; Malmström, H.; Edlund, H.; Hofman, C.A.; Hagan, R.W.; Jakobsson, M.; Lewis, C.M.; Aldenderfer, M.S.; et al. Long-term genetic stability and a high-altitude East Asian origin for the peoples of the high valleys of the Himalayan arc. Proc. Natl. Acad. Sci. USA 2016, 113, 7485–7490. [Google Scholar] [CrossRef]
- Ivan, G.P.; Dennyse, D.S.; Vincanne, A.A.; Mingma, N. Growth of Tourism in Nepal’s Everest Region: Impact on the Physical Environment and Structure of Human Settlements. Mt. Res. Dev. 1984, 4, 237–246. [Google Scholar] [CrossRef]
- Ritodhi, C.; Mabel, D.G.; Pasang, Y.S.; Costanza, R. A plural climate studies framework for the Himalayas. Curr. Opin. Environ. Sustain. 2021, 51, 42–54. [Google Scholar] [CrossRef]
- Kohonen, T. The self-organizing map. IEEE Proc. Icnn. 1990, 78, 1464–1480. [Google Scholar] [CrossRef]
- Günter, S.; Bunke, H. Validation indices for graph clustering. Pattern Recognit. Lett. 2023, 24, 1107–1113. [Google Scholar] [CrossRef]
- Ghaseminezhad, M.H.; Karami, A. A novel self-organizing map (SOM) neural network for discrete groups of data clustering. Appl. Soft Comput. 2011, 11, 3771–3778. [Google Scholar] [CrossRef]
- Taghizadeh-Mehrjardi, R.; Nabiollahi, K.; Rasoli, L.; Kerry, R.; Scholten, T. Land Suitability Assessment and Agricultural Production Sustainability Using Machine Learning Models. Agronomy 2020, 10, 573. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, L.; Tian, T.; Yin, J. A Review of Unmanned Aerial Vehicle Low-Altitude Remote Sensing (UAV-LARS) Use in Agricultural Monitoring in China. Remote Sens. 2021, 13, 1221. [Google Scholar] [CrossRef]
- Mishra, G.; Francaviglia, R. Land Uses, Altitude and Texture Effects on Soil Parameters. A Comparative Study in Two Districts of Nagaland, Northeast India. Agriculture 2021, 11, 171. [Google Scholar] [CrossRef]
- Li, Y.; Ma, Z.; Liu, Y.; Cui, Z.; Mo, Q.; Zhang, C.; Sheng, H.; Wang, W.; Zhang, Y. Variation in Soil Aggregate Stability Due to Land Use Changes from Alpine Grassland in a High-Altitude Watershed. Land 2023, 12, 393. [Google Scholar] [CrossRef]
- Wang, Q.; Bing, H.; Wang, S.; Xu, Q. Study on the Spatial Distribution Characteristics and Influencing Factors of Famous Historical and Cultural Towns or Villages in Hubei Province, China. Sustainability 2022, 14, 13735. [Google Scholar] [CrossRef]
- Feng, S.; Lu, Q.; Wu, Z.; Guo, Z. The Distribution Model and Spatial Structure of Market Towns in the Pearl River Delta during the Ming, Qing, and Min-Guo Periods: A Case Study of Taishan County. Land 2022, 11, 1354. [Google Scholar] [CrossRef]
- van Nes, A. The Impact of the Ring Roads on the Location Pattern of Shops in Town and City Centres. A Space Syntax Approach. Sustainability 2021, 13, 3927. [Google Scholar] [CrossRef]
- Xu, Y.; Rollo, J.; Esteban, Y. Evaluating Experiential Qualities of Historical Streets in Nanxun Canal Town through a Space Syntax Approach. Buildings 2021, 11, 544. [Google Scholar] [CrossRef]
- Mishra, A.; Appadurai, A.N.; Choudhury, D.; Regmi, B.R.; Kelkar, U.; Alam, M.; Chaudhary, P.; Mu, S.S.; Ahmed, A.U.; Lotia, H.; et al. Adaptation to climate change in the Hindu Kush Himalaya: Stronger action urgently needed. In The Hindu Kush Himalaya Assessment: Mountains, Climate Change, Sustainability and People; Springer: Berlin/Heidelberg, Germany, 2019; pp. 457–490. [Google Scholar]
- Ojha, H.R.; Ghate, R.; Dorji, L.; Shrestha, A.; Paudel, D.; Nightingale, A.; Shrestha, K.; Watto, M.A.; Kotru, R. Governance: Key for environmental sustainability in the Hindu Kush Himalaya. In The Hindu Kush Himalaya Assessment: Mountains, Climate Change, Sustainability and People; Springer: Berlin/Heidelberg, Germany, 2019; pp. 545–578. [Google Scholar]
- Fu, J.; Gao, J.; Li, J.; Zhang, Z.H.; Li, W.Y.; Bao, Y.N.; Ma, S.T. Spatial analysis and assessment of cultural ecosystem services at the protected area of the Mt. Qomolangma. Acta Ecol. Sin. 2021, 41, 901–911. [Google Scholar]
Evaluation Factors | Range/Type | Number of Town Points | Cumulative Percentage (%) |
---|---|---|---|
Elevation (m) | 0–499 | 45 | 23.1 |
500–2499 | 78 | 63.3 | |
2500–3999 | 28 | 77.7 | |
4000–6499 | 42 | 99.3 | |
6500–8848 | 1 | 100 | |
Slope (°) | 0–5 | 49 | 25.2 |
6–15 | 32 | 41.6 | |
16–25 | 52 | 68.4 | |
26–35 | 43 | 90.5 | |
36–45 | 18 | 100 | |
Average Annual Precipitation (mm) | 16.7–46.0 | 41 | 21.1 |
46.0–86.0 | 30 | 36.6 | |
86.0–125.0 | 46 | 60.3 | |
125.0–161.1 | 59 | 90.7 | |
161.1–265.3 | 18 | 100 | |
Vegetation Coverage | 0–0.2 | 20 | 10.3 |
0.2–0.4 | 16 | 18.6 | |
0.4–0.6 | 13 | 25.3 | |
0.6–0.8 | 37 | 44.3 | |
0.8–1.0 | 108 | 100 | |
Soil Type | Low activity, strongly acidic soil | 3 | 1.5 |
Embryonic soil | 104 | 55.1 | |
Alluvial soil | 26 | 68.5 | |
Glacier | 2 | 69.5 | |
Shallow soil | 50 | 95.3 | |
Black soil | 1 | 95.8 | |
Loose rocky soil | 8 | 100 | |
Land Cover | Cultivated land | 61 | 31.4 |
Cropland Woodland, grassland and shrubland | 102 | 84 | |
Artificial surfaces | 4 | 86.1 | |
Glaciers and permanent snow | 3 | 87.6 | |
Bare land | 22 | 98.9 | |
Water body | 2 | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kan, A.; Xiang, Q.; Yang, X.; Xu, H.; Yu, X.; Huang, H. Revealing the Environmental Characteristics of Towns in the Middle Himalayas Using a Geographic Information System and Self-Organizing Map. Sustainability 2023, 15, 15110. https://doi.org/10.3390/su152015110
Kan A, Xiang Q, Yang X, Xu H, Yu X, Huang H. Revealing the Environmental Characteristics of Towns in the Middle Himalayas Using a Geographic Information System and Self-Organizing Map. Sustainability. 2023; 15(20):15110. https://doi.org/10.3390/su152015110
Chicago/Turabian StyleKan, Aike, Qing Xiang, Xiao Yang, Huiseng Xu, Xiaoxiang Yu, and Hong Huang. 2023. "Revealing the Environmental Characteristics of Towns in the Middle Himalayas Using a Geographic Information System and Self-Organizing Map" Sustainability 15, no. 20: 15110. https://doi.org/10.3390/su152015110
APA StyleKan, A., Xiang, Q., Yang, X., Xu, H., Yu, X., & Huang, H. (2023). Revealing the Environmental Characteristics of Towns in the Middle Himalayas Using a Geographic Information System and Self-Organizing Map. Sustainability, 15(20), 15110. https://doi.org/10.3390/su152015110