Monitoring Reclamation of Plant Biodiversity and Soil Parameters in an Area of Bauxite Mine Spoils (A Case Study of Greece)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Experimental Design
2.3. Herbaceous Plant Sampling
2.4. Soil Collection and Analysis
2.5. Calculations and Statistical Analysis
3. Results
3.1. Effects of Treatments on Soils
3.2. Effects of Treatments on Plant Biodiversity Parameters
4. Discussion
4.1. Soils
4.2. Plant Biodiversity Parameters
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Plant Species | Family |
---|---|
Aegilops neglecta Bertol. | Poaceae |
Aegilops triuncialis L. | Poaceae |
Avena sterilis L. | Poaceae |
Biscutella didyma L. | Brassicaceae |
Bromus tectorum L. | Poaceae |
Bunias erucago L. | Brassicaceae |
Clypeola jonthlaspi L. | Brassicaceae |
Convolvulus althaeoides L. | Convolvulaceae |
Crucianella angustifolia L. | Rubiaceae |
Crucianella latifolia L. | Rubiaceae |
Cynodon dactylon (L.) Pers. | Poaceae |
Dianthus hispidus (Boiss. & Balansa) | Caryophyllaceae |
Echium plantagineum L. | Boraginaceae |
Matricaria recutita L. | Asteraceae |
Medicago disciformis DC. | Fabaceae |
Minuartia confusa (Boiss.) Maire & Petitm. | Caryophyllaceae |
Picnomon acarna (L.) Cass. | Asteraceae |
Polygonum aviculare L. | Polygonaceae |
Reseda lutea L. | Resedaceae |
Silene congesta Sm. | Caryophyllaceae |
Silene vulgaris (Moench) Garcke | Caryophyllaceae |
Silybum marianum (L.) Gaertn. | Asteraceae |
Sonchus oleraceus L. | Asteraceae |
Torilis nodosa (L.) Gaertn. | Apiaceae |
Trifolium angustifolium L. | Fabaceae |
Trifolium stellatum L. | Fabaceae |
Plant Species | Family |
---|---|
Achnatherum bromoides (L.) P. Beauv. | Poaceae |
Acinos suaveolens (Sm.) Loudon | Lamiaceae |
Arenaria serpyllifolia L. | Caryophyllaceae |
Aurinia saxatilis (L.) Desv. | Brassicaceae |
Biscutella didyma L. | Brassicaceae |
Bromus hordaceous L. | Poaceae |
Bromus tectorum L. | Poaceae |
Centranthus ruber (L.) DC. | Valerianaceae |
Cerastium glomeratum Thuill. | Caryophyllaceae |
Crepis incana Sm. | Asteraceae |
Crucianella latifolia L. | Rubiaceae |
Hordeum murinum L. | Poaceae |
Knautia integrifolia (L.) Bertol. | Caprifoliaceae |
Lactuca serriola L. | Asteraceae |
Lactuca viminea (L.) J. Presl & C. Presl | Asteraceae |
Lomelosia brachiata (Sm.) Greuter & Burdet | Dipsacaceae |
Melica ciliata L. | Poaceae |
Minuartia confusa (Boiss.) Maire & Petitm. | Caryophyllaceae |
Misopates orontium (L.) Raf. | Plantaginaceae |
Picnomon acarna (L.) Cass. | Asteraceae |
Polygonum aviculare L. | Polygonaceae |
Silene auriculata Sm. | Caryophyllaceae |
Sonchus oleraceus L. | Asteraceae |
Stellaria media (L.) Vill. | Caryophyllaceae |
Tolpis barbata (L.) Gaertn. | Asteraceae |
Velezia hispida Boiss. & Balansa | Caryophyllaceae |
Vulpia myuros (L.) C.C. Gmel. | Poaceae |
Plant Species | Family |
---|---|
Achnatherum bromoides (L.) P. Beauv. | Poaceae |
Acinos suaveolens (Sm.) Loudon | Lamiaceae |
Aegilops triuncialis L. | Poaceae |
Alyssum montanum L. | Brassicaceae |
Anthoxanthum odoratum L. | Poaceae |
Arenaria serpyllifolia L. | Caryophyllaceae |
Aurinia saxatilis (L.) Desv. | Brassicaceae |
Avena sterilis L. | Poaceae |
Biscutella didyma L. | Brassicaceae |
Brachypodium distachyon (L.) P. Beauv. | Poaceae |
Bromus hordaceous L. | Poaceae |
Bromus tectorum L. | Poaceae |
Capparis spinosa L. | Capparaceae |
Catapodium rigidum (L.) C.E. Hubb. | Poaceae |
Cerastium glomeratum Thuill. | Caryophyllaceae |
Chondrilla ramosissima Sm. | Asteraceae |
Clypeola jonthlaspi L. | Brassicaceae |
Crepis incana Sm. | Asteraceae |
Crucianella latifolia L. | Rubiaceae |
Dianthus hispidus (Boiss. & Balansa) | Caryophyllaceae |
Euphorbia rigida M. Bieb. | Euphorbiaceae |
Galium divaricatum Lam. | Rubiaceae |
Galium murale (L.) All. | Rubiaceae |
Geranium robertianum L. | Geraniaceae |
Knautia integrifolia (L.) Bertol. | Caprifoliaceae |
Lactuca intricata Boiss. | Asteraceae |
Lactuca serriola L. | Asteraceae |
Lamium amplexicaule L. | Lamiaceae |
Malabaila aurea (Sm.) Boiss. | Apiaceae |
Malva sylvestris L. | Malvaceae |
Matricaria recutita L. | Asteraceae |
Medicago lupulina L. | Fabaceae |
Melica ciliata L. | Poaceae |
Melilotus albus Medik. | Fabaceae |
Mentha longifolia (L.) Huds. | Lamiaceae |
Minuartia confusa (Boiss.) Maire & Petitm. | Caryophyllaceae |
Misopates orontium (L.) Raf. | Plantaginaceae |
Ononis pusilla L. | Fabaceae |
Phacelia tanacetifolia Benth. | Hydrophyllaceae |
Picnomon acarna (L.) Cass. | Asteraceae |
Polygonum aviculare L. | Polygonaceae |
Psilurus incurvus (Gouan) Schinz & Thell. | Poaceae |
Rumex pulcher L. | Polygonaceae |
Scandix pecten-veneris L. | Apiaceae |
Sedum hispanicum L. | Crassulaceae |
Silene guicciardii Boiss. & Heldr. | Caryophyllaceae |
Sonchus oleraceus L. | Asteraceae |
Stellaria media (L.) Vill. | Caryophyllaceae |
Tolpis barbata (L.) Gaertn. | Asteraceae |
Torilis nodosa (L.) Gaertn. | Apiaceae |
Trifolium campestre Schreb. | Fabaceae |
Trifolium scabrum L. | Fabaceae |
Plant Species | Family |
---|---|
Aegilops neglecta Bertol. | Poaceae |
Aegilops triuncialis L. | Poaceae |
Alyssum montanum L. | Brassicaceae |
Arenaria serpyllifolia L. | Caryophyllaceae |
Astragalus hamosus L. | Fabaceae |
Avena sterilis L. | Poaceae |
Biscutella didyma L. | Brassicaceae |
Bromus hordaceous L. | Poaceae |
Bromus tectorum L. | Poaceae |
Bunias erucago L. | Brassicaceae |
Centaurea solstitialis L. | Asteraceae |
Cerastium glomeratum Thuill. | Caryophyllaceae |
Chondrilla ramosissima Sm. | Asteraceae |
Clypeola jonthlaspi L. | Brassicaceae |
Crepis incana Sm. | Asteraceae |
Crucianella latifolia L. | Rubiaceae |
Cynodon dactylon (L.) Pers. | Poaceae |
Echium plantagineum L. | Boraginaceae |
Erodium cicutarium (L.) L’Hér. | Geraniaceae |
Knautia integrifolia (L.) Bertol. | Caprifoliaceae |
Lolium rigidum Gaudin | Poaceae |
Medicago disciformis DC. | Fabaceae |
Medicago orbicularis (L.) Bartal. | Fabaceae |
Minuartia confusa (Boiss.) Maire & Petitm. | Caryophyllaceae |
Papaver rhoeas L. | Papaveraceae |
Picnomon acarna (L.) Cass. | Asteraceae |
Polygonum aviculare L. | Polygonaceae |
Reseda lutea L. | Resedaceae |
Scrophularia canina L. | Scrophulariaceae |
Sherardia arvensis L. | Rubiaceae |
Silene guicciardii Boiss. & Heldr. | Caryophyllaceae |
Silene vulgaris (Moench) Garcke | Caryophyllaceae |
Silybum marianum (L.) Gaertn. | Asteraceae |
Sonchus oleraceus L. | Asteraceae |
Tolpis barbata (L.) Gaertn. | Asteraceae |
Tordylium maximum L. | Apiaceae |
Trifolium angustifolium L. | Fabaceae |
Trifolium scabrum L. | Fabaceae |
Trifolium stellatum L. | Fabaceae |
Plant Species | Family |
---|---|
Achnatherum bromoides (L.) P. Beauv. | Poaceae |
Arenaria serpyllifolia L. | Caryophyllaceae |
Avena sterilis L. | Poaceae |
Biscutella didyma L. | Brassicaceae |
Bromus tectorum L. | Poaceae |
Catapodium rigidum (L.) C.E. Hubb. | Poaceae |
Cerastium glomeratum Thuill. | Caryophyllaceae |
Chondrilla ramosissima Sm. | Asteraceae |
Clypeola jonthlaspi L. | Brassicaceae |
Convolvulus althaeoides L. | Convolvulaceae |
Crepis incana Sm. | Asteraceae |
Crucianella latifolia L. | Rubiaceae |
Dorycnium hirsutum (L.) Ser. | Fabaceae |
Knautia integrifolia (L.) Bertol. | Caprifoliaceae |
Lomelosia brachiata (Sm.) Greuter & Burdet | Dipsacaceae |
Medicago lupulina L. | Fabaceae |
Minuartia confusa (Boiss.) Maire & Petitm. | Caryophyllaceae |
Misopates orontium (L.) Raf. | Plantaginaceae |
Ononis pusilla L. | Fabaceae |
Picnomon acarna (L.) Cass. | Asteraceae |
Ptilostemon afer (Jacq.) Greuter | Asteraceae |
Reichardia picroides (L.) Roth | Asteraceae |
Silene vulgaris (Moench) Garcke | Caryophyllaceae |
Tolpis barbata (L.) Gaertn. | Asteraceae |
Tordylium maximum L. | Apiaceae |
Velezia hispida Boiss. & Balansa | Caryophyllaceae |
Vicia villosa P.W. Ball | Fabaceae |
References
- Kirkham, M.B.; Ok, Y.S.; Sarkar, B.; Wijesekara, H.; Mandal, S.; Singh, M.; Bolan, N.S. Characterization and Improvement in Physical, Chemical, and Biological Properties of Mine Wastes. In Spoil to Soil: Mine Site Rehabilitation and Revegetation; CRC Press: Boca Raton, FL, USA, 2017; pp. 3–15. [Google Scholar]
- Gardner, J.H.; Bell, D.T. Bauxite Mining Restoration by Alcoa World Alumina Australia in Western Australia: Social, Political, Historical, and Environmental Contexts. Restor. Ecol. 2007, 15, S3–S10. [Google Scholar] [CrossRef]
- Brofas, G. The Landscape and the Mining Exploitations; Institute of Mediterranean Forest Ecosystems and Forest Products Technology: Athens, Greece, 2014; 335p. (In Greek) [Google Scholar]
- Kyriazopoulos, A.P.; Abraham, E.M.; Parissi, Z.M.; Tsiouvaras, C.N. Evaluation of Different Herbaceous Species Used for Revegetation of a Limestone Quarry with a Thin Topsoil Layer in the Mediterranean Region. J. Food Agric. Environ. 2012, 10, 1152–1155. [Google Scholar]
- Brofas, G.; Mantakas, G.; Varelides, C.; Mermiris, C. Investigation of the effect of soil replacement and fertilization on the improvement of calcareous mining spoils productivity in mountain Ghiona-Central Greece. In Proceedings of the 6th International Conference on Sustainable Development in the 1 Minerals Industry, Milos Island, Greece, 30 June–3 July 2013; pp. 451–456. [Google Scholar]
- Cao, Y.; Zhou, B.; Wang, X.; Meng, H.; Zhang, J.; Li, L.; Hong, J. Different Fertilization Treatments in Coal Mining-Affected Soils Change Bacterial Populations and Enable Soil Reclamation. Ann. Microbiol. 2020, 70, 47. [Google Scholar] [CrossRef]
- Brofas, G.; Michopoulos, P.; Alifragis, D. Sewage Sludge as an Amendment for Calcareous Bauxite Mine Spoils Reclamation; Wiley Online Library: Hoboken, NJ, USA, 2000. [Google Scholar]
- Komara, L.L.; Murtinah, V. Evaluation of Plant Species Composition after Thirteen Years Post Coal Mining Rehabilitation in East Kutai District of East Kalimantan, Indonesia. In Proceedings of the IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2018; Volume 144, p. 012057. [Google Scholar]
- Perrow, M.R.; Davy, A.J. Handbook of Ecological Restoration; Cambridge University Press: Cambridge, UK, 2002; Volume 2. [Google Scholar]
- Hazarika, P.; Talukdar, N.C.; Singh, Y.P. Natural Colonization of Plant Species on Coal Mine Spoils at Tikak Colliery, Assam. Trop. Ecol. 2006, 47, 37–46. [Google Scholar]
- Hendrychová, M.; Svobodova, K.; Kabrna, M. Mine Reclamation Planning and Management: Integrating Natural Habitats into Post-Mining Land Use. Resour. Policy 2020, 69, 101882. [Google Scholar] [CrossRef]
- Chauhan, S.; Silori, C.S. An Evaluation of Successful Reclamation of Bauxite Residue through Afforestation Activities in South India. J. Hortic. For. 2011, 3, 214–221. [Google Scholar]
- Mensah, A.K. Role of Revegetation in Restoring Fertility of Degraded Mined Soils in Ghana: A Review. Int. J. Biodivers. Conserv. 2015, 7, 57–80. [Google Scholar]
- Mavrommatis, G. The Bio-Climate of Greece; Forest Research: Dehradun, India, 1980; Volume I, pp. 1–63. (In Greek) [Google Scholar]
- Tutin, T.G.; Burges, N.A.; Chater, A.O.; Edmondson, J.R.; Heywood, V.H.; Moore, D.M.; Valentine, D.H.; Walters, S.M.; Webb, D.A. Flora Europaea; Cambridge University Press: Cambridge, UK, 1968. [Google Scholar]
- Tutin, T.G.; Heywood, V.H.; Burges, N.A.; Moore, D.M.; Valentine, D.H.; Walters, S.M.; Webb, D.A. Flora Europaea, 2nd ed.; Cambridge University Press: Cambridge, UK, 1993; Volume 1. [Google Scholar]
- Strid, A.; Tan, K. Flora Hellenica; Koeltz Scientific Books: Koenigstein, Germany, 2002. [Google Scholar]
- Flora of Greece Web. Vascular Plants of Greece An Annotated Checklist. 2022. Available online: https://portal.cybertaxonomy.org/flora-greece/content (accessed on 26 June 2023).
- Kent, M.; Coker, P. Vegetation Description and Analysis, A Practical Approach; John Wiley and Sons Publisher: Hoboken, NJ, USA, 1992; pp. 167–169. [Google Scholar]
- Landon, J.R. Booker Tropical Soil Manual—A Handbook for Soil Survey and Agricultural Land Evaluation in the Tropics and Subtropics; Routledge: London, UK, 1984; p. 450. [Google Scholar]
- Bower, C.A.; Reitemeier, R.F.; Fireman, M. Exchangeable Cation Analysis of Saline and Alkali Soils. Soil Sci. 1952, 73, 251–262. [Google Scholar] [CrossRef]
- Walkley, A. A Critical Examination of a Rapid Method for Determining Organic Carbon in Soil: Effect of Variation in Digestion and Inorganic Soil Constituents. Soil Sci. 1947, 62, 251–264. [Google Scholar] [CrossRef]
- Jones, J.B., Jr. Laboratory Guide for Conducting Soil Tests and Plant Analysis; CRC Press: Boca Raton, FL, USA, 2001. [Google Scholar]
- Dekhil, A.B.; Ghorbel, A.; Boubacker, T. Direct Determination of Nitrate in Natural Water by Ultraviolet First Derivative Spectrophotometry. 2014. Available online: https://www.tsijournals.com/articles/direct-determination-of-nitrate-in-natural-water-by-ultraviolet-first-derivative-spectrophotometry.pdf (accessed on 8 September 2023).
- Olsen, S.R.; Sommers, L.E. Phosphorus. In Methods of Soil Analysis Part 2 Chemical and Microbiological Properties; Page, A.I., Ed.; Agronomy Mongraphs; American Society of Agronomy, Soil Science Society of America: Madison, WI, USA, 1982; Volume 9, pp. 159–165. [Google Scholar]
- Lindsay, W.L.; Norvell, W. Development of a DTPA Soil Test for Zinc, Iron, Manganese, and Copper. Soil Sci. Soc. Am. J. 1978, 42, 421–428. [Google Scholar] [CrossRef]
- Ibanez, J.J.; De-Alba, S.; Bermudez, F.F.; Garcia-Alvarez, A. Pedodiversity: Consepts and measures. Catena 1995, 24, 215–232. [Google Scholar] [CrossRef]
- Nur, N. A Statistical Guide to Data Analysis of Avian Monitoring Programs; BTP-R6001; U.S. Department of the Interior, Fish and Wildlife Service: Washington, DC, USA, 1999.
- Nolan, K.A.; Callahan, J.E. Beachcomber Biology: The Shannon-Weiner Species Diversity Index. In Proceedings of the 27th Workshop/Conference of the Association for Biology Laboratory Education (ABLE), Oslo, Norway, 29 July–4 August 2006; Volume 27, pp. 334–338. [Google Scholar]
- Blondel, J.; Aronson, J. Biodiversity and Ecosystem Function in the Mediterranean Basin: Human and Non-Human Determinants. In Mediterranean-Type Ecosystems: The Function of Biodiversity; Springer: Berlin/Heidelberg, Germany, 1995; pp. 43–119. [Google Scholar]
- Maxted, N.; Bennett, S.J. Legume diversity in the Mediterranean region. In Plant Genetic Resources of Legumes in the Mediterranean; Maxted, N., Bennett, S.J., Eds.; Kluwer Academic: Dordrecht, The Netherlands, 2001; pp. 51–78. [Google Scholar]
- Gilliam, F.S. The ecological significance of the herbaceous layer in temperate forest ecosystems. Bioscience 2007, 57, 845–858. [Google Scholar] [CrossRef]
- Lencinas, M.V.; Martínez Pastur, G.; Gallo, E.; Cellini, J.M. Alternative silvicultural practices with variable retention to improve understory plant diversity conservation in southern Patagonian forests. For. Ecol. Manag. 2011, 262, 1236–1250. [Google Scholar] [CrossRef]
- Simonson, W.D.; Allen, H.D.; Coomes, D.A. Overstorey and topographic effects on understories: Evidence for linkage from cork oak (Quercus suber) forests in southern Spain. For. Ecol. Manag. 2014, 328, 35–44. [Google Scholar] [CrossRef]
- Tinya, F.; Ódor, P. Congruence of the spatial pattern of light and understory vegetation in an old-growth, temperate mixed forest. For. Ecol. Manag. 2016, 381, 84–92. [Google Scholar] [CrossRef]
- Lazarina, M.; Charalampopoulos, A.; Psaralexi, M.; Krigas, N.; Michailidou, D.-E.; Kallimanis, A.S.; Sgardelis, S.P. Diversity Patterns of Different Life Forms of Plants along an Elevational Gradient in Crete, Greece. Diversity 2019, 11, 200. [Google Scholar] [CrossRef]
- Ewald, J. The Calcareous Riddle: Why Are There so Many Calciphilous Species in the Central European Flora? Folia Geobot. 2003, 38, 357–366. [Google Scholar] [CrossRef]
- Dybzinski, R.; Fargione, J.E.; Zak, D.R.; Fornara, D.; Tilman, D. Soil Fertility Increases with Plant Species Diversity in a Long-Term Biodiversity Experiment. Oecologia 2008, 158, 85–93. [Google Scholar] [CrossRef]
- Zak, D.R.; Holmes, W.E.; White, D.C.; Peacock, A.D.; Tilman, D. Plant Diversity, Soil Microbial Communities, and Ecosystem Function: Are There Any Link? Ecology 2003, 84, 2042–2050. [Google Scholar] [CrossRef]
Control | Fertilization | Sludge | Soil from the Area | Incorporated Soil | |
---|---|---|---|---|---|
pH | 8.38 a (2.6) | 8.53 a (2.1) | 8.03 a (2.0) | 8.39 a (1) | 8.50 a (0.7) |
CaCO3 (%) | 43.8 a (24) | 47.0 a (37) | 43.7 a (22) | 16.9 c (60) | 30.2 b (49) |
Org. C (%) | 0.39 c (40) | 0.59 b (27) | 3.37 a (30) | 0.34 c (40) | 0.44 b (31) |
Org. N (mg kg−1) | 252 d (80) | 336 c (54) | 2947 a (18) | 478 b (24) | 498 b (14) |
NH4-N (mg kg−1) | 10.3 b (47) | 13.6 b (24) | 18.8 a (34) | 10.0 b (15) | 17.9 a (30) |
NO3-N (mg kg−1) | 3.42 c (64) | 7.72 b (67) | 30.3 a (28) | 2.06 c (22) | 3.77 c (58) |
Org. C/Org. N | 26.3 a (90) | 19.9 b (44) | 11.1 d (24) | 7.42 c (40) | 8.69 c (22) |
Sand (%) | 66.8 a (14) | 70.3 a (9.4) | 71.3 a (4.2) | 49.4 b (13) | 55.9 b (17) |
Clay (%) | 17.2 b (36) | 17.8 b (29) | 14.6 b (7.9) | 31.6 a (19) | 26.3 a (27) |
Silt (%) | 16.0 a (23) | 11.9 b (29) | 14.0 a (21) | 19.0 a (9) | 17.8 a (12) |
Conductivity (μS/cm) | 608 b (10) | 690 b (22) | 854 a (37) | 495 c (16) | 505 c (7.5) |
Exch. Ca (meq/100 g) | 13.2 c (13) | 12.4 c (7) | 15.2 b (7) | 16.7 a (7.9) | 15.8 b (10) |
Exch. Mg (meq/100 g) | 0.167 c (34) | 0.165 c (35) | 0.348 c (39) | 0.325 a (28) | 0.258 b (22) |
Ca/Mg | 84 a (21) | 82 a (21) | 47 c (26) | 54 b (23) | 65 b (13) |
Exch. K (meq/100 g) | 0.116 b (46) | 0.141 b (44) | 0.224 a (60) | 0.377 a (26) | 0.305 a (30) |
Exch. Na (meq/100 g) | 0.005 a (75) | 0.003 b (25) | 0.007 a (7.2) | 0.008 a (27) | 0.008 a (19) |
CEC (meq/100 g) | 5.82 c (45) | 4.55 c (50) | 11.3 b (12) | 15.1 a (26) | 13.1 a (35) |
Avail. P (mg kg−1) | 2.83 b (29) | 3.48 b (24) | 47.6 a (11) | 2.99 b (12) | 3.46 b (72) |
Avail. Mn (mg kg−1) | 5.88 b (61) | 4.57 b (40) | 5.78 b (28) | 11.9 a (3.1) | 10.2 a (43) |
Avail. Fe (mg kg−1) | 5.84 c (23) | 3.25 c (41) | 21.3 a (32) | 13.3 b (22) | 11.2 b (51) |
Avail. Cu (mg kg−1) | 0.069 c (127) | 0.113 c (69) | 4.29 a (25) | 0.494 b (26) | 0.381 b (56) |
Avail. Zn (mg kg−1) | 0.188 b (73) | 0.338 b (49) | 12.9 a (32) | 0.481 b (14) | 0.763 b (64) |
pH | CaCO3 | Org. C | Kjeldahl N | Org. N | NH4-N | NO3-N | Clay | Exch. Ca | Exch. Mg | Exch. Κ | CEC | Avail. P | Avail Mn | Avail. Fe | Avail. Cu | Avail. Zn | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
pH | 1 | 0.066 | −0.792 ** | −0.792 ** | −0.793 ** | −0.169 | −0.773 ** | 0.060 | −0.366 | −0.599 ** | −0.189 | 0.320 | −0.739 ** | −0.059 | −0.592 ** | −0.752 ** | −0.733 ** |
CaCO3 | 0.066 | 1 | 0.263 | 0.182 | 0.182 | 0.209 | 0.347 | 0.856 ** | −0.805 ** | −0.560 * | −0.777 ** | −0.804 ** | 0.237 | −0.738 ** | −0.203 | 0.192 | 0.267 |
Org. C | −0.792 ** | 0.263 | 1 | 0.960 ** | 0.960 ** | 0.470 * | 0.968 ** | 0.420 | 0.084 | 0.438 | −0.020 | 0.077 | 0.939 ** | 0.295 | 0.660 ** | 0.943 ** | 0.953 ** |
Kjeldahl N | −0.792 ** | 0.182 | 0.960 ** | 1 | 1.000 ** | 0.490 * | 0.958 ** | 0.329 | 0.218 | 0.515 * | 0.076 | 0.221 | 0.980 ** | −0.187 | 0.781 ** | 0.991 ** | 0.987 ** |
Org. N | −0.793 ** | 0.182 | 0.960 ** | 1.000 ** | 1 | 0.487 * | 0.958 ** | 0.328 | 0.219 | 0.516 * | 0.077 | 0.221 | 0.980 ** | −0.185 | 0.780 ** | 0.991 ** | 0.987 ** |
NH4-N | −0.169 | 0.209 | 0.470 * | 0.490 * | 0.487 * | 1 | 0.491 * | 0.296 | −0.026 | −0.052 | −0.172 | 0.018 | 0.456 * | −0.344 | 0.491 * | 0.516 * | 0.510 * |
NO3-N | −0.773 ** | 0.347 | 0.968 ** | 0.958 ** | 0.958 ** | 0.491 * | 1 | −0.451 * | 0.018 | 0.400 | −0.051 | 0.024 | 0.932 ** | −0.331 | 0.619 ** | 0.936 ** | 0.955 ** |
Clay | 0.060 | −0.856 ** | −0.420 | −0.329 | −0.328 | −0.296 | −0.451 * | 1 | 0.739 ** | 0.438 | 0.793 ** | 0.791 ** | −0.430 | 0.855 ** | 0.113 | −0.331 | −0.412 |
Exch. Ca | −0.366 | −0.805 ** | 0.084 | 0.218 | 0.219 | −0.026 | 0.018 | 0.739 ** | 1 | 0.810 ** | 0.878 ** | 0.957 ** | 0.152 | 0.793 ** | 0.540 * | 0.198 | 0.125 |
Exch. Mg | −0.599 ** | −0.560 * | 0.438 | 0.515 * | 0.516 * | −0.052 | 0.400 | 0.438 | 0.810 ** | 1 | 0.839 ** | 0.783 ** | 0.465 * | 0.527 * | 0.570 ** | 0.470 * | 0.445 * |
Exch. K | −0.189 | −0.777 ** | −0.020 | 0.076 | 0.077 | −0.172 | −0.051 | 0.793 ** | 0.878 ** | 0.839 ** | 1 | 0.898 ** | −0.008 | 0.791 ** | 0.339 | 0.044 | 0.004 |
CEC | −0.320 | −0.804 ** | 0.077 | 0.221 | 0.221 | 0.018 | 0.024 | 0.791 ** | 0.957 ** | 0.783 ** | 0.898 ** | 1 | 0.139 | 0.787 ** | 0.580 ** | 0.219 | 0.139 |
Avail P | −0.739 ** | 0.237 | 0.939 ** | 0.980 ** | 0.980 ** | 0.456 * | 0.932 ** | 0.430 | 0.152 | 0.465 * | −0.008 | 0.139 | 1 | −0.265 | 0.733 ** | 0.972 ** | 0.972 ** |
Avail. Mn | −0.059 | −0.738 ** | −0.295 | −0.187 | −0.185 | −0.344 | −0.331 | 0.855 ** | 0.793 ** | 0.527 * | 0.791 ** | 0.787 ** | −0.265 | 1 | 0.184 | −0.199 | −0.270 |
Avail. Fe | −0.592 ** | −0.203 | 0.660 ** | 0.781 ** | 0.780 ** | 0.491 * | 0.619 ** | 0.113 | 0.540 * | 0.570 ** | 0.339 | 0.580 ** | 0.733 ** | 0.184 | 1 | 0.822 ** | 0.766 ** |
Avail. Cu | −0.752 ** | 0.192 | 0.943 ** | 0.991 ** | 0.991 ** | 0.516 * | 0.936 ** | 0.331 | 0.198 | 0.470 * | 0.044 | 0.219 | 0.972 ** | −0.199 | 0.822 ** | 1 | 0.989 ** |
Avail. Zn | −0.733 ** | 0.267 | 0.953 ** | 0.987 ** | 0.987 ** | 0.510 * | 0.955 ** | 0.412 | 0.125 | 0.445 * | 0.004 | 0.139 | 0.972 ** | −0.270 | 0.766 ** | 0.989 ** | 1 |
Shannon Diversity Index | Plant Cover (%) | Biomass | |
---|---|---|---|
pH | 0.639 ** | −0.663 ** | −0.749 ** |
CaCO3 | −0.119 | −0.192 | −0.064 |
Org. C | 0.588 ** | 0.676 ** | 0.782 ** |
Org. N | 0.706 ** | 0.762 ** | 0.867 ** |
NH4-N | 0.164 | 0.225 | 0.310 |
NO3-N | 0.549 * | 0.589 ** | 0.721 ** |
Org. C/Org. N | −0.213 | −0.230 | −0.276 |
Clay | −0.093 | 0.018 | −0.128 |
Exch. Ca | 0.412 | 0.532 * | 0.455 * |
Exch. Mg | 0.503 * | 0.620 ** | 0.610 ** |
Ca/Mg | −0.505 * | −0.596 ** | −0.606 ** |
Exch. Κ | 0.194 | 0.340 | 0.234 |
CEC | 0.696 ** | 0.536 * | 0.436 |
Avail. Mn | 0.083 | 0.216 | 0.059 |
Avail. Fe | 0.735 ** | 0.813 ** | 0.836 ** |
Avail. Cu | 0.723 ** | 0.778 ** | 0.874 ** |
Avail. P | 0.728 ** | 0.751 ** | 0.864 ** |
Avail. Zn | 0.682 ** | 0.728 ** | 0.839 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Solomou, A.D.; Michopoulos, P.; Mantakas, G. Monitoring Reclamation of Plant Biodiversity and Soil Parameters in an Area of Bauxite Mine Spoils (A Case Study of Greece). Sustainability 2023, 15, 15120. https://doi.org/10.3390/su152015120
Solomou AD, Michopoulos P, Mantakas G. Monitoring Reclamation of Plant Biodiversity and Soil Parameters in an Area of Bauxite Mine Spoils (A Case Study of Greece). Sustainability. 2023; 15(20):15120. https://doi.org/10.3390/su152015120
Chicago/Turabian StyleSolomou, Alexandra D., Panagiotis Michopoulos, and George Mantakas. 2023. "Monitoring Reclamation of Plant Biodiversity and Soil Parameters in an Area of Bauxite Mine Spoils (A Case Study of Greece)" Sustainability 15, no. 20: 15120. https://doi.org/10.3390/su152015120
APA StyleSolomou, A. D., Michopoulos, P., & Mantakas, G. (2023). Monitoring Reclamation of Plant Biodiversity and Soil Parameters in an Area of Bauxite Mine Spoils (A Case Study of Greece). Sustainability, 15(20), 15120. https://doi.org/10.3390/su152015120