Mulch and Grass Cover Unevenly Halt Runoff Initiation and Sediment Detachment during the Growing Season of Hazelnut (Corylus avellana L.) in Croatia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Climate
2.2. Fieldwork
2.3. Laboratory Work
2.4. Statistical Analysis
3. Results
3.1. Soil Properties
3.2. Hydrological Properties
3.3. Principal Component Analysis
4. Discussion
4.1. Soil Properties
4.2. Hydrological Response
4.3. Interrelations between Properties
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lal, R. Climate Change and Soil Degradation Mitigation by Sustainable Management of Soils and Other Natural Resources. Agric. Res. 2012, 1, 199–212. [Google Scholar] [CrossRef]
- Moinet, G.Y.K.; Hijbeek, R.; van Vuuren, D.P.; Giller, K.E. Carbon for soils, not soils for carbon. Glob. Chang. Biol. 2023, 29, 2384–2398. [Google Scholar] [CrossRef]
- Greiner, L.; Keller, A.; Grêt-Regamey, A.; Papritz, A. Soil function assessment: Review of methods for quantifying the contributions of soils to ecosystem services. Land Use Policy 2017, 69, 224–237. [Google Scholar] [CrossRef]
- Bogunović, I.; Hrelja, I.; Kisić, I.; Dugan, I.; Krevh, V.; Defterdarović, J.; Filipović, V.; Pereira, P. Straw Mulch Effect on Soil and Water Loss in Different Growth Phases of Maize Sown on Stagnosols in Croatia. Land 2023, 12, 765. [Google Scholar] [CrossRef]
- Wang, J.; Zhen, J.; Hu, W.; Chen, S.; Lizaga, I.; Zeraatpisheh, M.; Yang, X. Remote sensing of soil degradation: Progress and perspective. Int. Soil Water Conserv. Res. 2023, 11, 429–454. [Google Scholar] [CrossRef]
- Kertész, A. The global problem of land degradation and desertification. Hung. Geogr. Bull. 2009, 58, 19–31. Available online: https://ojs.mtak.hu/index.php/hungeobull/article/view/3131 (accessed on 1 September 2023).
- Weng, X.; Zhang, B.; Zhu, J.; Wang, D.; Qiu, J. Assessing Land Use and Climate Change Impacts on Soil Erosion Caused by Water in China. Sustainability 2023, 15, 7865. [Google Scholar] [CrossRef]
- Bogunović, I.; Filipović, V. Mulch as a nature-based solution to halt and reverse land degradation in agricultural areas. Curr. Opin. Environ. Sci. Health 2023, 34, 100488. [Google Scholar] [CrossRef]
- Francaviglia, R.; Almagro, M.; Vicente-Vicente, J.L. Conservation Agriculture and Soil Organic Carbon: Principles, Processes, Practices and Policy Options. Soil Syst. 2023, 7, 17. [Google Scholar] [CrossRef]
- Oldeman, L.R. Global extent of soil degradation. In Bi-Annual Report 1991–1992/ISRIC; ISRIC: Wageningen, The Netherlands, 1992; pp. 19–36. [Google Scholar]
- Rodrigo-Comino, J.; Martínez-Hernández, C.; Iserloh, T.; Cerda, A. Contrasted impact of land abandonment on soil erosion in Mediterranean agriculture fields. Pedosphere 2018, 28, 617–631. [Google Scholar] [CrossRef]
- Nacinovic, M.G.G.; Mahler, C.F.; Avelar, A.d.S. Soil erosion as a function of different agricultural land use in Rio de Janeiro. Soil Tillage Res. 2014, 144, 164–173. [Google Scholar] [CrossRef]
- Dugan, I.; Bogunovic, I.; Pereira, P. Soil management and seasonality impact on soil properties and soil erosion in steep vineyards of north-western Croatia. J. Hydrol. Hydromech. 2023, 71, 91–99. [Google Scholar] [CrossRef]
- Blanco-Canqui, H.; Lal, R. Principles of Soil Conservation and Management; Springer: Dordrecht, The Netherlands, 2008. [Google Scholar]
- Bogunovic, I.; Fernández, M.P.; Kisic, I.; Marimón, M.B. Agriculture and grazing environments. In Advances in Chemical Pollution, Environmental Management and Protection, 4th ed.; Pereira, P., Ed.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 23–70. [Google Scholar] [CrossRef]
- Zhang, J.H.; Nie, X.J.; Su, Z.A. Soil profile properties in relation to soil redistribution by intense tillage on a steep hillslope. Soil Sci. Soc. Am. J. 2008, 72, 1767–1773. [Google Scholar] [CrossRef]
- Telak, L.J.; Pereira, P.; Bogunovic, I. Soil degradation mitigation in continental climate in young vineyards planted in Stagnosols. Int. Agrophysics 2021, 35, 307–317. [Google Scholar] [CrossRef]
- Lal, R. Soil erosion and the global carbon budget. Environ. Int. 2003, 29, 437–450. [Google Scholar] [CrossRef]
- Pimentel, D. Soil Erosion: A Food and Environmental Threat. Environ. Dev. Sustain. 2006, 8, 119–137. [Google Scholar] [CrossRef]
- Favis-Mortlock, D. Water erosion. In Encyclopedia of Soil Science, 3rd ed.; Lal, R., Ed.; CRC Press: Boca Raton, FL, USA, 2017; pp. 2485–2488. [Google Scholar]
- Bogunovic, I.; Pereira, P.; Kisic, I.; Sajko, K.; Sraka, M. Tillage management impacts on soil compaction, erosion and crop yield in Stagnosols (Croatia). Catena 2018, 160, 376–384. [Google Scholar] [CrossRef]
- Suzuki, L.E.A.S.; Amaral, R.d.L.d.; Almeida, W.R.d.S.; Ramos, M.F.; Nunes, M.R. Oat Straw Mulching Reduces Interril Erosion and Nutrient Losses Caused by Runoff in a Newly Planted Peach Orchard. Soil Syst. 2023, 7, 8. [Google Scholar] [CrossRef]
- Gao, Z.; Xu, Q.; Si, Q.; Zhang, S.; Fu, Z.; Chen, H. Effects of Different Straw Mulch Rates on the Runoff and Sediment Yield of Young Citrus Orchards with Lime Soil and Red Soil under Simulated Rainfall Conditions in Southwest China. Water 2022, 14, 1119. [Google Scholar] [CrossRef]
- Bogunovic, I.; Telak, L.J.; Pereira, P. Experimental Comparison of Runoff Generation and Initial Soil Erosion Between Vineyards and Croplands of Eastern Croatia: A Case Study. Air Soil Water Res. 2020, 13, 1178622120928323. [Google Scholar] [CrossRef]
- Bombino, G.; Denisi, P.; Gómez, J.A.; Zema, D.A. Mulching as best management practice to reduce surface runoff and erosion in steep clayey olive groves. Int. Soil Water Conserv. Res. 2021, 9, 26–36. [Google Scholar] [CrossRef]
- Tsanis, I.K.; Seiradakis, K.D.; Sarchani, S.; Panagea, I.S.; Alexakis, D.D.; Koutroulis, A.G. The Impact of Soil-Improving Cropping Practices on Erosion Rates: A Stakeholder-Oriented Field Experiment Assessment. Land 2021, 10, 964. [Google Scholar] [CrossRef]
- Duan, J.; Liu, Y.-J.; Yang, J.; Tang, C.-J.; Shi, Z.-H. Role of groundcover management in controlling soil erosion under extreme rainfall in citrus orchards of southern China. J. Hydrol. 2020, 582, 124–290. [Google Scholar] [CrossRef]
- Martínez-Mena, M.; Carrillo-López, E.; Boix-Fayos, C.; Almagro, M.; García Franco, N.; Díaz-Pereira, E.; Montoya, I.; de Vente, J. Long-term effectiveness of sustainable land management practices to control Runoff, soil erosion, and nutrient loss and the role of rainfall intensity in Mediterranean rainfed agroecosystems. Catena 2020, 187, 104–352. [Google Scholar] [CrossRef]
- Telak, L.J.; Dugan, I.; Bogunovic, I. Soil Management and Slope Impacts on Soil Properties, Hydrological Response, and Erosion in Hazelnut Orchard. Soil Syst. 2021, 5, 5. [Google Scholar] [CrossRef]
- Allegrini, A.; Salvaneschi, P.; Schirone, B.; Cianfaglione, K.; Di Michele, A. Multipurpose plant species and circular economy: Corylus avellana L. as a study case. Front. Biosci. 2022, 27, 11. [Google Scholar] [CrossRef]
- FOASTAT. FAO Statistics, Food and Agriculture Organization of United Nations. 2023. Available online: https://www.fao.org/faostat/en/#data (accessed on 4 August 2023).
- IUSS WRB. World Reference Base for Soil Resources 2014, Update 2015: International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; World Soil Resources Reports No. 106; FAO: Rome, Italy, 2015; pp. 150–200. [Google Scholar]
- Hydrological and Meteorological Service of Croatia. Available online: https://meteo.hr/index_en.php (accessed on 1 September 2023).
- Schindewolf, M.; Schmidt, J. Parameterization of the EROSION 2D/3D soil erosion model using a small-scale rainfall simulator and upstream runoff simulation. Catena 2012, 91, 47–55. [Google Scholar] [CrossRef]
- Diaz-Zorita, M.; Perfect, E.; Grove, J.H. Disruptive methods for assessing soil structure. Soil Tillage Res. 2002, 64, 3–22. [Google Scholar] [CrossRef]
- Le Bissonnais, Y.L. Aggregate stability and assessment of soil crust ability and erodibility: I. Theory and methodology. Eur. J. Soil Sci. 1996, 47, 425–437. [Google Scholar] [CrossRef]
- Kemper, W.D.; Rosenau, R.C. Aggregate stability and size distribution. In Methods of Soil Analysis; Klute, A., Ed.; American Society of Agronomy, Inc.: Madison, WI, USA, 1986; pp. 425–442. [Google Scholar]
- Walkley, A.; Black, I.A. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Statsoft. Statistica 12.0 Software; StatSoft Inc.: Hamburg, Germany, 2015. [Google Scholar]
- Plotly Chart Studio. Available online: https://chart-studio.plotly.com/ (accessed on 28 August 2023).
- Munkholm, L.J.; Schjønning, P.; Rasmussen, K.J.; Tanderup, K. Spatial and temporal effects of direct drilling on soil structure in the seedling environment. Soil Tillage Res. 2003, 71, 163–173. [Google Scholar] [CrossRef]
- Bondi, G.; O‘Sullivan, L.; Fenton, O.; Creamer, R.; Marongiu, I.; Wall, D.P. Trafficking intensity index for soil compaction management in grasslands. Soil Use Manag. 2021, 37, 504–518. [Google Scholar] [CrossRef]
- Elaoud, A.; Chehaibi, S. Soil compaction due to tractor traffic. J. Fail. Anal. Prev. 2011, 11, 539–545. [Google Scholar] [CrossRef]
- Newell-Price, J.P.; Whittingham, M.J.; Chambers, B.J.; Peel, S. Visual soil evaluation in relation to measured soil physical properties in a survey of grassland soil compaction in England and Wales. Soil Tillage Res. 2013, 127, 65–73. [Google Scholar] [CrossRef]
- Van Dijck, S.J.E.; Van Asch, T.W. Compaction of loamy soils due to tractor traffic in vineyards and orchards and its effect on infiltration in southern France. Soil Tillage Res. 2002, 63, 141–153. [Google Scholar] [CrossRef]
- Zhang, J.; Du, L.; Xing, Z.; Zhang, R.; Li, F.; Zhong, T.; Ren, F.; Yin, M.; Liu, X. Effects of dual mulching with wheat straw and plastic film under three irrigation regimes on soil nutrients and growth of edible sunflower. Agric. Water Manag. 2023, 288, 108453. [Google Scholar] [CrossRef]
- Waheed, A.; Li, C.; Muhammad, M.; Ahmad, M.; Khan, K.A.; Ghramh, H.A.; Wang, Z.; Zhang, D. Sustainable Potato Growth under Straw Mulching Practices. Sustainability 2023, 15, 10442. [Google Scholar] [CrossRef]
- Mileusnić, Z.I.; Saljnikov, E.; Radojević, R.L.; Petrović, D.V. Soil compaction due to agricultural machinery impact. J. Terramechanics 2022, 100, 51–60. [Google Scholar] [CrossRef]
- Canillas, E.C.; Salokhe, V.M. Regression analysis of some factors influencing soil compaction. Soil Tillage Res. 2001, 61, 167–178. [Google Scholar] [CrossRef]
- Abiven, S.; Menasseri, S.; Chenu, C. The effects of organic inputs over time on soil aggregate stability—A literature analysis. Soil Biol. Biochem 2009, 41, 1–12. [Google Scholar] [CrossRef]
- Zheng, H.; Liu, W.; Zheng, J.; Luo, Y.; Li, R.; Wang, H.; Qi, H. Effect of long-term tillage on soil aggregates and aggregate-associated carbon in black soil of Northeast China. PLoS ONE 2018, 13, e0199523. [Google Scholar] [CrossRef] [PubMed]
- Gholami, L.; Sadeghi, S.H.; Homaee, M. Straw mulching effect on splash erosion, Runoff, and sediment yield from eroded plots. Soil. Sci. Soc. Am. J. 2013, 77, 268–278. [Google Scholar] [CrossRef]
- Erktan, A.; McCormack, M.L.; Roumet, C. Frontiers in root ecology: Recent advances and future challenges. Plant Soil 2018, 424, 1–9. [Google Scholar] [CrossRef]
- Hudek, C.; Stanchi, S.; D’Amico, M.; Freppaz, M. Quantifying the contribution of the root system of alpine vegetation in the soil aggregate stability of moraine. Int. Soil Water Conserv. Res. 2017, 5, 36–42. [Google Scholar] [CrossRef]
- Wang, J.; Wang, R. The Physical and Chemical Properties of Soil Crust in Straw Checkerboards with Different Ages in the Mu Us Sandland, Northern China. Sustainability 2019, 11, 4755. [Google Scholar] [CrossRef]
- Song, C.; Du, H. Effects of corn straw cover years on soil organic matter and compactness in typical black soil areas of Songnen Plain. Arab. J. Geosci. 2023, 16, 44. [Google Scholar] [CrossRef]
- Maurya, P.R.; Lal, R. Effects of different mulch materials on soil properties and on the root growth and yield of maise (Zea mays) and cowpea (Vigna unguiculata). Field Crops Res. 1981, 4, 33–45. [Google Scholar] [CrossRef]
- Six, J.; Paustian, K.; Elliott, E.T.; Combrink, C. Soil structure and organic matter I. Distribution of aggregate-size classes and aggregate-associated carbon. Soil Sci. Soc. Am. J. 2000, 64, 681–689. [Google Scholar] [CrossRef]
- Pinheiro, E.F.M.; Pereira, M.G.; Anjos, L.H.C. Aggregate distribution and soil organic matter under different tillage systems for vegetable crops in a Red Latosol from Brazil. Soil Tillage Res. 2004, 77, 79–84. [Google Scholar] [CrossRef]
- Traoré, O.; Groleau-Renaud, V.; Plantureux, S.; Tubeileh, A.; Boeuf-Tremblay, V. Effect of root mucilage and modelled root exudates on soil structure. Eur. J. Soil Sci. 2000, 51, 575–581. [Google Scholar] [CrossRef]
- Hannula, S.E.; Morriën, E. Will fungi solve the carbon dilemma? Geoderma 2022, 413, 115767. [Google Scholar] [CrossRef]
- Khurshid, K.A.S.H.I.F.; Iqbal, M.; Arif, M.S.; Nawaz, A. Effect of tillage and mulch on soil physical properties and growth of maise. Int. J. Agric. Biol. 2006, 8, 593–596. [Google Scholar]
- Derpsch, R.; Franzluebbers, A.J.; Duiker, S.W.; Reicosky, D.C.; Koeller, K.; Friedrich, T.; Sturny, W.G.; Sá, J.C.M.; Weiss, K. Why do we need to standardise no-tillage research? Soil Tillage Res. 2014, 137, 16–22. [Google Scholar] [CrossRef]
- Bhatt, R.; Khera, K.L. Effect of tillage and mode of Straw mulch application on soil erosion in the submontaneous tract of Punjab, India. Soil Tillage Res. 2006, 88, 107–115. [Google Scholar] [CrossRef]
- Alliaume, F.W.A.H.; Rossing, W.A.H.; Tittonell, P.; Jorge, G.; Dogliotti, S. Reduced tillage and cover crops improve water capture and reduce erosion of fine textured soils in raised bed tomato systems. Agric. Ecosyst. Environ. 2014, 183, 127–137. [Google Scholar] [CrossRef]
- McCauley, A.; Jones, C.; Jacobsen, J. Soil pH and organic matter. Nutr. Manag. Modul. 2009, 8, 1–12. [Google Scholar]
- Rhoton, F.E.; Shipitalo, M.J.; Lindbo, D.L. Runoff and soil loss from midwestern and southeastern US silt loam soils as affected by tillage practice and soil organic matter content. Soil Tillage Res. 2002, 66, 1–11. [Google Scholar] [CrossRef]
- Gómez, J.A.; Guzmán, M.G.; Giráldez, J.V.; Fereres, E. The influence of cover crops and tillage on water and sediment yield, and on nutrient, and organic matter losses in an olive orchard on a sandy loam soil. Soil Tillage Res. 2009, 106, 137–144. [Google Scholar] [CrossRef]
- Berhe, A.A.; Kleber, M. Erosion, deposition, and the persistence of soil organic matter: Mechanistic considerations and problems with terminology. Earth Surf. Process. Landf. 2013, 38, 908–912. [Google Scholar] [CrossRef]
- Ruiz-Colmenero, M.; Bienes, R.; Eldridge, D.J.; Marques, M.J. Vegetation cover reduces erosion and enhances soil organic carbon in a vineyard in the central Spain. Catena 2013, 104, 153–160. [Google Scholar] [CrossRef]
- Szostek, M.; Szpunar-Krok, E.; Pawlak, R.; Stanek-Tarkowska, J.; Ilek, A. Effect of Different Tillage Systems on Soil Organic Carbon and Enzymatic Activity. Agronomy 2022, 12, 208. [Google Scholar] [CrossRef]
- Abu-Hamdeh, N.H. Effect of compaction and deep tillage on soil hydraulic and aeration properties and wheat yield. Commun. Soil Sci. Plant Anal. 2003, 34, 2277–2290. [Google Scholar] [CrossRef]
- Stagge, J.H.; Davis, A.P.; Jamil, E.; Kim, H. Performance of grass swales for improving water quality from highway runoff. Water Res. 2012, 46, 6731–6742. [Google Scholar] [CrossRef] [PubMed]
- Le Bissonnais, Y.; Lecomte, V.; Cerdan, O. Grass strip effects on Runoff and soil loss. Agronomie 2004, 24, 129–136. [Google Scholar] [CrossRef]
- Eghball, B.; Gilley, J.E.; Kramer, L.A.; Moorman, T.B. Narrow grass hedge effects on phosphorus and nitrogen in Runoff following manure and fertiliser application. J. Soil Water Conserv. 2000, 55, 172–176. [Google Scholar]
- Donjadee, S.; Tingsanchali, T. Soil and water conservation on steep slopes by mulching using rice straw and vetiver grass clippings. Agric. Nat. Resour. 2016, 50, 75–79. [Google Scholar] [CrossRef]
- Abrantes, J.R.; Prats, S.A.; Keizer, J.J.; de Lima, J.L. Effectiveness of the application of rice straw mulching strips in reducing Runoff and soil loss: Laboratory soil flume experiments under simulated rainfall. Soil Tillage Res. 2018, 180, 238–249. [Google Scholar] [CrossRef]
- Parhizkar, M.; Shabanpour, M.; Lucas-Borja, M.E.; Zema, D.A.; Li, S.; Tanaka, N.; Cerda, A. Effects of length and application rate of rice straw mulch on surface runoff and soil loss under laboratory simulated rainfall. Int. J. Sediment Res. 2021, 36, 468–478. [Google Scholar] [CrossRef]
- Yang, J.; Liu, H.; Lei, T.; Rahma, A.E.; Liu, C.; Zhang, J. Effect of straw-incorporation into farming soil layer on surface runoff under simulated rainfall. Catena 2021, 199, 105082. [Google Scholar] [CrossRef]
- Zhao, G.; Mu, X.; Wen, Z.; Wang, F.; Gao, P. Soil erosion, conservation, and eco-environment changes in the Loess Plateau of China. Land Degrad. Dev. 2013, 24, 499–510. [Google Scholar] [CrossRef]
- Kukal, S.S.; Sarkar, M. Splash erosion and infiltration in relation to mulching and polyvinyl alcohol application in semi-arid tropics. Arch. Agron. Soil Sci. 2010, 56, 697–705. [Google Scholar] [CrossRef]
- Adekalu, K.O.; Okunade, D.A.; Osunbitan, J.A. Compaction and mulching effects on soil loss and Runoff from two southwestern Nigeria agricultural soils. Geoderma 2006, 137, 226–230. [Google Scholar] [CrossRef]
- Morvan, X.; Naisse, C.; Malam Issa, O.; Desprats, J.F.; Combaud, A.; Cerdan, O. Effect of ground-cover type on surface runoff and subsequent soil erosion in C hampagne vineyards in France. Soil Use Manag. 2014, 30, 372–381. [Google Scholar] [CrossRef]
- Puigdefábregas, J. The role of vegetation patterns in structuring runoff and sediment fluxes in drylands. Earth Surf. Process. Landf. 2005, 30, 133–147. [Google Scholar] [CrossRef]
- Wang, C.; Ma, J.; Wang, Y.; Li, Z.; Ma, B. The influence of wheat straw mulching and straw length on infiltration, Runoff and soil loss. Hydrol. Process. 2022, 36, e14561. [Google Scholar] [CrossRef]
- Zhang, W.; Gao, W.; Whalley, W.R.; Ren, T. Physical properties of a sandy soil as affected by incubation with a synthetic root exudate: Strength, thermal and hydraulic conductivity, and evaporation. Eur. J. Soil Sci. 2021, 72, 782–792. [Google Scholar] [CrossRef]
- Albalasmeh, A.A.; Ghezzehei, T.A. Interplay between soil drying and root exudation in rhizosheath development. Plant Soil 2014, 374, 739–751. [Google Scholar] [CrossRef]
- Lal, R.A.T.T.A.N. Soil degradation by erosion. Land Degrad. Dev. 2001, 12, 519–539. [Google Scholar] [CrossRef]
- Cerdà, A.; Rodrigo-Comino, J.; Giménez-Morera, A.; Keesstra, S.D. An economic, perception and biophysical approach to the use of oat straw as mulch in Mediterranean rainfed agriculture land. Ecol. Eng. 2017, 108, 162–171. [Google Scholar] [CrossRef]
- Dugan, I.; Pereira, P.; Barcelo, D.; Telak, L.J.; Filipovic, V.; Filipovic, L.; Kisic, I.; Bogunovic, I. Agriculture management and seasonal impact on soil properties, water, sediment and chemicals transport in a hazelnut orchard (Croatia). Sci. Total Environ. 2022, 839, 156346. [Google Scholar] [CrossRef]
- Fonte, S.J.; Yeboah, E.; Ofori, P.; Quansah, G.W.; Vanlauwe, B.; Six, J. Fertilizer and residue quality effects on organic matter stabilisation in soil aggregates. Soil Sci. Soc. Am. J. 2009, 73, 961–966. [Google Scholar] [CrossRef]
- Six, J.; Bossuyt, H.; Degryze, S.; Denef, K. A history of research on the link between (micro) aggregates, soil biota, and soil organic matter dynamics. Soil Tillage Res. 2004, 79, 7–31. [Google Scholar] [CrossRef]
- Römkens, M.J.; Helming, K.; Prasad, S.N. Soil erosion under different rainfall intensities, surface roughness, and soil water regimes. Catena 2002, 46, 103–123. [Google Scholar] [CrossRef]
- Yao, C.; Chen, K.; Zhang, Q.; Wang, C.; Lu, C.; Wang, H.; Wu, F. The contribution rate of stem-leaf and root of alfalfa (Medicago sativa L.) to sediment and runoff reduction. Land Degrad. Dev. 2023, 34, 3991–4005. [Google Scholar] [CrossRef]
- Liang, X.; Su, D.; Wang, Z.; Qiao, X. Effects of turfgrass thatch on water infiltration, surface runoff, and evaporation. J. Water Resour. Prot. 2017, 9, 799–810. [Google Scholar] [CrossRef]
- Wang, H.; Wang, X.; Hao, M.; Li, J. Effects of Straw covering methods on Runoff and soil erosion in summer maise field on the Loess Plateau of China. Plant Soil Environ. 2015, 61, 176–181. [Google Scholar] [CrossRef]
- Hu, W.; Shao, M.A.; Si, B.C. Seasonal changes in surface bulk density and saturated hydraulic conductivity of natural landscapes. Eur. J. Soil Sci. 2012, 63, 820–830. [Google Scholar] [CrossRef]
- Ghestem, M.; Sidle, R.C.; Stokes, A. The influence of plant root systems on subsurface flow: Implications for slope stability. Bioscience 2011, 61, 869–879. [Google Scholar] [CrossRef]
- Belnap, J. The potential roles of biological soil crusts in dryland hydrologic cycles. Hydrol. Process. Int. J. 2006, 20, 3159–3178. [Google Scholar] [CrossRef]
- Amézketa, E. Soil aggregate stability: A review. J. Sustain. Agric. 1999, 14, 83–151. [Google Scholar] [CrossRef]
- Darboux, F.; Davy, P.; Gascuel-Odoux, C.; Huang, C. Evolution of soil surface roughness and flowpath connectivity in overland flow experiments. Catena 2002, 46, 125–139. [Google Scholar] [CrossRef]
- Alaoui, A.; Rogger, M.; Peth, S.; Blöschl, G. Does soil compaction increase floods? A review. J. Hydrol. 2018, 557, 631–642. [Google Scholar] [CrossRef]
- Batey, T. Soil compaction and soil management–a review. Soil Use Manag. 2009, 25, 335–345. [Google Scholar] [CrossRef]
- Shah, A.N.; Tanveer, M.; Shahzad, B.; Yang, G.; Fahad, S.; Ali, S.; Bukhari, M.; Tung, T.; Hafeez, A.; Souliyanonh, B. Soil compaction effects on soil health and cropproductivity: An overview. Environ. Sci. Pollut. Res. 2017, 24, 10056–10067. [Google Scholar] [CrossRef] [PubMed]
- Castellano, M.J.; Valone, T.J. Livestock, soil compaction and water infiltration rate: Evaluating a potential desertification recovery mechanism. J. Arid. Environ. 2007, 71, 97–108. [Google Scholar] [CrossRef]
- Janeau, J.L.; Bricquet, J.P.; Planchon, O.; Valentin, C. Soil crusting and infiltration on steep slopes in northern Thailand. Eur. J. Soil Sci. 2003, 54, 543–554. [Google Scholar] [CrossRef]
- Onda, Y.; Dietrich, W.E.; Booker, F. Evolution of overland flow after a severe forest fire, Point Reyes, California. Catena 2008, 72, 13–20. [Google Scholar] [CrossRef]
- Dalal, R.C.; Bridge, B.J. Aggregation and organic matter storage in sub-humid and semi-arid soils. In Structure and Organic Matter Storage in Agricultural Soils; Carter, M.R., Stewart, B.A., Eds.; CRC Press: Boca Raton, FL, USA, 2020; pp. 263–307. [Google Scholar] [CrossRef]
- Puget, P.; Chenu, C.; Balesdent, J. Dynamics of soil organic matter associated with particle-size fractions of water-stable aggregates. Eur. J. Soil Sci. 2000, 51, 595–605. [Google Scholar] [CrossRef]
- Badin, A.L.; Méderel, G.; Béchet, B.; Borschneck, D.; Delolme, C. Study of the aggregation of the surface layer of Technosols from stormwater infiltration basins using grain size analyses with laser diffractometry. Geoderma 2009, 153, 163–171. [Google Scholar] [CrossRef]
- Lado, M.; Paz, A.; Ben-Hur, M. Organic matter and aggregate size interactions in infiltration, seal formation, and soil loss. Soil Sci. Soc. Am. J. 2004, 68, 935–942. [Google Scholar] [CrossRef]
- Shi, Z.H.; Fang, N.F.; Wu, F.Z.; Wang, L.; Yue, B.J.; Wu, G.L. Soil erosion processes and sediment sorting associated with transport mechanisms on steep slopes. J. Hydrol. 2012, 454, 123–130. [Google Scholar] [CrossRef]
- Valentin, C.; Agus, F.; Alamban, R.; Boosaner, A.; Bricquet, J.P.; Chaplot, V.; de Guzman, T.; de Rouw, A.; Janeau, J.L.; Orange, D. Runoff and sediment losses from 27 upland catchments in Southeast Asia: Impact of rapid land use changes and conservation practices. Agric. Ecosyst. Environ. 2008, 128, 225–238. [Google Scholar] [CrossRef]
Treatment × Season | BD (g cm−3) | SWC (%) | MWD (mm) | WSA (%) | SOM (%) |
---|---|---|---|---|---|
Tilled (Spring) | 1.08 ± 0.30 Bb | 29.69 ± 1.93 Aa | 3.67 ± 0.53 Aa | 66.27 ± 1.46 Ab | 1.81 ± 0.46 Aa |
Straw (Spring) | 1.09 ± 0.31 Bb | 28.58 ± 1.89 Aa | 3.45 ± 0.55 Aa | 75.67 ± 2.22 Aa | 1.80 ± 0.44 Aa |
Grass (Spring) | 1.49 ± 0.26 Aa | 31.86 ± 1.76 Aa | 3.52 ± 0.41 Aa | 67.12 ± 1.99 Ab | 1.95 ± 0.35 Aa |
Tilled (Summer) | 1.37 ± 0.32 Aa | 30.35 ± 2.18 Aab | 2.78 ± 0.47 Bb | 61.21 ± 1.62 ABb | 1.50 ± 0.48 Ab |
Straw (Summer) | 1.33 ± 0.29 Aa | 30.86 ± 1.42 Aa | 2.8 ± 0.38 ABb | 71.82 ± 2.22 Ba | 1.91 ± 0.44 Aa |
Grass (Summer) | 1.44 ± 0.34 Aa | 25.31 ± 1.89 Bb | 3.53 ± 0.43 Aa | 63.39 ± 2.03 Ab | 2.08 ± 0.52 Aa |
Tilled (Fall) | 1.29 ± 0.34 Aa | 31.92 ± 1.50 Aa | 2.68 ± 0.50 Bb | 59.32 ± 1.96 Bb | 1.42 ± 0.53 Ab |
Straw (Fall) | 1.32 ± 0.34 Aa | 32.21 ± 1.22 Aa | 2.59 ± 0.61 Bb | 69.47 ± 1.74 Ba | 1.83 ± 0.61 Aab |
Grass (fall) | 1.36 ± 0.25 Aa | 29.25 ± 2.23 ABa | 3.49 ± 0.38 Aa | 68.63± 2.10 Aa | 1.93 ± 0.76 Aa |
Treatment × Season | TP (s) | TR (s) | Runoff (m3 ha−1) | SC (g kg−1) | SL (kg ha−1) |
---|---|---|---|---|---|
Tilled (Spring) | 192 ± 7.87 Aa | 582 ± 12.24 Aa | 19.71 ± 3.63 Ab | 4.86 ± 1.56 Ba | 87.15 ± 7.81 Ba |
Straw (Spring) | 288 ± 15.37 Aa | 996 ± 20.51 Aa | 2.47 ± 1.63 Ab | 2.96 ± 1.81 Bab | 11.97 ± 4.22 Ba |
Grass (Spring) | 198 ± 9.22 Aa | 348 ± 8.89 Ab | 160.24 ± 4.42 Aa | 0.73 ± 0.62 Ab | 118.08 ± 8.26 Aa |
Tilled (Summer) | 144 ± 7.11 Aa | 462 ± 12.45 Aa | 90.15 ± 5.77 Aab | 18.79 ± 2.25 Aa | 1742.84 ± 29.99 Aa |
Straw (Summer) | 180 ± 8.32 Aa | 606 ± 10.71 ABa | 45.78 ± 6.09 Ab | 5.64 ± 1.25 Ab | 268.4 ± 15.15 Aab |
Grass (Summer) | 120 ± 5.32 ABa | 342 ± 9.22 Ab | 159.31 ± 6.63 Aa | 0.83 ± 0.54 Ac | 133.2 ± 8.52 Ab |
Tilled (Fall) | 120 ± 7.00 Aa | 444 ± 12.77 Aa | 70.64 ± 6.15 Aab | 11.57 ± 2.93 ABa | 850.23 ± 25.94 Aa |
Straw (Fall) | 156 ± 8.02 Aa | 484 ± 12.77 Ba | 35.75 ± 6.83 Ab | 11.53 ± 4.43 Aa | 204.07 ± 15.65 Aa |
Grass (Fall) | 86 ± 6.87 Ba | 225 ± 11.25 Bb | 194.62 ± 6.41 Aa | 2.67 ± 2.48 Ab | 406.42 ± 29.30 Aa |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matisic, M.; Reljic, M.; Dugan, I.; Pereira, P.; Filipovic, V.; Filipovic, L.; Krevh, V.; Bogunovic, I. Mulch and Grass Cover Unevenly Halt Runoff Initiation and Sediment Detachment during the Growing Season of Hazelnut (Corylus avellana L.) in Croatia. Sustainability 2023, 15, 15200. https://doi.org/10.3390/su152115200
Matisic M, Reljic M, Dugan I, Pereira P, Filipovic V, Filipovic L, Krevh V, Bogunovic I. Mulch and Grass Cover Unevenly Halt Runoff Initiation and Sediment Detachment during the Growing Season of Hazelnut (Corylus avellana L.) in Croatia. Sustainability. 2023; 15(21):15200. https://doi.org/10.3390/su152115200
Chicago/Turabian StyleMatisic, Manuel, Marko Reljic, Ivan Dugan, Paulo Pereira, Vilim Filipovic, Lana Filipovic, Vedran Krevh, and Igor Bogunovic. 2023. "Mulch and Grass Cover Unevenly Halt Runoff Initiation and Sediment Detachment during the Growing Season of Hazelnut (Corylus avellana L.) in Croatia" Sustainability 15, no. 21: 15200. https://doi.org/10.3390/su152115200
APA StyleMatisic, M., Reljic, M., Dugan, I., Pereira, P., Filipovic, V., Filipovic, L., Krevh, V., & Bogunovic, I. (2023). Mulch and Grass Cover Unevenly Halt Runoff Initiation and Sediment Detachment during the Growing Season of Hazelnut (Corylus avellana L.) in Croatia. Sustainability, 15(21), 15200. https://doi.org/10.3390/su152115200