Numerical Simulation of Pollutant Spread in a Double-Deck Viaduct
Abstract
:1. Introduction
2. Methodology
2.1. Geometric Model
2.2. Governing Equations
2.3. Boundary Conditions and Simulation Cases
2.4. Pollutants Setting
2.5. Grid Independence Validation
2.6. Turbulence Model Validation
3. Results
3.1. Influence of Building Height on Pollutant Dispersion
3.2. Effect of Street Width on Pollutant Dispersion
3.3. Effect of Wind Velocity on Pollutant Dispersion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chan, C.K.; Yao, X. Air Pollution in Mega Cities in China. Atmos. Environ. 2008, 42, 1–42. [Google Scholar] [CrossRef]
- Zhou, B.; Zhao, B.; Guo, X.; Chen, R.; Kan, H. Investigating the Geographical Heterogeneity in PM10-Mortality Associations in the China Air Pollution and Health Effects Study (CAPES): A Potential Role of Indoor Exposure to PM10 of Outdoor Origin. Atmos. Environ. 2013, 75, 217–223. [Google Scholar] [CrossRef]
- He, L.; Hang, J.; Wang, X.; Lin, B.; Li, X.; Lan, G. Numerical Investigations of Flow and Passive Pollutant Exposure in High-Rise Deep Street Canyons with Various Street Aspect Ratios and Viaduct Settings. Sci. Total Environ. 2017, 584–585, 189–206. [Google Scholar] [CrossRef]
- Zhi, H.; Qiu, Z.; Wang, W.; Wang, G.; Hao, Y.; Liu, Y. The Influence of a Viaduct on PM Dispersion in a Typical Street: Field Experiment and Numerical Simulations. Atmos. Pollut. Res. 2020, 11, 815–824. [Google Scholar] [CrossRef]
- Ding, S.; Huang, Y.; Cui, P.; Wu, J.; Li, M.; Liu, D. Impact of Viaduct on Flow Reversion and Pollutant Dispersion in 2D Urban Street Canyon with Different Roof Shapes—Numerical Simulation and Wind Tunnel Experiment. Sci. Total Environ. 2019, 671, 976–991. [Google Scholar] [CrossRef]
- Lu, K.-F.; Peng, Z.-R. Impacts of Viaduct and Geometry Configurations on the Distribution of Traffic-Related Particulate Matter in Urban Street Canyon. Sci. Total Environ. 2023, 858, 159902. [Google Scholar] [CrossRef]
- Liu, Y.; Luo, Y.; Miao, S.; Ding, H.; Jin, T.; Chen, J. Pseudo-Simultaneous Measurements for the Spatial-Temporal Characteristics of Accumulation and Coarse Mode Particles near an Urban Viaduct within Street Canyons. Atmos. Pollut. Res. 2019, 10, 1643–1654. [Google Scholar] [CrossRef]
- Li, M.; Gernand, J.M. Identifying Shelter Locations and Building Air Intake Risk from Release of Particulate Matter in a Three-Dimensional Street Canyon via Wind Tunnel and CFD Simulation. Air Qual. Atmos. Health 2019, 12, 1387–1398. [Google Scholar] [CrossRef]
- Cui, P.-Y.; Zhang, Y.; Chen, W.-Q.; Zhang, J.-H.; Luo, Y.; Huang, Y.-D. Wind-Tunnel Studies on the Characteristics of Indoor/Outdoor Airflow and Pollutant Exchange in a Building Cluster. J. Wind. Eng. Ind. Aerodyn. 2021, 214, 104645. [Google Scholar] [CrossRef]
- Trini Castelli, S.; Armand, P.; Tinarelli, G.; Duchenne, C.; Nibart, M. Validation of a Lagrangian Particle Dispersion Model with Wind Tunnel and Field Experiments in Urban Environment. Atmos. Environ. 2018, 193, 273–289. [Google Scholar] [CrossRef]
- Ghobadi, P.; Nasrollahi, N. Assessment of Pollutant Dispersion in Deep Street Canyons under Different Source Positions: Numerical Simulation. Urban Clim. 2021, 40, 101027. [Google Scholar] [CrossRef]
- Wang, L.; Tian, W.-X.; Zhao, X.-Y.; Huang, C.-Q. Numerical Simulation of the Effects of Canopy Properties on Airflow and Pollutant Dispersion in Street Canyons. Indoor Built Environ. 2022, 31, 466–478. [Google Scholar] [CrossRef]
- Li, X.-X.; Britter, R.; Norford, L.K. Effect of Stable Stratification on Dispersion within Urban Street Canyons: A Large-Eddy Simulation. Atmos. Environ. 2016, 144, 47–59. [Google Scholar] [CrossRef]
- Fatehi, H.; Nilsson, E.J.K. Effect of Buoyancy on Dispersion of Reactive Pollutants in Urban Canyons. Atmos. Pollut. Res. 2022, 13, 101502. [Google Scholar] [CrossRef]
- Du, Y.; Blocken, B.; Pirker, S. A Novel Approach to Simulate Pollutant Dispersion in the Built Environment: Transport-Based Recurrence CFD. Build. Environ. 2020, 170, 106604. [Google Scholar] [CrossRef]
- Hnaien, N.; Hassen, W.; Kolsi, L.; Mesloub, A.; Alghaseb, M.A.; Elkhayat, K.; Abdelhafez, M.H.H. CFD Analysis of Wind Distribution around Buildings in Low-Density Urban Community. Mathematics 2022, 10, 1118. [Google Scholar] [CrossRef]
- Wen, Y.-B.; Huang, Z.-R.; Tang, Y.-F.; Li, D.-R.; Zhang, Y.-J.; Zhao, F.-Y. Air Exchange Rate and Pollutant Dispersion inside Compact Urban Street Canyons with Combined Wind and Thermal Driven Natural Ventilations: Effects of Non-Uniform Building Heights and Unstable Thermal Stratifications. Sci. Total Environ. 2022, 851, 158053. [Google Scholar] [CrossRef]
- Hang, J.; Xian, Z.; Wang, D.; Mak, C.M.; Wang, B.; Fan, Y. The Impacts of Viaduct Settings and Street Aspect Ratios on Personal Intake Fraction in Three-Dimensional Urban-like Geometries. Build. Environ. 2018, 143, 138–162. [Google Scholar] [CrossRef]
- Yang, H.; Chen, G.; Wang, D.; Hang, J.; Li, Q.; Wang, Q. Influences of Street Aspect Ratios and Realistic Solar Heating on Convective Heat Transfer and Ventilation in Full-Scale 2D Street Canyons. Build. Environ. 2021, 204, 108125. [Google Scholar] [CrossRef]
- Niu, H.; Wang, B.; Liu, B.; Liu, Y.; Liu, J.; Wang, Z. Numerical Simulations of the Effect of Building Configurations and Wind Direction on Fine Particulate Matters Dispersion in a Street Canyon. Environ. Fluid Mech. 2018, 18, 829–847. [Google Scholar] [CrossRef]
- Yassin, M.F.; Kassem, M.A. Effect of Building Orientations on Gaseous Dispersion in Street Canyon: A Numerical Study. Environ. Model. Assess. 2014, 19, 335–344. [Google Scholar] [CrossRef]
- Sin, C.H.; Cui, P.-Y.; Jon, K.S.; Luo, Y.; Shen, J.-W.; Huang, Y. Evaluation on Ventilation and Traffic Pollutant Dispersion in Asymmetric Street Canyons with Void Decks. Air Qual. Atmos. Health 2023, 16, 817–839. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Zhang, H.; Wen, C.-Y.; Yang, A.-S.; Juan, Y.-H. Effects of Height-Asymmetric Street Canyon Configurations on Outdoor Air Temperature and Air Quality. Build. Environ. 2020, 183, 107195. [Google Scholar] [CrossRef]
- Cui, D.; Li, X.; Liu, J.; Yuan, L.; Mak, C.M.; Fan, Y.; Kwok, K. Effects of Building Layouts and Envelope Features on Wind Flow and Pollutant Exposure in Height-Asymmetric Street Canyons. Build. Environ. 2021, 205, 108177. [Google Scholar] [CrossRef]
- Sin, C.H.; Cui, P.-Y.; Luo, Y.; Jon, K.S.; Huang, Y. CFD Modeling on the Canyon Ventilation and Pollutant Exposure in Asymmetric Street Canyons with Continuity/Discontinuity Balconies. Atmos. Pollut. Res. 2023, 14, 101641. [Google Scholar] [CrossRef]
- Kluková, Z.; Nosek, Š.; Fuka, V.; Jaňour, Z.; Chaloupecká, H.; Ďoubalová, J. The Combining Effect of the Roof Shape, Roof-Height Non-Uniformity and Source Position on the Pollutant Transport between a Street Canyon and 3D Urban Array. J. Wind. Eng. Ind. Aerodyn. 2021, 208, 104468. [Google Scholar] [CrossRef]
- Yassin, M.F.; Al-Rashidi, M.; Ohba, M. Experimental and Numerical Simulations of Air Quality in an Urban Canopy: Effects of Roof Shapes and Atmospheric Stability. Atmos. Pollut. Res. 2022, 13, 101618. [Google Scholar] [CrossRef]
- Sin, C.H.; Jon, K.S.; Un, G.H.; Thae, Y.I.; Kim, H.; Tokgo, J.; Ri, H.M. Evaluation of the Ventilation and Pollutant Exposure Risk Level inside 3D Street Canyon with Void Deck under Different Wind Directions. Environ. Sci. Pollut. Res. Int. 2023, 30, 61808–61828. [Google Scholar] [CrossRef]
- Jon, K.S.; Huang, Y.; Sin, C.H.; Cui, P.; Luo, Y. Influence of Wind Direction on the Ventilation and Pollutant Dispersion in Different 3D Street Canyon Configurations: Numerical Simulation and Wind-Tunnel Experiment. Environ. Sci. Pollut. Res. Int. 2023, 30, 31647–31675. [Google Scholar] [CrossRef]
- Jon, K.S.; Luo, Y.; Sin, C.H.; Cui, P.; Huang, Y.; Tokgo, J. Impacts of Wind Direction on the Ventilation and Pollutant Dispersion of 3D Street Canyon with Balconies. Build. Environ. 2023, 230, 110034. [Google Scholar] [CrossRef]
- Chen, L.; Mak, C.M.; Hang, J.; Dai, Y.; Niu, J.; Tse, K.T. Large Eddy Simulation Study on Pedestrian-Level Wind Environments around Elevated Walkways and Influential Factors in Ideal Urban Street Canyons. Build. Environ. 2023, 235, 110236. [Google Scholar] [CrossRef]
- Dong, J.; Tan, Z.; Xiao, Y.; Tu, J. Seasonal Changing Effect on Airflow and Pollutant Dispersion Characteristics in Urban Street Canyons. Atmosphere 2017, 8, 43. [Google Scholar] [CrossRef]
- Guo, D.; Han, T.; Yang, F.; Li, Y.; Zhang, J.; Wang, X.-F. Numerical Simulation Studies of the Flow Field and Pollutant Diffusion around Street Canyons under Different Thermal Stratifications. Atmos. Pollut. Res. 2023, 14, 101829. [Google Scholar] [CrossRef]
- Zhang, W.-C.; Luo, X.-Y.; Peng, X.-R.; Liu, R.-Z.; Jing, Y.; Zhao, F.-Y. Green Roof on the Ventilation and Pollutant Dispersion in Urban Street Canyons under Unstable Thermal Stratification: Aiding and Opposing Effects. Sustain. Cities Soc. 2021, 75, 103315. [Google Scholar] [CrossRef]
- Cai, J.; Chen, J.; Cheng, H.; Zi, S.; Xiao, J.; Xia, F.; Zhao, J. The Effects of Thermal Stratification on Airborne Transport within the Urban Roughness Sublayer. Int. J. Heat Mass Transf. 2022, 184, 122289. [Google Scholar] [CrossRef]
- Simón-Moral, A.; Santiago, J.L.; Martilli, A. Effects of Unstable Thermal Stratification on Vertical Fluxes of Heat and Momentum in Urban Areas. Bound. Layer Meteorol. 2017, 163, 103–121. [Google Scholar] [CrossRef]
- Wang, Q.; Fang, W.; De Richter, R.; Peng, C.; Ming, T. Effect of Moving Vehicles on Pollutant Dispersion in Street Canyon by Using Dynamic Mesh Updating Method. J. Wind. Eng. Ind. Aerodyn. 2019, 187, 15–25. [Google Scholar] [CrossRef]
- Zhang, M.; Gao, Z.; Guo, X.; Shen, J. Ventilation and Pollutant Concentration for the Pedestrian Zone, the Near-Wall Zone, and the Canopy Layer at Urban Intersections. Int. J. Environ. Res. Public Health 2021, 18, 11080. [Google Scholar] [CrossRef]
- Liu, C.W.; Mei, S.J.; Zhao, F.Y. A CFD Modelling Study of Reactive Pollutant Dispersion in an Urban Street Canyon. IOP Conf. Ser. Earth Environ. Sci. 2018, 188, 012051. [Google Scholar] [CrossRef]
- Weerasuriya, A.U.; Zhang, X.; Tse, K.T.; Liu, C.-H.; Kwok, K.C.S. RANS Simulation of Near-Field Dispersion of Reactive Air Pollutants. Build. Environ. 2022, 207, 108553. [Google Scholar] [CrossRef]
- Hang, J.; Lin, M.; Wong, D.C.; Wang, X.; Wang, B.; Buccolieri, R. On the Influence of Viaduct and Ground Heating on Pollutant Dispersion in 2D Street Canyons and toward Single-Sided Ventilated Buildings. Atmos. Pollut. Res. 2016, 7, 817–832. [Google Scholar] [CrossRef]
- Issakhov, A.; Omarova, P.; Abylkassymova, A. Determination of Optimal Height of Barriers to Reduce the Amount of Pollution in the Viaduct Settings in an Idealized Urban Canyon: A Numerical Study. Environ. Monit. Assess. 2023, 195, 178. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Wen, M.; Zeng, J.; Zhang, G.; Fang, H.; Li, Y. Modeling the Impact of the Viaduct on Particles Dispersion from Vehicle Exhaust in Street Canyons. Sci. China Technol. Sci. 2012, 55, 48–55. [Google Scholar] [CrossRef]
- Huang, Y.; Zhou, Z. A Numerical Study of Airflow and Pollutant Dispersion Inside an Urban Street Canyon Containing an Elevated Expressway. Environ. Model Assess. 2013, 18, 105–114. [Google Scholar] [CrossRef]
- Ming, T.; Nie, C.; Li, W.; Kang, X.; Wu, Y.; Zhang, M.; Peng, C. Numerical Study of Reactive Pollutants Diffusion in Urban Street Canyons with a Viaduct. Build. Simul. 2022, 15, 1227–1241. [Google Scholar] [CrossRef]
- Hang, J.; Luo, Z.; Wang, X.; He, L.; Wang, B.; Zhu, W. The Influence of Street Layouts and Viaduct Settings on Daily Carbon Monoxide Exposure and Intake Fraction in Idealized Urban Canyons. Environ. Pollut. 2017, 220, 72–86. [Google Scholar] [CrossRef]
- Tominaga, Y.; Mochida, A.; Yoshie, R.; Kataoka, H.; Nozu, T.; Yoshikawa, M.; Shirasawa, T. AIJ Guidelines for Practical Applications of CFD to Pedestrian Wind Environment around Buildings. J. Wind. Eng. Ind. Aerodyn. 2008, 96, 1749–1761. [Google Scholar] [CrossRef]
- Gu, Z.-L.; Zhang, Y.-W.; Cheng, Y.; Lee, S.-C. Effect of Uneven Building Layout on Air Flow and Pollutant Dispersion in Non-Uniform Street Canyons. Build. Environ. 2011, 46, 2657–2665. [Google Scholar] [CrossRef]
- Li, X.-X.; Britter, R.E.; Norford, L.K.; Koh, T.-Y.; Entekhabi, D. Flow and Pollutant Transport in Urban Street Canyons of Different Aspect Ratios with Ground Heating: Large-Eddy Simulation. Bound. Layer Meteorol. 2012, 142, 289–304. [Google Scholar] [CrossRef]
- Tominaga, Y.; Stathopoulos, T. CFD Modeling of Pollution Dispersion in a Street Canyon: Comparison between LES and RANS. J. Wind. Eng. Ind. Aerodyn. 2011, 99, 340–348. [Google Scholar] [CrossRef]
- Kastner-Klein, P.; Plate, E.; Fedorovich, E. Gaseous Pollutant Dispersion around Urban-Canopy Elements: Wind-Tunnel Case Studies. Int. J. Environ. Pollut. 1997, 8, 727–737. [Google Scholar]
- Ashie, Y.; Kono, T. Urban-Scale CFD Analysis in Support of a Climate-Sensitive Design for the Tokyo Bay Area. Int. J. Climatol. 2011, 31, 174–188. [Google Scholar] [CrossRef]
- Panagiotou, I.; Neophytou, M.K.-A.; Hamlyn, D.; Britter, R.E. City Breathability as Quantified by the Exchange Velocity and Its Spatial Variation in Real Inhomogeneous Urban Geometries: An Example from Central London Urban Area. Sci. Total Environ. 2013, 442, 466–477. [Google Scholar] [CrossRef]
- Mu, D.; Gao, N.; Zhu, T. CFD Investigation on the Effects of Wind and Thermal Wall-Flow on Pollutant Transmission in a High-Rise Building. Build. Environ. 2018, 137, 185–197. [Google Scholar] [CrossRef]
- Tominaga, Y.; Stathopoulos, T. Turbulent Schmidt Numbers for CFD Analysis with Various Types of Flowfield. Atmos. Environ. 2007, 41, 8091–8099. [Google Scholar] [CrossRef]
- Kastner-Klein, P.; Plate, E.J. Wind-Tunnel Study of Concentration felds in Street Canyons. Atmos. Environ. 1999, 33, 3973–3979. [Google Scholar] [CrossRef]
C | pollutant concentration (kg m−3) | Uref | wind velocity at the reference height (m s−1) |
CO | carbon monoxide | W | street width (m) |
D | length of building (m) | W1 | first level viaduct width (m) |
H | roof height of building (m) | W2 | second level viaduct width (m) |
H1 | distance between the first level viaduct and the ground (m) | Wb | width of building (m) |
H2 | distance between the second level viaduct and the ground (m) | X,Y | coordinates (m) |
K | turbulent kinetic energy (m2 s−2) | dissipation rate of turbulent energy (m2 s−3) | |
pollutant emission rate (kg m−3 s−1) | ground roughness index | ||
SCO | emission source term of carbon monoxide | von Karman constant | |
U | ambient wind velocity (m s−1) | density (kg m−3) |
Boundary Name | Boundary Conditions |
---|---|
Grid type | Tetrahedron cells |
Pollutant boundary | Outflow |
Inlet | Velocity-inlet UDF |
Outlet | Pressure-outlet |
Top boundary | Symmetry |
Lateral boundary | symmetry |
Ground boundary | Wall |
Building | Wall |
Case Name | Viaduct Setting | H/W | Wind Velocity | |
---|---|---|---|---|
H (m) | W (m) | Uref (m/s) | ||
Case 1 | Without viaduct | 20 | 25 | 2,5,7,10 |
Case 2 | Without viaduct | 25 | 25 | 2,5,7,10 |
Case 3 | Without viaduct | 30 | 25 | 2,5,7,10 |
Case 4 | Without viaduct | 37.5 | 25 | 2,5,7,10 |
Case 5 | Viaduct | 20 | 25 | 2,5,7,10 |
Case 6 | Viaduct | 25 | 25 | 2,5,7,10 |
Case 7 | Viaduct | 30 | 25 | 2,5,7,10 |
Case 8 | Viaduct | 37.5 | 25 | 2,5,7,10 |
Case 9 | Viaduct | 25 | 20 | 2,5,7,10 |
Case 10 | Viaduct | 25 | 25 | 2,5,7,10 |
Case 11 | Viaduct | 25 | 30 | 2,5,7,10 |
Case 12 | Viaduct | 25 | 37.5 | 2,5,7,10 |
Case 13 | Without viaduct | 25 | 20 | 2,5,7,10 |
Case 14 | Without viaduct | 25 | 25 | 2,5,7,10 |
Case 15 | Without viaduct | 25 | 30 | 2,5,7,10 |
Case 16 | Without viaduct | 25 | 37.5 | 2,5,7,10 |
Number | Elements | Area ① | Area ② | Area ③ | |||
---|---|---|---|---|---|---|---|
Star Size | Growth Rate | Star Size | Growth Rate | Star Size | Growth Rate | ||
1 | 4600w | 0.2 | 1.1 | 0.4 | 1.1 | 0.8 | 1.1 |
2 | 4400w | 0.2 | 1.1 | 0.4 | 1.1 | 0.8 | 1.2 |
3 | 3800w | 0.25 | 1.1 | 0.5 | 1.1 | 1.0 | 1.2 |
4 | 3500w | 0.25 | 1.2 | 0.5 | 1.2 | 1.0 | 1.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, B.; Jin, A.; Zhang, S.; Peng, H. Numerical Simulation of Pollutant Spread in a Double-Deck Viaduct. Sustainability 2023, 15, 15244. https://doi.org/10.3390/su152115244
Zheng B, Jin A, Zhang S, Peng H. Numerical Simulation of Pollutant Spread in a Double-Deck Viaduct. Sustainability. 2023; 15(21):15244. https://doi.org/10.3390/su152115244
Chicago/Turabian StyleZheng, Bin, Afang Jin, Shuzhi Zhang, and Hao Peng. 2023. "Numerical Simulation of Pollutant Spread in a Double-Deck Viaduct" Sustainability 15, no. 21: 15244. https://doi.org/10.3390/su152115244
APA StyleZheng, B., Jin, A., Zhang, S., & Peng, H. (2023). Numerical Simulation of Pollutant Spread in a Double-Deck Viaduct. Sustainability, 15(21), 15244. https://doi.org/10.3390/su152115244