Soil Potassium Balance in the Hilly Region of Central Sichuan, China, Based on Crop Distribution
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Soil Sample Collection and Laboratory Analysis
2.3. Cropping Pattern Extraction
2.4. Calculation of On-Farm Potassium Balance
2.5. Spatial Analysis of Potassium Balance Based on Ordinary Kriging
2.6. The Relationships between Environmental Factors and Potassium Balance
2.6.1. Environmental Factors Acquisition
2.6.2. Effects of Environmental Factors on Potassium Balance
3. Results
3.1. Spatial Distribution Characteristics of Cropping Patterns
3.2. Spatial Distribution of Soil Available Potassium
3.3. Spatial Distribution of Soil Potassium Balance
3.4. Analysis of Factors Influencing Potassium Balance in Farmland Soils
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Soumare, A.; Sarr, D.; Diedhiou, A.G. Potassium sources, microorganisms and plant nutrition: Challenges and future research directions. Pedosphere 2023, 33, 105–115. [Google Scholar] [CrossRef]
- Zörb, C.; Senbayram, M.; Peiter, E. Potassium in agriculture—Status and perspectives. J. Plant Physiol. 2014, 171, 656–669. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Liang, J.; Chen, X.; Wang, H.; Zhang, S.; Pu, Y.; Xu, X.; Li, H.; Xu, J.; Wu, X.; et al. The interacting roles and rel-ative importance of climate, topography, soil properties and mineralogical composition on soil potassium variations at a national scale in China. Catena 2021, 196, 104875. [Google Scholar] [CrossRef]
- He, P.; Yang, L.; Xu, X.; Zhao, S.; Chen, F.; Li, S.; Tu, S.; Jin, J.; Johnston, A.M. Temporal and spatial variation of soil available potassium in China (1990–2012). Field Crop. Res. 2015, 173, 49–56. [Google Scholar] [CrossRef]
- Liu, F.; Wu, H.; Zhao, Y.; Li, D.; Yang, J.; Song, X.; Shi, Z.; Zhu, A.; Zhang, G. Mapping high resolution National Soil Information Grids of China. Sci. Bull. 2022, 67, 328–340. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Wang, H.; Wang, J.; Zhou, Z.; Zhou, J. Exploring the potential of phyllosilicate minerals as potassium fertilizers using sodium tetraphenylboron and intensive cropping with perennial ryegrass. Sci. Rep. 2015, 5, 9249. [Google Scholar] [CrossRef] [PubMed]
- Xi, S.; Chu, H.; Zhou, Z.; Li, T.; Zhang, S.; Xu, X.; Pu, Y.; Wang, G.; Jia, Y.; Liu, X. Effect of potassium fertilizer on tea yield and quality: A meta-analysis. Eur. J. Agron. 2023, 144, 126767. [Google Scholar] [CrossRef]
- Yadav, S.K.; Benbi, D.K.; Toor, A.S. Effect of long-term application of rice straw, farmyard manure and inorganic ferti-lizer on potassium dynamics in soil. Arch. Agron. Soil Sci. 2019, 65, 374–384. [Google Scholar] [CrossRef]
- Das, D.; Sahoo, J.; Raza, M.B.; Barman, M.; Das, R. Ongoing soil potassium depletion under intensive cropping in India and probable mitigation strategies. A review. Agron. Sustain. Dev. 2022, 42, 4. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Sasaki, Y.; Aizawa, M.; Kakuda, K.; Fujii, H. Potassium balance in paddy fields under conventional rice straw recycling versus cow dung compost application in mixed crop–livestock systems in Japan. Soil Sci. Plant Nutr. 2023, 69, 36–44. [Google Scholar] [CrossRef]
- Oenema, O.; Kros, H.; de Vries, W. Approaches and uncertainties in nutrient budgets: Implications for nutrient manage-ment and environmental policies. Eur. J. Agron. 2003, 20, 3–16. [Google Scholar] [CrossRef]
- Li, Y.; Xia, G.; Wu, Q.; Chen, W.; Lin, W.; Zhang, Z.; Chen, Y.; Chen, T.; Siddique, K.H.M.; Chi, D. Zeolite increases grain yield and potassium balance in paddy fields. Geoderma 2022, 405, 115397. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, D.; Wu, M.; Xia, Y.; Zhang, F.; Fan, X. Long-term straw returning improve soil K balance and potassium supplying ability under rice and wheat cultivation. Sci. Rep. 2021, 11, 22260. [Google Scholar] [CrossRef] [PubMed]
- Linquist, B.A.; Campbell, J.C.; Southard, R.J. Assessment of potassium soil balances and availability in high yielding rice systems. Nutr. Cycl. Agroeco. 2022, 122, 255–271. [Google Scholar] [CrossRef]
- Liu, Y.; Ma, J.; Ding, W.; He, W.; Lei, Q.; Gao, Q.; He, P. Temporal and spatial variation of potassium balance in agri-cultural land at national and regional levels in China. PLoS ONE 2017, 12, e184156. [Google Scholar]
- Lu, R. Methods of Soil and Geochemistry Analysis; China Agricultural Science and Technology Press: Beijing, China, 2000; pp. 62–141. [Google Scholar]
- Gao, Z.; Guo, D.; Ryu, D.; Western, A.W. Training sample selection for robust multi-year within-season crop classifica-tion using machine learning. Comput. Electron. Agric. 2023, 210, 107927. [Google Scholar] [CrossRef]
- Xia, Y.; Liu, D.; Zhang, F.; Xiong, G.; Duan, X.; Wu, M.; Fan, X. Potassium balance in the agroecosystem of the main cropping systems in Hubei Province. Chin. J. Ecol. 2014, 33, 2395–2401. [Google Scholar] [CrossRef]
- Li, S.; Jin, J. Characteristics of Nutrient Input/Output and Nutrient Balance in Different Regions of China. Sci. Agric. Sin. 2011, 44, 4207–4229. [Google Scholar]
- He, X. Current Situation and Countermeasures of Comprehensive Utilization of Crop Straw in Suining City. Mod. Agric. Sci. Technol. 2018, 179–180. [Google Scholar]
- Liu, X. Study on Nutrients Balance and Requirement in Agriculture Production in China. Ph.D. Thesis, Chinese Academy of Agricultural Sciences, Beijing, China, 2018. [Google Scholar]
- West, S.G.; Taylor, A.B.; Wu, W. Model Fit and Model Selection in Structural Equation Modeling. In Handbook of Structural Equation Modeling; The Guilford Press: New York, NY, USA, 2012; pp. 209–231. [Google Scholar]
- Li, X.; Jiang, Q. Extraction of farmland classification based on multi-temporal remote sensing data. Nongye Gongcheng Xuebao/Trans. Chin. Soc. Agric. Eng. 2015, 31, 145–150. [Google Scholar]
- Mercier, A.; Betbeder, J.; Baudry, J.; Le Roux, V.; Spicher, F.; Lacoux, J.; Roger, D.; Hubert-Moy, L. Evaluation of Sen-tinel-1 & 2 time series for predicting wheat and rapeseed phenological stages. ISPRS J. Photogramm. 2020, 163, 231–256. [Google Scholar] [CrossRef]
- Hafeez, M.A.; Rashid, M.; Tariq, H.; Abideen, Z.U.; Alotaibi, S.S.; Sinky, M.H. Performance Improvement of Decision Tree: A Robust Classifier Using Tabu Search Algorithm. Appl. Sci. 2021, 11, 6728. [Google Scholar] [CrossRef]
- Liu, J.; Yang, K.; Tariq, A.; Lu, L.; Soufan, W.; El Sabagh, A. Interaction of climate, topography and soil properties with cropland and cropping pattern using remote sensing data and machine learning methods. Egypt. J. Remote Sens. Space Sci. 2023, 26, 415–426. [Google Scholar] [CrossRef]
- Li, P.; Zhang, T.; Wang, X.; Yu, D. Development of biological soil quality indicator system for subtropical China. Soil Tillage Res. 2013, 126, 112–118. [Google Scholar] [CrossRef]
- Wang, R.; Zou, R.; Liu, J.; Liu, L.; Hu, Y. Spatial Distribution of Soil Nutrients in Farmland in a Hilly Region of the Pearl River Delta in China Based on Geostatistics and the Inverse Distance Weighting Method. Agriculture 2021, 11, 50. [Google Scholar] [CrossRef]
- Ren, T.; Lu, J.; Li, H.; Zou, J.; Xu, H.; Liu, X.; Li, X. Potassium-fertilizer management in winter oilseed-rape production in China. J. Plant Nutr. Soil Sc. 2013, 176, 429–440. [Google Scholar] [CrossRef]
- Zhao, X.; Gao, S.; Lu, D.; Wang, H.; Chen, X.; Zhou, J.; Zhang, L. Can Potassium Silicate Mineral Products Replace Conventional Potassium Fertilizers in Rice–Wheat Rotation? Agron. J. 2019, 111, 2075–2083. [Google Scholar] [CrossRef]
- WANG, H.; CHENG, W.; LI, T.; ZHOU, J.; CHEN, X. Can Nonexchangeable Potassium be Differentiated from Structural Potassium in Soils? Pedosphere 2016, 26, 206–215. [Google Scholar] [CrossRef]
- Han, Y.; Ma, W.; Zhou, B.; Salah, A.; Geng, M.; Cao, C.; Zhan, M.; Zhao, M. Straw Return Increases Crop Grain Yields and K-Use Efficiency under a Maize-Rice Cropping System. Crop J. 2021, 9, 168–180. [Google Scholar] [CrossRef]
- Li, J.; Gan, G.; Chen, X.; Zou, J. Effects of Long-Term Straw Management and Potassium Fertilization on Crop Yield, Soil Properties, and Microbial Community in a Rice–Oilseed Rape Rotation. Agriculture 2021, 11, 1233. [Google Scholar] [CrossRef]
- Hamoud, Y.A.; Wang, Z.; Guo, X.; Shaghaleh, H.; Sheteiwy, M.; Chen, S.; Qiu, R.; Elbashier, M.M.A. Effect of Irrigation Regimes and Soil Texture on the Potassium Utilization Efficiency of Rice. Agronomy 2019, 9, 100. [Google Scholar] [CrossRef]
- Singh, V.K.; Dwivedi, B.S.; Rathore, S.S.; Mishra, R.P.; Satyanarayana, T.; Majumdar, K. Timing Potassium Applications to Synchronize with Plant Demand. In Improving Potassium Recommendations for Agricultural Crops; Murrell, T.S., Mikkelsen, R.L., Sulewski, G., Norton, R., Thompson, M.L., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 363–384. [Google Scholar] [CrossRef]
- Steiner, F.; Pivetta, L.A.; Castoldi, G.; Costa, M.S.S.d.M.; Costa, L.A.d.M. Phosphorus and Potassium Balance in Soil under Crop Rotation and Fertilization. Semin. Ciênc. Agrár. 2012, 33, 2173–2186. [Google Scholar] [CrossRef]
- Oteros, J.; García-Mozo, H.; Vázquez, L.; Mestre, A.; Domínguez-Vilches, E.; Galán, C. Modelling olive phenological response to weather and topography. Agric. Ecosyst. Environ. 2013, 179, 62–68. [Google Scholar] [CrossRef]
- Wei, W.; Chen, L.; Zhang, H.; Yang, L.; Yu, Y.; Chen, J. Effects of crop rotation and rainfall on water erosion on a gentle slope in the hilly loess area, China. Catena 2014, 123, 205–214. [Google Scholar] [CrossRef]
- Tang, Y.; Lu, X.; Yi, J.; Wang, H.; Zhang, X.; Zheng, W. Evaluating the spatial spillover effect of farmland use transition on grain production—An empirical study in Hubei Province, China. Ecol. Indic. 2021, 125, 107478. [Google Scholar] [CrossRef]
- Lin, Y.; Prentice, S.E.; Tran, T.; Bingham, N.L.; King, J.Y.; Chadwick, O.A. Modeling deep soil properties on California grassland hillslopes using LiDAR digital elevation models. Geoderma Reg. 2016, 7, 67–75. [Google Scholar] [CrossRef]
- Dalzell, B.J.; Fissore, C.; Nater, E.A. Topography and land use impact erosion and soil organic carbon burial over decadal timescales. Catena 2022, 218, 106578. [Google Scholar] [CrossRef]
- Liu, W.; Zhang, Q.; Fu, Z.; Chen, X.; Li, H. Analysis and Estimation of Geographical and Topographic Influencing Fac-tors for Precipitation Distribution over Complex Terrains: A Case of the Northeast Slope of the Qinghai–Tibet Plateau. Atmosphere 2018, 9, 349. [Google Scholar] [CrossRef]
- Wang, Y.; Shen, Y.; Xie, Y.; Ma, H.; Li, W.; Luo, X.; Zhang, H.; Zhang, Y.; Li, J. Changes in precipitation have both di-rect and indirect effects on typical steppe aboveground net primary productivity in Loess Plateau, China. Plant Soil 2023, 484, 503–515. [Google Scholar] [CrossRef]
- Cappuccio, F.P.; Buchanan, L.A.; Ji, C.; Siani, A.; Miller, M.A. Systematic review and meta-analysis of randomised con-trolled trials on the effects of potassium supplements on serum potassium and creatinine. BMJ Open 2016, 6, e11716. [Google Scholar] [CrossRef]
- Mottaleb, K.A.; Krupnik, T.J.; Erenstein, O. Factors associated with small-scale agricultural machinery adoption in Bangladesh: Census findings. J. Rural Stud. 2016, 46, 155–168. [Google Scholar] [CrossRef] [PubMed]
- Ajiboye, A.G.; Ogunwale, A.J. Forms and distribution of potassium in particle size fractions on talc overburden soils in Nigeria. Arch. Agron. Soil Sci. 2013, 59, 247–258. [Google Scholar] [CrossRef]
- Chen, Y.; Huang, L.; Cheng, L.; Liu, Z.; Bin, X. Straw returning and potassium fertilization affect clay mineralogy and available potassium. Nutr. Cycl. Agroecosy. 2023, 126, 195–211. [Google Scholar] [CrossRef]
- Zhuang, J.; Peng, J.; Zhu, Y.; Leng, Y.; Zhu, X.; Huang, W. The internal erosion process and effects of undisturbed loess due to water infiltration. Landslides 2021, 18, 629–638. [Google Scholar] [CrossRef]
- Zygalakis, K.C.; Kirk, G.J.D.; Jones, D.L.; Wissuwa, M.; Roose, T. A dual porosity model of nutrient uptake by root hairs. N. Phytol. 2011, 192, 676–688. [Google Scholar] [CrossRef]
- Huang, L.; Dong, B.; Xue, W.; Peng, Y.; Zhang, M.; Yu, F. Soil Particle Heterogeneity Affects the Growth of a Rhizoma-tous Wetland Plant. PLoS ONE 2013, 8, e69836. [Google Scholar]
- Golestanifard, A.; Santner, J.; Aryan, A.; Kaul, H.; Wenzel, W.W. Potassium fixation in northern Iranian paddy soils. Geoderma 2020, 375, 114475. [Google Scholar] [CrossRef]
- Portela, E.; Monteiro, F.; Fonseca, M.; Abreu, M.M. Effect of soil mineralogy on potassium fixation in soils developed on different parent material. Geoderma 2019, 343, 226–234. [Google Scholar] [CrossRef]
- Simonsson, M.; Hillier, S.; Öborn, I. Changes in clay minerals and potassium fixation capacity as a result of release and fixation of potassium in long-term field experiments. Geoderma 2009, 151, 109–120. [Google Scholar] [CrossRef]
- Barré, P.; Velde, B.; Fontaine, C.; Catel, N.; Abbadie, L. Which 2:1 clay minerals are involved in the soil potassium reservoir? Insights from potassium addition or removal experiments on three temperate grassland soil clay assemblages. Geoderma 2008, 146, 216–223. [Google Scholar] [CrossRef]
Soil Potassium | Min. (mg/kg) | Max. (mg/kg) | Mean (mg/kg) | Standard Deviation (mg/kg) | Nugget Effect (%) | Range (km) | RMMSE | MSE |
---|---|---|---|---|---|---|---|---|
RAK | 29.37 | 122.07 | 63.63 | 11.90 | 78.18 | 7.28 | 1.04 | 0.04 |
SAK | 472.31 | 772.77 | 649.77 | 46.43 | 53.72 | 19.31 | 0.99 | 0.01 |
Cropping Pattern | Rainfall | Irrigation Water | Straw |
---|---|---|---|
Rice monocrop | 6.5 | 17.8 | 38.88 |
Maize monocrop | 8.3 | 14.8 | 15.55 |
Wheat monocrop | 8.3 | 14.8 | 13.73 |
Rape monocrop | 8.3 | 14.8 | 19.03 |
Rice–rape rotation | 15.1 | 23.3 | 57.91 |
Rice–wheat rotation | 13.3 | 17.6 | 52.61 |
Rape–maize rotation | 8.3 | 14.8 | 34.58 |
Wheat–maize rotation | 8.3 | 14.8 | 29.28 |
Cropping Pattern | K Input | K Output | K Balance | |||
---|---|---|---|---|---|---|
Total (t) | Per Hectare (kg K yr−1) | Total (t) | Per Hectare (kg K yr−1) | Total (t) | Per Hectare (kg K yr−1) | |
Rice monocrop | 890.30 | 137.92 | 752.66 | 116.60 | 137.65 | 21.32 |
Maize monocrop | 1163.48 | 88.69 | 1624.03 | 123.80 | −460.554 | −35.11 |
Wheat monocrop | 1580.23 | 115.74 | 1366.72 | 100.10 | 213.51 | 15.64 |
Rapeseed monocrop | 306.37 | 86.98 | 553.39 | 157.10 | −247.01 | −70.12 |
Rice–rapeseed rotation | 255.09 | 216.90 | 310.12 | 263.70 | −55.03 | −46.79 |
Rice–wheat rotation | 572.05 | 238.28 | 496.23 | 206.70 | 75.818 | 31.58 |
Rapeseed–maize rotation | 133.92 | 151.40 | 248.46 | 280.90 | −114.543 | −129.50 |
Wheat–maize rotation | 378.89 | 179.82 | 471.749 | 223.90 | −92.859 | −44.07 |
K Balance | MAT | MAP | Elevation | Slope | Aspect | Population Density | Road Density | AK | |
---|---|---|---|---|---|---|---|---|---|
K balance | 1 | −0.002 | −0.085 ** | −0.062 ** | −0.034 * | 0.067 ** | 0.131 ** | 0.054 * | 0.0144 ** |
MAT | −0.002 | 1 | 0.881** | −0.853 ** | −0.435 ** | −0.017 | 0.162 ** | −0.019 | 0.076 ** |
MAP | 0.085 ** | 0.881 ** | 1 | −0.734 ** | −0.344 ** | −0.023 * | 0.107 ** | −0.036 | 0.177 ** |
Elevation | −0.062 ** | −0.853 ** | −0.734 ** | 1 | 0.604 ** | 0.037 ** | −0.189 ** | −0.010 | −0.030 ** |
Slope | −0.034 * | −0.435 ** | −0.34 4** | 0.604 ** | 1 | 0.017 | −0.123 ** | −0.003 | 0.035 ** |
Aspect | 0.067 ** | −0.017 | −0.023 * | 0.037 ** | 0.017 | 1 | −0.046 ** | 0.024 | −0.017 |
Population density | 0.131 ** | 0.162 ** | 0.107 ** | −0.189 ** | −0.123 ** | −0.046 ** | 1 | 0.056 ** | 0.161 ** |
Road density | 0.054 * | −0.019 | −0.036 | −0.010 | −0.003 | 0.024 | 0.056 ** | 1 | 0.033 |
AK | −0.144 ** | 0.076 ** | −0.177 ** | −0.030 ** | 0.035 ** | −0.017 | 0.161 ** | 0.033 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Li, Z.; Li, L.; Xu, Y.; Wu, G.; Liu, Q.; Peng, P.; Li, T. Soil Potassium Balance in the Hilly Region of Central Sichuan, China, Based on Crop Distribution. Sustainability 2023, 15, 15348. https://doi.org/10.3390/su152115348
Wang S, Li Z, Li L, Xu Y, Wu G, Liu Q, Peng P, Li T. Soil Potassium Balance in the Hilly Region of Central Sichuan, China, Based on Crop Distribution. Sustainability. 2023; 15(21):15348. https://doi.org/10.3390/su152115348
Chicago/Turabian StyleWang, Shan, Zhiping Li, Lulu Li, Yuelin Xu, Guohui Wu, Qin Liu, Peihao Peng, and Ting Li. 2023. "Soil Potassium Balance in the Hilly Region of Central Sichuan, China, Based on Crop Distribution" Sustainability 15, no. 21: 15348. https://doi.org/10.3390/su152115348
APA StyleWang, S., Li, Z., Li, L., Xu, Y., Wu, G., Liu, Q., Peng, P., & Li, T. (2023). Soil Potassium Balance in the Hilly Region of Central Sichuan, China, Based on Crop Distribution. Sustainability, 15(21), 15348. https://doi.org/10.3390/su152115348