Study of Ecosystem Degradation Dynamics in the Peruvian Highlands: Landsat Time-Series Trend Analysis (1985–2022) with ARVI for Different Vegetation Cover Types
Abstract
:1. Introduction
- (i)
- What is the extent and location of degraded plant areas on the Bombón Plateau, Junín, Peru, during the period 1985–2022?
- (ii)
- What are the patterns and trends of degradation, how have they evolved, and what are the factors and processes of substitution of the affected vegetation cover types?
- (iii)
- How has human activity influenced changes in vegetation and what are the implications of these degradation patterns for vegetation management and conservation?
- (i)
- Delineate and quantify the extent of degraded plant areas during the period studied.
- (ii)
- Decipher the dynamics and replacement patterns of the affected vegetation covers.
- (iii)
- Examine land-use changes resulting from anthropogenic activities such as agriculture, mining, and urban expansion.
2. Materials and Methods
2.1. Study Zone
2.2. Data Collection
2.3. Spatial Coverage Analysis
2.4. Vegetation Degradation Analysis
2.5. Analysis of Data
3. Results
3.1. Supervised Classification of Total Vegetation Cover
3.2. Analysis of the Distribution of Degraded Vegetation Cover
3.3. Temporal Analysis of Degraded Vegetation Cover
3.4. Plant Replacement Flow
3.5. Spearman Correlation Analysis for Vegetation Cover Replacement Evaluation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ARVI | Atmosphere resistant vegetation index |
NIR | Near-infrared |
GEE | Google Earth Engine |
GIS | Geographical Information System |
CV | Coefficient of variation |
TVC | Total vegetation cover |
DVC | Degraded vegetation cover |
masl | Meters above sea level |
Ha | Hectare |
References
- Ochoa-Sánchez, A.E.; Crespo, P.; Carrillo-Rojas, G.; Marín, F.; Célleri, R. Unravelling evapotranspiration controls and components in tropical Andean tussock grasslands. Hydrol. Process. 2020, 34, 2117–2127. [Google Scholar] [CrossRef]
- Iannacone, J.; Alvariño, L. Diversidad de la artropofauna terrestre en la Reserva Nacional de Junín, Perú. Ecol. Apl. 2006, 5, 171–174. Available online: http://www.scielo.org.pe/scielo.php?script=sci_arttext&pid=S1726-22162006000100023&lng=es&nrm=iso&tlng=pt (accessed on 17 February 2023). [CrossRef]
- Iannacone, J.; Alvariño, L. Diversidad del zooplancton en la Reserva Nacional de Junín, Perú. Ecol. Apl. 2006, 5, 175–181. Available online: http://www.scielo.org.pe/scielo.php?script=sci_arttext&pid=S1726-22162006000100024&lng=es&nrm=iso&tlng=es (accessed on 17 February 2023). [CrossRef]
- Peñaloza, R.; Custodio, M.; Cacciuttolo, C.; Chanamé, F.; Cano, D.; Solorzano, F. Human Health Risk Assessment for Exposure to Heavy Metals via Dietary Intake of Rainbow Trout in the Influence Area of a Smelting Facility Located in Peru. Toxics 2023, 11, 764. [Google Scholar] [CrossRef]
- Dai, H.; Huang, G.; Wang, J.; Zeng, H. VAR-tree model based spatio-temporal characterization and prediction of O3 concentration in China. Ecotoxicol. Environ. Saf. 2023, 257, 114960. [Google Scholar] [CrossRef] [PubMed]
- Dai, H.; Huang, G.; Zeng, H. Multi-objective optimal dispatch strategy for power systems with Spatio-temporal distribution of air pollutants. Sustain. Cities Soc. 2023, 98, 104801. [Google Scholar] [CrossRef]
- Maldonado Fonkén, M.S. An introduction to the bofedales of the Peruvian High Andes. Mires Peat 2014, 15, 1–13. [Google Scholar]
- Pizarro, S.E.; Pricope, N.G.; Vargas-Machuca, D.; Huanca, O.; Ñaupari, J. Mapping Land Cover Types for Highland Andean Ecosystems in Peru Using Google Earth Engine. Remote Sens. 2022, 14, 1562. [Google Scholar] [CrossRef]
- Carpio, L.D.; Taype-Huamán, I. Análisis multitemporal de asociaciones vegetales y cambios de uso del suelo en una localidad altoandina, Puno-Perú. Uniciencia 2021, 35, 1–19. Available online: https://www.revistas.una.ac.cr/index.php/uniciencia/article/view/14783/21426 (accessed on 28 July 2023). [CrossRef]
- Mantas, V.; Caro, C. User-Relevant Land Cover Products for Informed Decision-Making in the Complex Terrain of the Peruvian Andes. Remote Sens. 2023, 15, 3303. [Google Scholar] [CrossRef]
- Liu, C.; Huang, H.; Sun, F. A Pixel-Based Vegetation Greenness Trend Analysis over the Russian Tundra with All Available Landsat Data from 1984 to 2018. Remote Sens. 2021, 13, 4933. [Google Scholar] [CrossRef]
- Torres-Batlló, J.; Martí-Cardona, B.; Pillco-Zolá, R. Mapping evapotranspiration, vegetation and precipitation trends in the catchment of the shrinking lake poopo. Remote Sens. 2020, 12, 73. [Google Scholar] [CrossRef]
- Marin, N.A.; Barboza, E.; López, R.S.; Vásquez, H.V.; Fernández, D.G.; Murga, R.E.T.; Briceño, N.B.R.; Oliva-Cruz, M.; Torres, O.A.G.; López, J.O.S.; et al. Spatiotemporal Dynamics of Grasslands Using Landsat Data in Livestock Micro-Watersheds in Amazonas (NW Peru). Land 2022, 11, 674. [Google Scholar] [CrossRef]
- Kombate, A.; Folega, F.; Atakpama, W.; Dourma, M.; Wala, K.; Goïta, K. Characterization of Land-Cover Changes and Forest-Cover Dynamics in Togo between 1985 and 2020 from Landsat Images Using Google Earth Engine. Land 2022, 11, 1889. [Google Scholar] [CrossRef]
- Kaufman, Y.J.; Tanré, D. Atmospherically Resistant Vegetation Index (ARVI) for EOS-MODIS. IEEE Trans. Geosci. Remote Sens. 1992, 30, 261–270. [Google Scholar] [CrossRef]
- Lang, M.; Mahyou, H.; Tychon, B. Estimation of rangeland production in the arid oriental region (Morocco) combining remote sensing vegetation and rainfall indices: Challenges and lessons learned. Remote Sens. 2021, 13, 2093. [Google Scholar] [CrossRef]
- Harmse, C.J.; Gerber, H.; Van Niekerk, A. Evaluating Several Vegetation Indices Derived from Sentinel-2 Imagery for Quantifying Localized Overgrazing in a Semi-Arid Region of South Africa. Remote Sens. 2022, 14, 1720. [Google Scholar] [CrossRef]
- Jiang, F.; Deng, M.; Long, Y.; Sun, H. Spatial Pattern and Dynamic Change of Vegetation Greenness from 2001 to 2020 in Tibet, China. Front. Plant Sci. 2022, 13, 892625. [Google Scholar] [CrossRef]
- Jiang, W.; Yuan, L.; Wang, W.; Cao, R.; Zhang, Y.; Shen, W. Spatio-temporal analysis of vegetation variation in the Yellow River Basin. Ecol. Indic. 2015, 51, 117–126. [Google Scholar] [CrossRef]
- Portillo, V. Evaluación de Amenazas por Pastoreo al Pastizal del Humedal de la Comunidad Campesina Santa Clara de Chuiroc—Reserva Nacional de Junín, 2018; Tesis Para Optar el Título Profesional de Ingeniera Ambiental; Universidad Continental: Huancayo, Perú, 2021; Available online: https://repositorio.continental.edu.pe/handle/20.500.12394/9484 (accessed on 27 February 2023).
- Shoobridge, D. Perfil de Área Natural Protegida Perú Reserva Nacional de Junín. 2006. Available online: https://www.parkswatch.org/parkprofiles/pdf/jnar_spa.pdf (accessed on 12 August 2023).
- Medrano, R.; Yanqui, R.M.; Chupan Minaya, L.; Vila Balbín, M. Almacenamiento de carbono en especies predominantes de flora en el lago Chinchaycocha. Apunt. Cienc. Soc. 2012, 2, 110–117. Available online: https://journals.continental.edu.pe/index.php/apuntes/article/view/52 (accessed on 27 February 2023). [CrossRef]
- Caro, C.; Sánchez, E.; Quinteros, Z.; Castañeda, L. Respuesta De Los Pastizales Altoandinos a La Perturbación Generada Por Extracción Mediante La Actividad De “Champeo” En Los Terrenos De La Comunidad Campesina Villa De Junín, Perú. Ecol. Apl. 2014, 13, 85. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Roy, D.P.; Kovalskyy, V.; Zhang, H.K.; Vermote, E.F.; Yan, L.; Kumar, S.S.; Egorov, A. Characterization of Landsat-7 to Landsat-8 reflective wavelength and normalized difference vegetation index continuity. Remote Sens. Environ. 2016, 185, 57–70. [Google Scholar]
- Vogeler, J.C.; Braaten, J.D.; Slesak, R.A.; Falkowski, M.J. Extracting the full value of the Landsat archive: Inter-sensor harmonization for the mapping of Minnesota forest canopy cover (1973–2015). Remote Sens. Environ. 2018, 209, 363–374. [Google Scholar] [CrossRef]
- Rosenqvist, A.; Shimada, M.; Ito, N.; Watanabe, M. ALOS PALSAR: A pathfinder mission for global-scale monitoring of the environment. IEEE Trans. Geosci. Remote Sens. 2007, 45, 3307–3316. [Google Scholar] [CrossRef]
- Ministerio del Ambiente (MINAM). Mapa Nacional de Cobertura Vegetal—Memoria Descriptiva. Lima. 2015. Available online: https://www.gob.pe/institucion/minam/informes-publicaciones/2674-mapa-nacional-de-cobertura-vegetal-memoria-descriptiva (accessed on 23 June 2023).
- Congalton, R.G. A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens. Environ. 1991, 37, 35–46. [Google Scholar] [CrossRef]
- Mónica, A.; Luis, C.; Cornejo, F.M.; Antuane, C.; Roberto, E.; Rosa, G.; Natalia, L.; Ronald, M.; Berenice, M.; Jhordy, O. Reserva Nacional de Junín. Un Espejo en Medio de los Andes; SERNANP: Lima, Peru, 2020; Available online: https://sis.sernanp.gob.pe/ (accessed on 11 September 2023).
- Huete, A.; Justice, C.; Liu, H. Development of vegetation and soil indices for MODIS-EOS. Remote Sens. Environ. 1994, 49, 224–234. [Google Scholar] [CrossRef]
- Helsel, D.R.; Frans, L.M. Regional Kendall test for trend. Environ. Sci. Technol. 2006, 40, 4066–4073. [Google Scholar] [CrossRef]
- Sun, W.; Song, H.; Yao, X.; Ishidaira, H.; Xu, Z. Changes in Remotely Sensed Vegetation Growth Trend in the Heihe Basin of Arid Northwestern China. PLoS ONE 2015, 10, e0135376. [Google Scholar] [CrossRef]
- Li, Z.; Huffman, T.; McConkey, B.; Townley-Smith, L. Monitoring and modeling spatial and temporal patterns of grassland dynamics using time-series MODIS NDVI with climate and stocking data. Remote Sens. Environ. 2013, 138, 232–244. [Google Scholar] [CrossRef]
- Xin, Z.B.; Xu, J.X.; Zheng, W. Spatiotemporal variations of vegetation cover on the Chinese Loess Plateau (1981-2006): Impacts of climate changes and human activities. Sci. China Ser. D Earth Sci. 2008, 51, 67–78. [Google Scholar] [CrossRef]
- Valverde, H.; Fuentealba, B.; Blas, L.; Oropeza Editado, T. La Importancia de los Pastizales Altoandinos Peruanos (Folleto); Dirección de Investigación en Ecosistemas de Montaña—Instituto Nacional de Investigación en Glaciares y Ecosistemas de Montaña (DIEM-INAIGEM), 2022; Available online: https://repositorio.inaigem.gob.pe/bitstreams/8f8bf505-e241-4af0-91ae-4c9e9033ee15/download#:~:text=Sin%20embargo%2C%20m%C3%A1s%20del%2060,p%C3%A9rdida%20de%20biodiversidad%20y%20desertificaci%C3%B3n4 (accessed on 5 October 2023).
- Zhou, H.; Zhao, X.; Tang, Y.; Gu, S.; Zhou, L. Alpine grassland degradation and its control in the source region of the Yangtze and Yellow Rivers, China. Grassl. Sci. 2005, 51, 191–203. [Google Scholar] [CrossRef]
- Shen, H.; Dong, S.; DiTommaso, A.; Xiao, J.; Zhi, Y. N deposition may accelerate grassland degradation succession from grasses- and sedges-dominated into forbs-dominated in overgrazed alpine grassland systems on Qinghai-Tibetan Plateau. Ecol. Indic. 2021, 129, 107898. [Google Scholar]
- Briske, D.D.; Briske, D.D.; Illius, A.W.; Anderies, J.M.; Illius, A.W.; Anderies, J.M. Nonequilibrium Ecology and Resilience Theory; Springer: Berlin/Heidelberg, Germany, 2017; pp. 197–227. Available online: https://link.springer.com/chapter/10.1007/978-3-319-46709-2_6 (accessed on 19 September 2023).
- Tovar, C.; Carril, A.F.; Gutiérrez, A.G.; Ahrends, A.; Fita, L.; Zaninelli, P.; Flombaum, P.; Abarzúa, A.M.; Alarcón, D.; Aschero, V.; et al. Understanding climate change impacts on biome and plant distributions in the Andes: Challenges and opportunities. J. Biogeogr. 2022, 49, 1420–1442. [Google Scholar] [CrossRef]
- Chen, J.; Yan, F.; Lu, Q. Spatiotemporal Variation of Vegetation on the Qinghai–Tibet Plateau and the Influence of Climatic Factors and Human Activities on Vegetation Trend (2000–2019). Remote Sens. 2020, 12, 3150. [Google Scholar] [CrossRef]
- Xu, X.; Cai, H.; Sun, D.; Hu, L.; Banson, K.E. Impacts of Mining and Urbanization on the Qin-Ba Mountainous Environment, China. Sustainability 2016, 8, 488. [Google Scholar] [CrossRef]
- Fu, Y.; Zhang, Y. Research on temporal and spatial evolution of land use and landscape pattern in Anshan City based on GEE. Front. Environ. Sci. 2022, 10, 988346. [Google Scholar] [CrossRef]
- Awoyelu, F.E.; Mebo, R.A. Effects of sand mining on peri-urban agriculture in Ife East and Ife Central Local Government Areas, Osun State, Nigeria. Agro-Science 2022, 21, 101–107. [Google Scholar] [CrossRef]
- Carilla, J.; Aráoz, E.; Foguet, J.; Casagranda, E.; Halloy, S.; Grau, A. Hydroclimate and vegetation variability of high Andean ecosystems. Front. Plant Sci. 2023, 13, 1067096. [Google Scholar]
- Madrigal-Martínez, S.; Miralles, I.; García, J.L.; Molina, L.; Lima, P. Land-change dynamics and ecosystem service trends across the central high-Andean Puna. Sci. Rep. 2019, 9, 9688. Available online: https://www.nature.com/articles/s41598-019-46205-9 (accessed on 12 September 2023).
- Huaraca-Meza, F.; Custodio, M.; Peñaloza, R.; Alvarado-Ibañez, J.; Paredes, R.; De la Cruz, H.; Arzapalo, L.; Lazarte-Pariona, F. Bacterial diversity in high Andean grassland soils disturbed with Lepidium meyenii crops evaluated by metagenomics. Braz. J. Biol. 2021, 82, e240184. [Google Scholar] [CrossRef]
- de Langre, E. Effects of Wind on Plants. Annu. Rev. Fluid Mech. 2008, 40, 141–168. [Google Scholar] [CrossRef]
- Yaranga, R.M.; Pizarro, S.E.; Cano, D.; Chanamé, F.C.; Orellana, J.A. Composition, Diversity, and Value of Ecological Importance in Andean Grassland Ecosystems according to the Altitudinal Gradient in the Huacracocha Micro-Watershed, Peru. Annu. Res. Rev. Biol. 2023, 38, 43–56. [Google Scholar] [CrossRef]
- Farley, K.A.; Bremer, L.L.; Harden, C.P.; Hartsig, J. Changes in carbon storage under alternative land uses in biodiverse Andean grasslands: Implications for payment for ecosystem services. Conserv. Lett. 2013, 6, 21–27. [Google Scholar] [CrossRef]
- Baldi, G.; Paruelo, J.M. Land-Use and Land Cover Dynamics in South American Temperate Grasslands. Ecol. Soc. 2008, 13, art6. [Google Scholar] [CrossRef]
- Yaranga, R.; Van Vuure, A.; Fuentes, A.; Fuentes, A.; Maraví, K.; Román, M.; Cáceres, D.; Fuentes, C.A. Andean Grassland Species: Net Aerial Primary Productivity, Density, Ecomorphological Indices, and Soil Characteristics. J. Ecol. Eng. 2021, 22, 163–175. Available online: http://www.jeeng.net/Andean-Grassland-Species-Net-Aerial-Primary-Productivity-Density-Ecomorphological,138816,0,2.html (accessed on 13 September 2023). [CrossRef]
- Kozlov, A.; Kozlova, M.; Skorik, N. A Simple Harmonic Model for FAPAR Temporal Dynamics in the Wetlands of the Volga-Akhtuba Floodplain. Remote Sens. 2016, 8, 762. [Google Scholar] [CrossRef]
- Alexander, P.; Nielsen, D.L.; Nias, D. Response of wetland plant communities to inundation within floodplain landscapes. Ecol. Manag. Restor. 2008, 9, 187–195. [Google Scholar] [CrossRef]
- Adjiski, V.; Zubíček, V. Continuous Monitoring of the Mining Activities, Restoration Vegetation Status and Solar Farm Growth in Coal Mine Region Using Remote Sensing Data. Min. Rev. 2023, 29, 26–41. [Google Scholar]
- Radutu, A.; Vlad-Sandru, M.I. Review on the Use of Satellite-Based Radar Interferometry for Monitoring Mining Subsidence in Urban Areas and Demographic Indicators Assessment. Min. Rev. 2023, 29, 42–62. [Google Scholar]
- Jin, K.; Wang, F.; Li, P. Responses of Vegetation Cover to Environmental Change in Large Cities of China. Sustainability 2018, 10, 270. [Google Scholar] [CrossRef]
- Zedler, J.B.; Kercher, S. Causes and Consequences of Invasive Plants in Wetlands: Opportunities, Opportunists, and Outcomes. Crit. Rev. Plant Sci. 2004, 23, 431–452. [Google Scholar] [CrossRef]
- Cui, L.; Li, G.; Liao, H.; Ouyang, N.; Li, X.; Liu, D. Remote Sensing of Coastal Wetland Degradation Using the Landscape Directional Succession Model. Remote Sens. 2022, 14, 5273. [Google Scholar] [CrossRef]
- Cano, D.; Crispin, A.; Custodio, M.; Chanamé, F.; Peñaloza, R.; Pizarro, S. Space-time quantification of aboveground net primary productivity service supply capacity in high Andean bofedales using remote sensors. J. Water Land Dev. 2023, 56, 172–181. [Google Scholar]
- Dong, S.K.; Wen, L.; Li, Y.Y.; Wang, X.X.; Zhu, L.; Li, X.Y. Soil-Quality Effects of Grassland Degradation and Restoration on the Qinghai-Tibetan Plateau. Soil Sci. Soc. Am. J. 2012, 76, 2256–2264. [Google Scholar] [CrossRef]
- Wang, X.; Dong, S.; Yang, B.; Li, Y.; Su, X. The effects of grassland degradation on plant diversity, primary productivity, and soil fertility in the alpine region of Asia’s headwaters. Environ. Monit. Assess. 2014, 186, 6903–6917. [Google Scholar] [CrossRef]
- Quan, Q.; Nianpeng, H.; Zhen, Z.; Yunhai, Z.; Yang, G. Nitrogen enrichment and grazing accelerate vegetation restoration in degraded grassland patches. Ecol. Eng. 2015, 75, 172–177. [Google Scholar] [CrossRef]
- Xu, X.; Hu, G.; Liu, X.; Lu, S.; Li, S.; Zhao, N. Impacts of nitrogen enrichment on vegetation growth dynamics are regulated by grassland degradation status. Land Degrad. Dev. 2021, 32, 4056–4066. [Google Scholar] [CrossRef]
- Yu, J.; Wan, L.; Liu, G.; Ma, K.; Cheng, H.; Shen, Y.; Liu, Y.; Su, X. A Meta-Analysis on Degraded Alpine Grassland Mediated by Climate Factors: Enlightenment for Ecological Restoration. Front. Plant Sci. 2022, 12, 821954. [Google Scholar] [CrossRef]
- Passera, C.B.; Borsetto, O.; Candia, R.J.; Stasi, C.R. Shrub control and seeding influences on grazing capacity in Argentina. J. Range Manag. 1992, 45, 480–482. [Google Scholar] [CrossRef]
- Buchhorn, M.; Lesiv, M.; Tsendbazar, N.E.; Herold, M.; Bertels, L.; Smets, B. Copernicus Global Land Cover Layers—Collection 2. Remote Sens. 2020, 12, 1044. [Google Scholar] [CrossRef]
- Neves, A.K.; Körting, T.S.; Fonseca, L.M.G.; Escada, M.I.S. Assessment of TerraClass and MapBiomas data on legend and map agreement for the Brazilian Amazon biome. Acta Amaz. 2020, 50, 170–182. [Google Scholar] [CrossRef]
- Baeza, S.; Vélez-Martin, E.; De Abelleyra, D.; Banchero, S.; Gallego, F.; Schirmbeck, J.; Veron, S.; Vallejos, M.; Weber, E.; Oyarzabal, M.; et al. Two decades of land cover mapping in the Río de la Plata grassland region: The MapBiomas Pampa initiative. Remote Sens. Appl. Soc. Environ. 2022, 28, 100834. [Google Scholar] [CrossRef]
- Cayo, E.Y.T.; Borja, M.O.; Espinoza-Villar, R.; Moreno, N.; Camargo, R.; Almeida, C.; Hopfgartner, K.; Yarleque, C.; Souza, C.M. Mapping Three Decades of Changes in the Tropical Andean Glaciers Using Landsat Data Processed in the Earth Engine. Remote Sens. 2022, 14, 1974. [Google Scholar] [CrossRef]
Classes | Coverage Features |
---|---|
Wetland | Hydrophytic wetland grasses are found in places where there is water upwelling and maintain plant communities composed of cushion-shaped grasses and sedges, with botanical families dominated by Cyperaceae and Juncaceae, e.g., Oxychloe andina, Distichia muscoids. |
Cattail | Swampy areas are composed mainly of species of the Juncaceae family represented by Scirpus californicus var, cattails, and Juncus articus var. Andicola, in very dense formations, over seasonal waters. |
Bulrush | It is considered a species of the Juncaceae family and cattail intermediate growing like Typha spp. and Scirpus spp. They are found in the presence of permanent water. |
Tall grass | Areas composed of tall perennial grasses up to 1 m high, such as the species Festuca, Poa, Stipa, and Calamagrostis, with a herbaceous stratum of the genera Werneria, Hypochaeris (Asteraceae), and Geranium (Geraniaceae). |
Puna grass | Areas dominated by dwarf herbaceous, pink, and cushion plants, growing in areas of moderate water content, with botanical genera of Cinnagrostis, Aciachne (Poaceae), Baccharis, Werneria, Perezia (Asteraceae), and Opuntia (Cactaceae). |
Geliturbated areas | Consisting mainly of protruding rocks and remnants of vegetation made up mainly of tall grass and puna grass. |
Bare ground (f) | Permanent bare soils without vegetation development. |
Agricultural area (f) | Areas of permanent and seasonal cultivation, livestock grazing areas, or crop rangeland. |
Urban area (f) | Urban areas, paved and motorized roads, permanent bare soils, river edge gravel, mining activity (mine tailings, open-pit mine, earth movement, non-metallic mining). |
Coverage | TVC | DVC | ||||
---|---|---|---|---|---|---|
Mean Area Ha | CV % | Significance Mann–Kendall | Mean Area Ha | CV % | Significance Mann–Kendall | |
Wetland | 32,888.3 | 45.0 | ns | 5547.9 | 39.4 | ns |
Cattail | 10,754.2 | 23.7 | ns | 1483.9 | 23.1 | ns |
Bulrush | 11,927.1 | 18.8 | ns | 2594.7 | 19.3 | ** (−) |
Tall grass | 50,600.6 | 30.8 | ns | 10,098.7 | 25.1 | ns |
Puna grass | 61,002.4 | 20.7 | ns | 9068.5 | 32.0 | ns |
Geliturbated areas | 40,629.3 | 12.2 | ns | 4023.7 | 14.8 | ns |
Bare ground (f) | 7046.0 | 24.5 | ns | 661.5 | 29.1 | ns |
Agricultural area (f) | 47,372.8 | 16.9 | ns | 2913.6 | 23.1 | ** (−) |
Urban area (f) | 14,763.1 | 81.8 | ns | 2821.4 | 31.8 | ** (+) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cano, D.; Pizarro, S.; Cacciuttolo, C.; Peñaloza, R.; Yaranga, R.; Gandini, M.L. Study of Ecosystem Degradation Dynamics in the Peruvian Highlands: Landsat Time-Series Trend Analysis (1985–2022) with ARVI for Different Vegetation Cover Types. Sustainability 2023, 15, 15472. https://doi.org/10.3390/su152115472
Cano D, Pizarro S, Cacciuttolo C, Peñaloza R, Yaranga R, Gandini ML. Study of Ecosystem Degradation Dynamics in the Peruvian Highlands: Landsat Time-Series Trend Analysis (1985–2022) with ARVI for Different Vegetation Cover Types. Sustainability. 2023; 15(21):15472. https://doi.org/10.3390/su152115472
Chicago/Turabian StyleCano, Deyvis, Samuel Pizarro, Carlos Cacciuttolo, Richard Peñaloza, Raúl Yaranga, and Marcelo Luciano Gandini. 2023. "Study of Ecosystem Degradation Dynamics in the Peruvian Highlands: Landsat Time-Series Trend Analysis (1985–2022) with ARVI for Different Vegetation Cover Types" Sustainability 15, no. 21: 15472. https://doi.org/10.3390/su152115472
APA StyleCano, D., Pizarro, S., Cacciuttolo, C., Peñaloza, R., Yaranga, R., & Gandini, M. L. (2023). Study of Ecosystem Degradation Dynamics in the Peruvian Highlands: Landsat Time-Series Trend Analysis (1985–2022) with ARVI for Different Vegetation Cover Types. Sustainability, 15(21), 15472. https://doi.org/10.3390/su152115472