Leveraging Classical Statistical Methods for Sustainable Maintenance in Automotive Assembly Equipment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Maintenance Data Registration
2.2. Data Curation and Times Series
2.3. Time Series Models
3. Results
3.1. Maintenance with SAP
3.2. Forecasting of Failures
3.3. Predictive Maintenance with SAP PM
4. Discussion
4.1. Data Collection
4.2. Methodology and Model Selection
4.3. Forecasting and Decision-Making
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Moens, P.; Vanden Hautte, S.; De Paepe, D.; Steenwinckel, B.; Verstichel, S.; Vandekerckhove, S.; Ongenae, F.; Van Hoecke, S. Event-Driven Dashboarding and Feedback for Improved Event Detection in Predictive Maintenance Applications. Appl. Sci. 2021, 11, 10371. [Google Scholar] [CrossRef]
- Achouch, M.; Dimitrova, M.; Ziane, K.; Sattarpanah Karganroudi, S.; Dhouib, R.; Ibrahim, H.; Adda, M. On Predictive Maintenance in Industry 4.0: Overview, Models, and Challenges. Appl. Sci. 2022, 12, 8081. [Google Scholar] [CrossRef]
- Pimenov, D.Y.; Bustillo, A.; Wojciechowski, S.; Sharma, V.S.; Gupta, M.K.; Kuntoğlu, M. Artificial Intelligence Systems for Tool Condition Monitoring in Machining: Analysis and Critical Review. J. Intell. Manuf. 2023, 34, 2079–2121. [Google Scholar] [CrossRef]
- Zhao, J.; Gao, C.; Tang, T. A Review of Sustainable Maintenance Strategies for Single Component and Multicomponent Equipment. Sustainability 2022, 14, 2992. [Google Scholar] [CrossRef]
- Jasiulewicz-Kaczmarek, M.; Legutko, S.; Kluk, P. Maintenance 4.0 Technologies—New Opportunities for Sustainability Driven Maintenance. Manag. Prod. Eng. Rev. 2020, 11, 2. [Google Scholar] [CrossRef]
- Murugiah, P.; Muthuramalingam, A.; Anandamurugan, S. A Design of Predictive Manufacturing System in IoT-Assisted Industry 4.0 Using Heuristic-Derived Deep Learning. Int. J. Commun. Syst. 2023, 36, e5432. [Google Scholar] [CrossRef]
- Carvalho, T.P.; Soares, F.A.A.M.N.; Vita, R.; Francisco, R.d.P.; Basto, J.P.; Alcalá, S.G.S. A Systematic Literature Review of Machine Learning Methods Applied to Predictive Maintenance. Comput. Ind. Eng. 2019, 137, 106024. [Google Scholar] [CrossRef]
- Möhring, M.; Schmidt, R.; Keller, B.; Sandkuhl, K.; Zimmermann, A. Predictive Maintenance Information Systems: The Underlying Conditions and Technological Aspects. Int. J. Enterp. Inf. Syst. 2020, 16, 22–37. [Google Scholar] [CrossRef]
- Çoban, S.; Gökalp, M.O.; Gökalp, E.; Eren, P.E.; Koçyiğit, A. Predictive Maintenance in Healthcare Services with Big Data Technologies. In Proceedings of the 2018 IEEE 11th Conference on Service-Oriented Computing and Applications (SOCA), Paris, France, 20–22 November 2018; pp. 93–98. [Google Scholar]
- Ersöz, O.Ö.; İnal, A.F.; Aktepe, A.; Türker, A.K.; Ersöz, S. A Systematic Literature Review of the Predictive Maintenance from Transportation Systems Aspect. Sustainability 2022, 14, 14536. [Google Scholar] [CrossRef]
- Cao, Q.; Samet, A.; Zanni-Merk, C.; de Bertrand de Beuvron, F.; Reich, C. Combining Chronicle Mining and Semantics for Predictive Maintenance in Manufacturing Processes. Semant. Web 2020, 11, 927–948. [Google Scholar] [CrossRef]
- Hashe, V.T.; Mamatlepa, M.T. Application of Reliability Engineering in a Chemical Plant to Improve Productivity. In Lecture Notes in Mechanical Engineering; Springer: Berlin, Germany, 2020; pp. 547–557. [Google Scholar] [CrossRef]
- Montero Jimenez, J.J.; Schwartz, S.; Vingerhoeds, R.; Grabot, B.; Salaün, M. Towards Multi-Model Approaches to Predictive Maintenance: A Systematic Literature Survey on Diagnostics and Prognostics. J. Manuf. Syst. 2020, 56, 539–557. [Google Scholar] [CrossRef]
- Zhuang, L.; Xu, A.; Wang, X.-L. A Prognostic Driven Predictive Maintenance Framework Based on Bayesian Deep Learning. Reliab. Eng. Syst. Saf. 2023, 234, 109181. [Google Scholar] [CrossRef]
- Fattah, J.; Ezzine, L.; Aman, Z.; El Moussami, H.; Lachhab, A. Forecasting of Demand Using ARIMA Model. Int. J. Eng. Bus. Manag. 2018, 10, 1847979018808673. [Google Scholar] [CrossRef]
- Francis, F.; Mohan, M. ARIMA Model Based Real Time Trend Analysis for Predictive Maintenance. In Proceedings of the 2019 3rd International conference on Electronics, Communication and Aerospace Technology (ICECA), Coimbatore, India, 12–14 June 2019; pp. 735–739. [Google Scholar]
- Sobaszek, Ł.; Gola, A.; Kozłowski, E. Predictive Scheduling with Markov Chains and ARIMA Models. Appl. Sci. 2020, 10, 6121. [Google Scholar] [CrossRef]
- Lima, S.; Gonçalves, A.M.; Costa, M. Time Series Forecasting Using Holt-Winters Exponential Smoothing: An Application to Economic Data. AIP Conf. Proc. 2019, 2186, 090003. [Google Scholar] [CrossRef]
- Rodrigues, J.A.; Farinha, J.T.; Mendes, M.; Mateus, R.; Cardoso, A.M. Short and Long Forecast to Implement Predictive Maintenance in a Pulp Industry. Eksploat. I Niezawodn. 2022, 24, 33–41. [Google Scholar] [CrossRef]
- Putchala, S.R.; Kotha, R.; Guda, V.; Ramadevi, Y. Transformer Data Analysis for Predictive Maintenance. In Proceedings of the Second International Conference on Advances in Computer Engineering and Communication Systems, Hyderabad, India, 3–14 August 2021; Reddy, A.B., Kiranmayee, B.V., Mukkamala, R.R., Srujan Raju, K., Eds.; Springer Nature: Singapore, 2022; pp. 217–230. [Google Scholar]
- Rabbani, M.B.A.; Musarat, M.A.; Alaloul, W.S.; Rabbani, M.S.; Maqsoom, A.; Ayub, S.; Bukhari, H.; Altaf, M. A Comparison Between Seasonal Autoregressive Integrated Moving Average (SARIMA) and Exponential Smoothing (ES) Based on Time Series Model for Forecasting Road Accidents. Arab. J. Sci. Eng. 2021, 46, 11113–11138. [Google Scholar] [CrossRef]
- Stefano, F. Maintenance Diagnosis Methodology Based on Metrological Characteristics, Statistical Process Control and FMEA Analysis. Ir. Interdiscip. J. Sci. Res. 2021, 5, 94–107. [Google Scholar]
- Shivajee, V.; Singh, R.K.; Rastogi, S. Manufacturing Conversion Cost Reduction Using Quality Control Tools and Digitization of Real-Time Data. J. Clean. Prod. 2019, 237, 117678. [Google Scholar] [CrossRef]
- Yang, Z.; Kanniainen, J.; Krogerus, T.; Emmert-Streib, F. Prognostic Modeling of Predictive Maintenance with Survival Analysis for Mobile Work Equipment. Sci. Rep. 2022, 12, 8529. [Google Scholar] [CrossRef]
- Moat, G.; Coleman, S. Survival Analysis and Predictive Maintenance Models for Non-Sensored Assets in Facilities Management. In Proceedings of the 2021 IEEE International Conference on Big Data (Big Data), Orlando, FL, USA, 15–18 December 2021; pp. 4026–4034. [Google Scholar]
- Bennis, A.; Mouysset, S.; Serrurier, M. Estimation of Conditional Mixture Weibull Distribution with Right Censored Data Using Neural Network for Time-to-Event Analysis. In Proceedings of the Advances in Knowledge Discovery and Data Mining, Singapore, 11–14 May 2020; Lauw, H.W., Wong, R.C.-W., Ntoulas, A., Lim, E.-P., Ng, S.-K., Pan, S.J., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 687–698. [Google Scholar]
- Hu, J.; Chen, P. Predictive Maintenance of Systems Subject to Hard Failure Based on Proportional Hazards Model. Reliab. Eng. Syst. Saf. 2020, 196, 106707. [Google Scholar] [CrossRef]
- Fuentes-Huerta, M.A.; González-González, D.S.; Cantú-Sifuentes, M.; Praga-Alejo, R.J. Fuzzy Reliability Centered Maintenance Considering Personnel Experience and Only Censored Data. Comput. Ind. Eng. 2021, 158, 107440. [Google Scholar] [CrossRef]
- Duong, C.M.; Lim, T.-T. Use of Regression Models for Development of a Simple and Effective Biogas Decision-Support Tool. Sci. Rep. 2023, 13, 4933. [Google Scholar] [CrossRef] [PubMed]
- Besiktepe, D.; Ozbek, M.E.; Atadero, R.A. Identification of the Criteria for Building Maintenance Decisions in Facility Management: First Step to Developing a Multi-Criteria Decision-Making Approach. Buildings 2020, 10, 166. [Google Scholar] [CrossRef]
- Penadés-Plà, V.; García-Segura, T.; Martí, J.V.; Yepes, V. A Review of Multi-Criteria Decision-Making Methods Applied to the Sustainable Bridge Design. Sustainability 2016, 8, 1295. [Google Scholar] [CrossRef]
- Nunes, P.; Santos, J.; Rocha, E. Challenges in Predictive Maintenance—A Review. CIRP J. Manuf. Sci. Technol. 2023, 40, 53–67. [Google Scholar] [CrossRef]
- Tessoni, V.; Amoretti, M. Advanced Statistical and Machine Learning Methods for Multi-Step Multivariate Time Series Forecasting in Predictive Maintenance. Procedia Comput. Sci. 2022, 200, 748–757. [Google Scholar] [CrossRef]
- Pandit, R.K.; Kolios, A.; Infield, D. Data-Driven Weather Forecasting Models Performance Comparison for Improving Offshore Wind Turbine Availability and Maintenance. IET Renew. Power Gener. 2020, 14, 2386–2394. [Google Scholar] [CrossRef]
- Kumar, V.; Shankar, R.; Vrat, P. An Analysis of Industry 4.0 Implementation-Variables by Using SAP-LAP and e-IRP Approach. Benchmarking 2022, 29, 1606–1639. [Google Scholar] [CrossRef]
- Kohli, M. Using Machine Learning Algorithms on Data Residing in SAP ERP Application to Predict Equipment Failures. Int. J. Eng. Technol. (UAE) 2018, 7, 312–319. [Google Scholar] [CrossRef]
- Chatfield, C.; Yar, M. Holt-Winters Forecasting: Some Practical Issues. J. R. Stat. Soc. Ser. D Stat. 1988, 37, 129–140. [Google Scholar] [CrossRef]
- Escudero, P.; Alcocer, W.; Paredes, J. Recurrent Neural Networks and ARIMA Models for Euro/Dollar Exchange Rate Forecasting. Appl. Sci. 2021, 11, 5658. [Google Scholar] [CrossRef]
- Du, Y. A Time Series Forecasting System Based on ARIMA for Industrial Big Data. In Proceedings of the International Conference on Computer, Artificial Intelligence, and Control Engineering (CAICE 2022), Xi’an, China, 25–27 February 2022; SPIE: Bellingham, WA, USA, 2022; Volume 12288, pp. 17–21. [Google Scholar]
- Sirisha, U.M.; Belavagi, M.C.; Attigeri, G. Profit Prediction Using ARIMA, SARIMA and LSTM Models in Time Series Forecasting: A Comparison. IEEE Access 2022, 10, 124715–124727. [Google Scholar] [CrossRef]
- Falatouri, T.; Darbanian, F.; Brandtner, P.; Udokwu, C. Predictive Analytics for Demand Forecasting—A Comparison of SARIMA and LSTM in Retail SCM. Procedia Comput. Sci. 2022, 200, 993–1003. [Google Scholar] [CrossRef]
- Li, H.; Parikh, D.; He, Q.; Qian, B.; Li, Z.; Fang, D.; Hampapur, A. Improving Rail Network Velocity: A Machine Learning Approach to Predictive Maintenance. Transp. Res. Part C Emerg. Technol. 2014, 45, 17–26. [Google Scholar] [CrossRef]
- Abidi, M.H.; Mohammed, M.K.; Alkhalefah, H. Predictive Maintenance Planning for Industry 4.0 Using Machine Learning for Sustainable Manufacturing. Sustainability 2022, 14, 3387. [Google Scholar] [CrossRef]
Demag Input Keystroke 1000 kg | ||||||
---|---|---|---|---|---|---|
Area | Equipment | Specialty | Date | Time (min) | Shift | Failure |
Elpo | keystroke | Electromechanical transportation | 19/1/2023 | 65.00 | First | Down relay damage |
Elpo | keystroke | Electromechanical transportation | 25/2/2023 | 36.00 | First | Damaged chain, broken link |
Model | Centrifugal Pumps | Electromechanical Hoists | Fans | E-Coat | Phosphate Passivation Equipment |
---|---|---|---|---|---|
ARIMA | 504.39 | 456.31 | 450.95 | 492.93 | 457.15 |
SARIMA | 261.42 | 241.57 | 234.33 | 245.19 | 222.28 |
Model | Centrifugal Pumps | Electromechanical Hoists | Fans | E-Coat | Phosphate Passivation Equipment |
---|---|---|---|---|---|
HWES | 0.022991 | 1.449357 | 0.764357 | 0.285784 | 0.792640 |
ARIMA | 0.058976 | 1.346239 | 0.711666 | 0.292658 | 0.744512 |
SARIMA | 0.037975 | 1.282700 | 0.825702 | 0.351869 | 1.257262 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bucay-Valdiviezo, J.; Escudero-Villa, P.; Paredes-Fierro, J.; Ayala-Chauvin, M. Leveraging Classical Statistical Methods for Sustainable Maintenance in Automotive Assembly Equipment. Sustainability 2023, 15, 15604. https://doi.org/10.3390/su152115604
Bucay-Valdiviezo J, Escudero-Villa P, Paredes-Fierro J, Ayala-Chauvin M. Leveraging Classical Statistical Methods for Sustainable Maintenance in Automotive Assembly Equipment. Sustainability. 2023; 15(21):15604. https://doi.org/10.3390/su152115604
Chicago/Turabian StyleBucay-Valdiviezo, Juan, Pedro Escudero-Villa, Jenny Paredes-Fierro, and Manuel Ayala-Chauvin. 2023. "Leveraging Classical Statistical Methods for Sustainable Maintenance in Automotive Assembly Equipment" Sustainability 15, no. 21: 15604. https://doi.org/10.3390/su152115604
APA StyleBucay-Valdiviezo, J., Escudero-Villa, P., Paredes-Fierro, J., & Ayala-Chauvin, M. (2023). Leveraging Classical Statistical Methods for Sustainable Maintenance in Automotive Assembly Equipment. Sustainability, 15(21), 15604. https://doi.org/10.3390/su152115604