Strategies and Actions for Achieving Carbon Neutrality in Portuguese Residential Buildings by 2050
Abstract
:1. Introduction
2. Materials and Methods
2.1. Housing Stock Conditions
2.2. Characterisation of the Reference Building
2.3. Renovation Scenarios
2.4. Cost-Optimal Assessment
2.5. Study Limitations
3. Results and Discussion
4. Policy Recommendations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Koutra, S. From ‘Zero’ to ‘Positive’ Energy Concepts and from Buildings to Districts—A Portfolio of 51 European Success Stories. Sustainability 2022, 14, 15812. [Google Scholar] [CrossRef]
- European Climate Foundation. Fit for 55. Available online: https://europeanclimate.org/fit-for-55/ (accessed on 26 September 2022).
- International Energy Agency. Net Zero by 2050: A Roadmap for the Global Energy Sector; International Energy Agency: Paris, France, 2021; 224p. [Google Scholar]
- International Energy Agency. Energy Technology Perspectives 2020; International Energy Agency: Paris, France, 2020. [Google Scholar]
- Economidou, M.; Todeschi, V.; Bertoldi, P.; D’Agostino, D.; Zangheri, P.; Castellazzi, L. Review of 50 years of EU energy efficiency policies for buildings. Energy Build. 2020, 225, 110322. [Google Scholar] [CrossRef]
- Del Serrone, G.; Peluso, P.; Moretti, L. Photovoltaic road pavements as a strategy for low-carbon urban infrastructures. Heliyon 2023, 9, e19977. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Ma, T.; Yang, H.; Cao, S.; Wang, Y. Solar energy harvesting from the photovoltaic/thermal (PV/T) pavement: Energy performance analyses and comparison considering ground influence. Sustain. Cities Soc. 2023, 99, 104895. [Google Scholar] [CrossRef]
- European Commission. Directive (EU) 2018/844. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32018L0844&from=EN (accessed on 26 September 2022).
- Wilson, A. BRIEFING, EU Legislation in Progress, Revision of the Energy Performance of Buildings Directive: Fit for 55 Package; Energy Performance of Buildings Directive (EPBD): Coimbra, Portugal, 2022. [Google Scholar]
- Alavirad, S.; Mohammadi, S.; Hoes, P.-J.; Xu, L.; Hensen, J.L.M. Future-Proof Energy-Retrofit strategy for an existing Dutch neighbourhood. Energy Build. 2022, 260, 111914. [Google Scholar] [CrossRef]
- Galimshina, A.; Moustapha, M.; Hollberg, A.; Padey, P.; Lasvaux, S.; Sudret, B.; Habert, G. What is the optimal robust environmental and cost-effective solution for building renovation? Not the usual one. Energy Build. 2021, 251, 111329. [Google Scholar] [CrossRef]
- Palma, P.; Gouveia, J.P.; Barbosa, R. How much will it cost? An energy renovation analysis for the Portuguese dwelling stock. Sustain. Cities Soc. 2022, 78, 103607. [Google Scholar] [CrossRef]
- Terés-Zubiaga, J.; Bolliger, R.; Almeida, M.G.; Barbosa, R.; Rose, J.; Thomsen, K.E.; Montero, E.; Briones-Llorente, R. Cost-effective building renovation at district level combining energy efficiency & renewables—Methodology assessment proposed in IEA EBC Annex 75 and a demonstration case study. Energy Build. 2020, 224, 110280. [Google Scholar] [CrossRef]
- The World Bank. State and Trends of Carbon Pricing 2022; World Bank: Washington, DC, USA, 2022. [Google Scholar]
- Amoruso, F.M.; Schuetze, T. Life cycle assessment and costing of carbon neutral hybrid-timber building renovation systems: Three applications in the Republic of Korea. Build. Environ. 2022, 222, 109395. [Google Scholar] [CrossRef]
- Almeida, M.; Ferreira, M.; Barbosa, R. Relevance of Embodied Energy and Carbon Emissions on Assessing Cost Effectiveness in Building Renovation—Contribution from the Analysis of Case Studies in Six European Countries. Buildings 2018, 8, 103. [Google Scholar] [CrossRef]
- PORDATA (Contemporary Portugal Database). Buildings According to the Census: Total and by Type. Available online: https://www.pordata.pt/Portugal/Edifícios+segundo+os+Censos+total+e+por+tipo-94 (accessed on 6 May 2022).
- Portuguese Republic. ELPRE, Long-Term Building Renovation Strategy by 2050; DGEG—Direção Geral de Energia e Geologia: Lisbon, Portugal, 2021; pp. 2–103. [Google Scholar]
- Portuguese Republic. Long-Term National Strategy Against Energy Poverty Proposal; DGEG—Direção Geral de Energia e Geologia: Lisbon, Portugal, 2021. [Google Scholar]
- Instituto Nacional de Estatística (INE). 2020 Survey on Income and Living Conditions. Available online: https://www.ine.pt/xportal/xmain?xpid=INE&xpgid=ine_destaques&DESTAQUESdest_boui=415625695&DESTAQUESmodo=2 (accessed on 20 September 2022).
- Instituto Nacional de Estatística (INE). 2011 Census Definitive Results—Portugal; Instituto Nacional de Estatística (INE): Lisbon, Portugal, 2011. [Google Scholar]
- INE (Instituto Nacional de Estatística). 2021 Census Preliminary Results—Buildings per Geographic Location and Construction Period. Available online: https://www.ine.pt/xportal/xmain?xpid=INE&xpgid=ine_indicadores&indOcorrCod=0011155&xlang=pt (accessed on 20 September 2022).
- Instituto Nacional de Estatística (INE). ICESD 2020, Preliminary Results of the Survey on Energy Consumption in the Domestic Sector 2020; Instituto Nacional de Estatística (INE): Lisbon, Portugal, 2021. [Google Scholar]
- Gouveia, J.P.; Palma, P. Energy Efficiency of the Housing Stock in Portugal. EP-Pedia, ENGAGER COST Action. 2021. Available online: https://www.eppedia.eu/article/energy-efficiency-housing-stock-portugal (accessed on 26 September 2022).
- Magalhães, S.A.; De Freitas, V.P. A complementary approach for energy efficiency and comfort evaluation of renovated dwellings in Southern Europe. Energy Procedia 2017, 132, 909–914. [Google Scholar] [CrossRef]
- Kotchen, M.J. Longer-run evidence on whether building energy codes reduce residential energy consumption. J. Assoc. Environ. Resour. Econ. 2017, 4, 135–153. [Google Scholar] [CrossRef]
- Portuguese Republic. PNEC 2030, National Energy and Climate Plan 2021–2030; Portuguese Environment Agency (APA): Lisbon, Portugal, 2020; pp. 2–158. [Google Scholar]
- Portuguese Republic. RNC 2050, Roadmap for Carbon Neutrality 2050; Portuguese Republic: Lisbon, Portugal, 2019; pp. 3208–3299. [Google Scholar]
- INE. Populational Density. Available online: https://www.pordata.pt/Municipios/Densidade+populacional-452 (accessed on 27 September 2022).
- Portuguese Republic. Despacho (extrato) 15793-K/2013; Portuguese Republic: Lisbon, Portugal, 2013. [Google Scholar]
- E. and S. Itecons—Institute for Research and Technological Development in Construction, Energy. Calculation Tools DL 101-D/2020. Available online: http://www.itecons.uc.pt/p3e/index.php (accessed on 20 October 2022).
- IPCC (Intergovernmental Panel on Climate Change)/TEAP (Technology and Economic Assessment Panel). Safeguarding the Ozone Layer and the Global Climate System; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Almeida, M.; Ferreira, M. Cost effective energy and carbon emissions optimization in building renovation (Annex 56). Energy Build. 2017, 152, 718–738. [Google Scholar] [CrossRef]
- European Commission. Directive 2010/31/EU of the European Parliament and of the Council of 19 May 2010 on the Energy Performance of Buildings. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32010L0031&from=EN (accessed on 26 September 2022).
- Official Journal of the European Union. Commission Delegated Regulation (EU) No 244/2012. European Commission. 2012. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32012R0244 (accessed on 25 September 2023).
- Gerador de Preços Para Construção Civil. Portugal. CYPE Ingenieros, S.A. Available online: http://www.geradordeprecos.info/ (accessed on 28 November 2021).
- Almeida, M.; Barbosa, R.; Malheiro, R. Effect of embodied energy on cost-effectiveness of a prefabricated modular solution on renovation scenarios in social housing in Porto, Portugal. Sustainability 2020, 12, 1631. [Google Scholar] [CrossRef]
- Barbosa, R.; Almeida, M.; Briones-Llorente, R.; Mateus, R. Environmental Performance of a Cost-Effective Energy Renovation at the Neighbourhood Scale—The Case for Social Housing in Braga, Portugal. Sustainability 2022, 14, 1947. [Google Scholar] [CrossRef]
- Attia, S.; Benzidane, C.; Rahif, R.; Amaripadath, D.; Hamdy, M.; Holzer, P.; Koch, A.; Maas, A.; Moosberger, S.; Petersen, S.; et al. Overheating calculation methods, criteria, and indicators in European regulation for residential buildings. Energy Build. 2023, 292, 113170. [Google Scholar] [CrossRef]
- Resende, J.; Corvacho, H. The nZEB Requirements for Residential Buildings: An Analysis of Thermal Comfort and Actual Energy Needs in Portuguese Climate. Sustainability 2021, 13, 8277. [Google Scholar] [CrossRef]
- Monzón-Chavarrías, M.; López-Mesa, B.; Resende, J.; Corvacho, H. The nZEB concept and its requirements for residential buildings renovation in Southern Europe: The case of multi-family buildings from 1961 to 1980 in Portugal and Spain. J. Build. Eng. 2021, 34, 101918. [Google Scholar] [CrossRef]
- Corvacho, H.; Alves, F.B.; Rocha, C. A Reflection on Low Energy Renovation of Residential Complexes in Southern Europe. Sustainability 2016, 8, 987. [Google Scholar] [CrossRef]
- Blázquez, T.; Mora, T.D.; Ferrari, S.; Romagnoni, P.; Teso, L.; Zagarella, F. Renovating Building Groups in the Mediterranean Climate: Cost-Effectiveness of Renewable-Based Heating Alternatives in the Italian Context. Sustainability 2022, 14, 12303. [Google Scholar] [CrossRef]
- Palma, R.M.; Ramos, J.S.; Delgado, M.G.; Amores, T.R.P.; D’Angelo, G.; Domínguez, S.Á. Extending the concept of high-performance buildings to existing dwellings. Energy Build. 2023, 296, 113431. [Google Scholar] [CrossRef]
- Carbon Offsetting Is Essential to Tackling Climate Change. The Economist, 21 May 2020.
- Palma, P.; Gouveia, J.P.; Simoes, S.G. Mapping the energy performance gap of dwelling stock at high-resolution scale: Implications for thermal comfort in Portuguese households. Energy Build. 2019, 190, 246–261. [Google Scholar] [CrossRef]
- Too, J.; Ejohwomu, O.A.; Hui, F.K.P.; Duffield, C.; Bukoye, O.T.; Edwards, D.J. Framework for standardising carbon neutrality in building projects. J. Clean. Prod. 2022, 373, 133858. [Google Scholar] [CrossRef]
- IEA International Energy Agency. All Countries Targeted for Zero-Carbon-Ready Codes for New Buildings by 2030. Available online: https://www.iea.org/reports/all-countries-targeted-for-zero-carbon-ready-codes-for-new-buildings-by-2030-2 (accessed on 22 October 2022).
- Zancanella, P.; Bertoldi, P.; Boza-Kiss, B.; European Commission, Joint Research Centre. Energy Efficiency, the Value of Buildings and the Payment Default Risk. 2018. Available online: https://data.europa.eu/doi/10.2760/267367 (accessed on 26 September 2022).
- Murphy, L. The influence of energy audits on the energy efficiency investments of private owner-occupied households in the Netherlands. Energy Policy 2014, 65, 398–407. [Google Scholar] [CrossRef]
- IEA EBC Annex 75—Cost-Effective Building Renovation at District Level Combining Energy Efficiency & Renewables. Available online: https://annex75.iea-ebc.org/Default.aspx (accessed on 20 September 2022).
- Koutra, S.; Terés-Zubiaga, J.; Bouillard, P.; Becue, V. ‘Decarbonizing Europe’ A critical review on positive energy districts approaches. Sustain. Cities Soc. 2023, 89, 104356. [Google Scholar] [CrossRef]
- Ferreira, M.; Almeida, M.; Rodrigues, A. Impact of co-benefits on the assessment of energy related building renovation with a nearly-zero energy target. Energy Build. 2017, 152, 587–601. [Google Scholar] [CrossRef]
- Pozzi, M.; Spirito, G.; Fattori, F.; Dénarié, A.; Famiglietti, J.; Motta, M. Synergies between buildings retrofit and district heating. The role of DH in a decarbonized scenario for the city of Milano. Energy Rep. 2021, 7, 449–457. [Google Scholar] [CrossRef]
- Husiev, O.; Campos-Celador, A.; Álvarez-Sanz, M.; Terés-Zubiaga, J. Why district renovation is not leading the race? Critical assessment of building renovation potential under different intervention levels. Energy Build. 2023, 295, 113288. [Google Scholar] [CrossRef]
Area (m2) | 155 |
Construction period | 1991–2012 |
Floors | 2 |
Thermal inertia | medium |
Window area (m2) | 31 |
Opaque area (m2) | 152 |
Floor-to-ceiling height (m) | 2.6 |
Building colour | light |
Solar protection | exterior blinds |
Domestic hot water | gas boiler |
Heating system 1 | electric heater |
Cooling System 1 | air conditioning |
(a) | ||||||
Reference building | Passive-only (P01) | Active-only (P02) | ||||
solution | performance | solution | performance | solution | performance | |
external walls | hollow brick (11 + 11 cm) + XPS 1 30 mm | U = 0.92 W/m2·°C | ETIC EPS 2 60 mm | U = 0.47 W/m2·°C | original | U = 0.92 W/m2·°C |
roof | lightened slab + XPS 30 mm | U = 0.94 W/m2·°C | XPS 80 mm | U = 0.38 W/m2·°C | original | U = 0.94 W/m2·°C |
windows | metal frame with exterior plastic shutters | U = 3.10 W/m2·°C | double glass | U = 1.60 W/m2·°C | original | U = 3.10 W/m2·°C |
DHW | gas water heater | η = 0.80 | original | η = 0.80 | heat pump | COP = 3.10 |
heating | electric heater (by default) | η = 1.00 | original | η = 1.00 | AC | COP = 3.80 |
cooling | air conditioning (by default) | COP = 3.00 | original | COP = 3.00 | AC | COP = 3.50 |
RES | - | - | - | - | - | - |
(b) | ||||||
Regulation (P03) | Better solutions + PV (P04) | Better solutions + 2× PV (P05) | ||||
solution | performance | solution | performance | solution | performance | |
external walls | ETICS EPS 60mm | U = 0.47 W/m2·°C | ETICS EPS 120 mm | U = 0.27 W/m2·°C | ETICS EPS 120 mm | U = 0.27 W/m2·°C |
roof | XPS 80mm | U = 0.38 W/m2·°C | XPS 80 mm | U = 0.38 W/m2·°C | XPS 80 mm | U = 0.38 W/m2·°C |
windows | double glass | U = 1.60 W/m2·°C | gas double glass | U = 1.10 W/m2·°C | gas double glass | U = 1.10 W/m2·°C |
DHW | heat pump | COP = 3.10 | heat pump | COP = 3.60 | heat pump | COP = 3.60 |
heating | heat pump + AC | COP = 3.80 | AC | COP = 5.48 | AC | COP = 5.48 |
cooling | AC | COP = 3.50 | AC | COP = 4.40 | AC | COP = 4.40 |
RES | PV (8 m2) | 2800 kWh | PV (8 m2) | 2800 kWh | PV (12 m2) | 5600 kWh |
(a) | ||||||||||
Reference building (anyway measures) | Passive-only (P01) | Active-only (P02) | ||||||||
description | initial costs (EUR/m2) | maintenance costs (EUR/year·m2) | description | initial costs (EUR/m2) | maintenance costs (EUR/year·m2) | description | initial costs (EUR/m2) | maintenance costs (EUR/year·m2) | ||
passive solutions | external walls | painting and maintenance | 10.55 | 1.85 | ETICS (EPS 60 mm) | 62.45 | 0.69 | painting and maintenance | 10.55 | 1.85 |
flat roof | maintenance | 31.97 | 0.13 | external insulation XPS 80 mm | 59.53 | 0.18 | maintenance | 31.97 | 0.13 | |
windows | maintenance | 62.82 | - | double glazing aluminium frame 1.6 | 912.54 | 12.78 | maintenance | 62.82 | - | |
active solutions | heating | electric heater | 7.00 | 0.12 | electric heater | 7.00 | 0.12 | air-to-air reversible heat pump + AC unit | 61.16 | 3.91 |
cooling | AC unit | 45.77 | 1.25 | AC unit | 45.77 | 1.25 | ||||
DHW | gas boiler | 10.23 | 0.97 | gas boiler | 10.23 | 0.97 | electric boiler | 2.30 | 0.17 | |
RES | - | - | - | - | - | - | - | - | - | |
(b) | ||||||||||
Regulation (P03) | Better solutions + PV (P04) | Better solutions + 2× PV (P05) | ||||||||
description | initial costs (EUR/m2) | maintenance costs (EUR/year·m2) | description | initial costs (EUR/m2) | maintenance costs (EUR/year·m2) | description | initial costs (EUR/m2) | maintenance costs (EUR/year ·m2) | ||
passive solutions | external walls | ETICS (EPS 60 mm) | 62.45 | 0.69 | ETICS (EPS 120 mm) | 74.67 | 0.77 | ETICS (EPS 120 mm) | 74.67 | 0.77 |
flat roof | external insulation XPS 80 mm | 59.53 | 0.18 | external insulation XPS 80 mm | 59.53 | 0.18 | external insulation XPS 80 mm | 59.53 | 0.18 | |
windows | double glazing aluminium frame U = 1.6 W/m2°C | 912.54 | 12.78 | double glazing aluminium frame U = 1.1 W/m2°C | 1025.42 | 14.35 | double glazing aluminium frame U = 1.1 W/m2°C | 1025.42 | 14.35 | |
active solutions | heating | air-to-air reversible heat pump + AC | 61.16 | 3.91 | air-to-air reversible heat pump + AC + radiant floor | 265.24 | 7.79 | air-to-air reversible heat pump + AC + radiant floor | 265.24 | 7.79 |
cooling | ||||||||||
DHW | electric boiler | 2.30 | 0.17 | |||||||
RES | PV panels 2800 kWh | 440.02 | - | PV panels 2800 kWh | 440.02 | - | PV panels 5600 kWh | 880.04 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reis, D.C.; De Domenico, A.T.; Lopes, L.; Almeida, M. Strategies and Actions for Achieving Carbon Neutrality in Portuguese Residential Buildings by 2050. Sustainability 2023, 15, 15626. https://doi.org/10.3390/su152115626
Reis DC, De Domenico AT, Lopes L, Almeida M. Strategies and Actions for Achieving Carbon Neutrality in Portuguese Residential Buildings by 2050. Sustainability. 2023; 15(21):15626. https://doi.org/10.3390/su152115626
Chicago/Turabian StyleReis, Daniel Costa, Anita Tan De Domenico, Lucas Lopes, and Manuela Almeida. 2023. "Strategies and Actions for Achieving Carbon Neutrality in Portuguese Residential Buildings by 2050" Sustainability 15, no. 21: 15626. https://doi.org/10.3390/su152115626
APA StyleReis, D. C., De Domenico, A. T., Lopes, L., & Almeida, M. (2023). Strategies and Actions for Achieving Carbon Neutrality in Portuguese Residential Buildings by 2050. Sustainability, 15(21), 15626. https://doi.org/10.3390/su152115626