Hydrochemical and Microbiological Investigations and the Therapeutic Potential of Some Mineral Waters from Bihor County, Romania
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Determination of Physical-Chemical Characteristics
2.2.1. Sampling of Natural Mineral Waters
2.2.2. The Methodology for Determining the Main Physical–Chemical Indicators
2.3. The Methodology for Determining the Microbiological Load
2.4. Questionnaire Content
3. Results and Discussion
3.1. Research Background
3.2. Physical-Chemical Indicators
3.2.1. Hydrochemical Characterization
3.2.2. Chemical Composition of Natural Mineral Waters
- The mineral water from Tămășeu is predominantly sodium bicarbonate (Na-HCO3−),
- The mineral water from Sîntimreu is mixed calcium-magnesian bicarbonate type (Ca-Mg-HCO3−),
- The mineral water from Pădurea Neagră is predominantly calcium bicarbonate (Ca-HCO3−).
3.3. Microbiological Characterization
3.4. Analysis of the Questionnaire
3.4.1. The Quality and the Effect of Mineral Waters on Health
3.4.2. The Socio-Demographic Situation of the Respondents
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rani, B.; Maheshwari, R.; Garg, A.; Prasad, M. Bottled Water—A Global Market Overview. Bull. Environ. Pharmacol. Life Sci 2012, 1, 1–4. [Google Scholar]
- Bodor, K.; Bodor, Z.; Szép, A.; Szép, R. Classification and Hierarchical Cluster Analysis of Principal Romanian Bottled Mineral Waters. J. Food Compos. Anal. 2021, 100, 103903. [Google Scholar] [CrossRef]
- Whelton, A.J.; Dietrich, A.M.; Burlingame, G.A.; Schechs, M.; Duncan, S.E. Minerals in Drinking Water: Impacts on Taste and Importance to Consumer Health. Water Sci. Technol. 2007, 55, 283–291. [Google Scholar] [CrossRef] [PubMed]
- Report on the Sectoral Investigation on the Exploitation Market of Natural Mineral Water Resources in Romania Initiated by the Order of the President of the Competition Council No. 177/29.02.2016; European Commission: Brussels, Belgium, 2016.
- Mititelu, M.; Morosan, E.; Udeanu, D. The Therapeutic Value of Mineral Waters. Farmacist.ro 2018, 184, 23–36. [Google Scholar] [CrossRef]
- Feru, A. Ghidul Apelor Minerale Naturale (Guide to Natural Mineral Waters); APEMIN Patronatul Apelor Minerale: Bucharest, Romania, 2012. [Google Scholar]
- H.G. Nr. 1020/2005 Pentru Aprobarea Normelor Tehnice de Exploatare Și Comercializare a Apelor Minerale Naturale (Government Decision. No. 1020/2005 for the Approval of the Technical Norms for Exploitation and Commercialization of Natural Mineral Waters). Available online: http://www.namr.ro/wp-content/uploads/2013/02/hotarare1020.pdf (accessed on 13 June 2023).
- Council Directive 80/777/EEC of 15 July 1980 on the Approximation of the Laws of the Member States Relating to the Exploitation and Marketing of Natural Mineral Waters. Available online: Http://Data.Europa.Eu/Eli/Dir/1980/777/Oj (accessed on 23 February 2023).
- Teodoreanu, E.; Gaceu, O. Turismul Balneoclimatic În România (Balneoclimatic Tourism in Romania); Editura Universităţii din Oradea: Oradea, Romania, 2013; ISBN 978-606-10-1083-7. [Google Scholar]
- Moss, G.A. Water and Health: A Forgotten Connection? Perspect. Public Health 2010, 130, 227–232. [Google Scholar] [CrossRef] [PubMed]
- Dumitrescu, M.; Iliescu, M.G.; Mazilu, L.; Micu, S.I.; Suceveanu, A.P.; Voinea, F.; Voinea, C.; Stoian, A.P.; Suceveanu, A.-I. Benefits of Crenotherapy in Digestive Tract Pathology. Exp. Ther. Med. 2022, 23, 122. [Google Scholar] [CrossRef] [PubMed]
- Munteanu, C. Ape Minerale Terapeutice (Therapeutic Mineral Waters); Editura Balneară: Bucharest, Romania, 2013. [Google Scholar]
- Mennuni, G.; Serio, A.; Fontana, M.; Nocchi, S.; Costantino, C.; Tanzi, G.; Stornelli, G.; Fraioli, A. Prevention and Treatment of Nephrolithiasis: A Review on the Role of Spa Therapy. Clin. Ter. 2015, 166, e344–e356. [Google Scholar] [CrossRef]
- Lo, J.A.; Kim, J.S.; Jo, M.J.; Cho, E.J.; Ahn, S.Y.; Ko, G.J.; Kwon, Y.J.; Kim, J.E. Impact of Water Consumption on Renal Function in the General Population: A Cross-Sectional Analysis of KNHANES Data (2008-2017). Clin. Exp. Nephrol. 2021, 25, 376–384. [Google Scholar] [CrossRef]
- Siener, R.; Jahnen, A.; Hesse, A. Influence of a Mineral Water Rich in Calcium, Magnesium and Bicarbonate on Urine Composition and the Risk of Calcium Oxalate Crystallization. Eur. J. Clin. Nutr. 2004, 58, 270–276. [Google Scholar] [CrossRef]
- Costantino, M.; Izzo, V.; Conti, V.; Manzo, V.; Guida, A.; Filippelli, A. Sulphate Mineral Waters: A Medical Resource in Several Disorders. J. Tradit. Complement. Med. 2020, 10, 320–326. [Google Scholar] [CrossRef]
- Nimmagadda, S.V.; Schmale, I.L.; Man, L.-X. Crenotherapy as a Complementary and Integrative Treatment for Chronic Rhinosinusitis: A Systematic Review and Discussion of Current Evidence Limitations. Am. J. Rhinol. Allergy 2022, 36, 529–538. [Google Scholar] [CrossRef]
- Cantone, E.; Maione, N.; Di Rubbo, V.; Esposito, F.; Iengo, M. Olfactory Performance after Crenotherapy in Chronic Rhinosinusitis in the Elderly. Laryngoscope 2015, 125, 1529–1534. [Google Scholar] [CrossRef]
- Carbajo, J.M.; Maraver, F. Sulphurous Mineral Waters: New Applications for Health. Evid.-Based Complement. Altern. Med. 2017, 2017, 8034084. [Google Scholar] [CrossRef] [PubMed]
- Holwerda, K.M.; Karumanchi, S.A.; Lely, A.T. Hydrogen Sulfide: Role in Vascular Physiology and Pathology. Curr. Opin. Nephrol. Hypertens. 2015, 24, 170–176. [Google Scholar] [CrossRef] [PubMed]
- Feliers, D.; Lee, H.J.; Kasinath, B.S. Hydrogen Sulfide in Renal Physiology and Disease. Antioxid. Redox Signal. 2016, 25, 720–731. [Google Scholar] [CrossRef] [PubMed]
- Costantino, M.; Conti, V.; Corbi, G.; Filippelli, A. Hydropinotherapy with Sulphurous Mineral Water as Complementary Treatment to Improve Glucose Metabolism, Oxidative Status, and Quality of Life. Antioxidants 2021, 10, 1773. [Google Scholar] [CrossRef]
- Buret, A.G.; Allain, T.; Motta, J.-P.; Wallace, J.L. Effects of Hydrogen Sulfide on the Microbiome: From Toxicity to Therapy. Antioxid. Redox Signal. 2022, 36, 211–219. [Google Scholar] [CrossRef] [PubMed]
- Ciurba, A.-P.; Haidu, I.; Ianc, D. Administrative Aspects Regarding the Valorisation of Geothermal Waters for Balneological Purposes in Bihor County, Romania. Sustainability 2023, 15, 10320. [Google Scholar] [CrossRef]
- Tătar, F.C.; Dincă, I.; Linc, R.; Stupariu, M.; Bucur, L.; Stașac, M.; Nistor, S. Oradea Metropolitan Area as a Space of Interspecific Relations Triggered by Physical and Potential Tourist Actvities. Sustainability 2023, 15, 3136. [Google Scholar] [CrossRef]
- Gavriliuc, R.; Rosca, M.; Cucueteanu, D. Geothermal Energy Use, Country Update for Romania. European Geothermal Congress. Available online: https://europeangeothermalcongress.eu/wp-content/uploads/2019/07/CUR-23-Romania.pdf (accessed on 15 November 2022).
- Antal, C.; Setel, A. Exploitability of Geothermal Resources in Pannonia Depression. Analele Univ. Din Oradea Fasc. Energetică 2009, 15, 154–157. [Google Scholar]
- Roba, C.; Olah, Ş. Încălzirea Serelor Din Livada (Județul Bihor) Cu Apă Geotermală (Heating the Greenhouses in Livada (Bihor County) with Geothermal Water). In Environment and Progress; Editura Efes: Cluj-Napoca, Romania, 2007; pp. 391–395. [Google Scholar]
- Orășeanu, I. Hidrogeologia Carstului Din Munții Apuseni (Karst Hydrogeology of the Apuseni Mountains); Editura Belvedere: Oradea, Romania, 2016. [Google Scholar]
- Kahane, S.; Stoicescu, S.; Demayo, B.; Leonte, E. Aspecte Experimentale Privind Acţiunea Diuretică a Apei Minerale de La Tinca, În Studii Şi Cercetări de Balneologie Şi Fizioterapie (Experimental Aspects Regarding the Diuretic Action of the Mineral Water from Tinca, in Balneology and Physiotherapy Studies and Research); Editura Medicală: Bucharest, Romania, 1965; Volume 7. [Google Scholar]
- Orășeanu, I. Consideraţii Privind Stabilitatea Chimică a Apei Unor Izvoare Din Zona Stâna de Vale (Masivul Vlădeasa) (Considerations Regarding the Chemical Stability of the Water of Some Springs in the Stâna de Vale Area (Vlădeasa Massif)); 100 de ani de Hidrogeologie Modernă în România; edition II; Belvedere Publishing House: Oradea, Romania, 2000. [Google Scholar]
- Szabó, J. Ismeretlen Érmellék—Irasban És Kepben; Varadinum Script: Oradea, Romania, 2018. [Google Scholar]
- Pricăjan, A. Apele Minerale Şi Termominerale Din România (Mineral and Thermal Mineral Waters from Romania); Editura Tehnică: Bucharest, Romania, 1972. [Google Scholar]
- Berlescu, E.; Chiorean, T.; Cociașiu, E.; Constantinescu, D.; Dinculescu, T.; Opreanu, I.; Stoia, I.; Șdic, I.; Ștefănescu, S.; Suciu, D.; et al. Indicații Și Contraindicații Pentru Tratamente În Stațiunile Balneo-Climaterice Din Republica Populară Romînă (Indications and Contraindications for Treatments in Balneo-Climate Resorts in the Romanian People’s Republic); Institutul de Balneologie și Fizioterapie: Bucharest, Romania, 1960. [Google Scholar]
- Binștoc, O. Cura Cu Factori Naturali În Stațiunile Balneoclimaterice Și La Domiciliu (Cure with Natural Factors in Spas and at Home); Editura Medicală: Bucharest, Romania, 1962. [Google Scholar]
- Aniței, L.; Băican, I.; Berlescu, E.; Chirvasie, L.; Conu, A.; Degeratu, C.; Dumitrescu, S.; Florian, M.; Samson Gheorghievici, S.; Gavrilescu, M.; et al. Cura Balneoclimatică. Indicații Și Contraindicații (Balneoclimatic Cure. Indications and Contraindications); Editura Medicală: Bucharest, Romania, 1986. [Google Scholar]
- Monitorul Oficial 103 Din 07.02.2023, Lista Apelor Minerale Naturale Recunoscute În România (Official Gazette 103 of 07.02.2023, List of Natural Mineral Waters Recognized in Romania). Available online: https://Lege5.Ro/Gratuit/Geztgmbwgu2te/Ordinul-Nr-116-2023-Privind-Aprobarea-Listei-Apelor-Minerale-Naturale-Recunoscute-in-Romania (accessed on 19 December 2022).
- Directive 2009/54/EC of the European Parliament and of the Council of 18 June 2009 on the Exploitation and Marketing of Natural Mineral Waters. Available online: https://Eur-Lex.Europa.Eu/LexUriServ/LexUriServ.Do?Uri=OJ:L:2009:164:0045:0058:EN:PDF (accessed on 14 March 2023).
- H.G. Nr. 532 Din 2 Iunie 2010 Privind Modificarea Si Completarea Normelor Tehnice de Exploatare Si Comercializare a Apelor Minerale Naturale, Aprobate Prin HG Nr. 1020/2005, Publicat În Monitorul Oficial Nr. 400 Din 16 Iunie 2010 (Government Decision No. 532 of June 2, 2010 Regarding the Modification and Completion of the Technical Norms for Exploitation and Commercialization of Natural Mineral Waters, Approved by HG No. 1020/2005, Published in the Official Gazette NO. 400 of June 16, 2010). Available online: https://Legislatie.Just.Ro/Public/DetaliiDocumentAfis/11958 (accessed on 20 November 2022).
- Tapias, J.C.; Melián, R.; Sendrós, A.; Font, X.; Casas, A. Geochemical Characterisation and Health Concerns of Mineral Bottled Waters in Catalonia (North-Eastern Spain). Water 2022, 14, 3581. [Google Scholar] [CrossRef]
- SR EN ISO 19458/2007; Water Quality. Sampling for Microbiological Analysis Asociatia de Standardizare Din România: București (Mohr Method). Romanian Standardization Association: Bucharest, Romania, 2007.
- SR ISO 10523: 2012; Water Quality. Determination of PH. Asociatia de Standardizare Din România: Bucharest, Romania, 2012.
- SR EN 27888:1997; Water Quality. Determination of Electrical Conductivity. Asociatia de Standardizare Din România (Romanian Standardization Association, Bucharest): Bucharest, Romania, 1997.
- SR EN ISO 7899-2:2002; Water Quality. Detection and Enumeration of Intestinal Enterococci—Part 2: Membrane Fil-Tration Method. Asociatia de Standardizare Din România (Romanian Standardization Association): Bucharest, Romania, 2002.
- ISO 9964-3:1993; Water Quality—Determination of Sodium and Potassium—Part 3: Determination of Sodium and Potassium by Flame Emission Spectrometry. ISO: Geneva, Switzerland.
- SR EN ISO 11885:2007; Water Quality—Determination of Selected Elements by Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES). ISO: Geneva, Switzerland, 2007.
- SR 13315:1996/C91:2008; Water quality. Determination of iron content by flame atomic absorption spectrometry. Asociația de Standardizare Din România (Romanian Standardization Association: Bucharest, Romania, 2008.
- SR 8662/2-1996; Water Quality. Determination of Manganese Content. Atomic Absorption Spectrometric Method. Available online: https://Magazin.Asro.Ro/Ro/Standard/11710 (accessed on 4 November 2022).
- SR ISO 9297-2001; Water Quality. Determination of Chloride Content. Titration with Silver Nitrate Using Chromate as Indicator (Mohr Method). Romanian Standardization Association: Bucharest, Romania, 2001.
- US.EPA 375.4-1978; Methods for Chemical Analysis of Water and Wastes. National Institutes of Health: Bethesda, MD, USA. Available online: https://Www.Wbdg.Org/FFC/EPA/EPACRIT/Epa600_4_79_020.Pdf (accessed on 4 November 2022).
- SR ISO 7890-3/2000; Calitatea Apei: Determinarea Conţinutului de Azotaţi: Standard Român: [Data Intrării În Vigoare] Martie 2000. Partea 3. Metoda Spectrometrică Cu Acid Sulfosalicilic (Water Quality: Determination of Nitrate Content: Romanian Standard: [Date of Entry into Force] March 2000. Part 3. Sulfosalicylic Acid Spectrometric Method). ISO: Geneva, Switzerland, 2000.
- SR EN 26777:2002/C91:2006; Water Quality. Determination of Nitrite Content. The Method by Molecular Absorption Spectrometry. Organismul Național de Standardizare: Bucharest, Romania, 2002. Available online: https://Magazin.Asro.Ro/Ro/Standard/113232 (accessed on 28 October 2022).
- SR ISO 9963-2:1997/A99:2002; Water Quality. Alkalinity Determination. Part 1: Determination of Total and Permanent Alkalinity. Romanian Standardization Association: Bucharest, Romania, 2002.
- SR 4450:1997; Water Quality. Determination of Carbon Dioxide (Volumetric Method). Asociația de Standardizare Din România (Romanian Standardization Association): Bucharest, Romania, 1997.
- SR 7510-1997; Water Quality. Determination of Sulphide Content (Iodometric Method). Asociația de Standardizare Din România (Romanian Standardization Association): Bucharest, Romania, 1997.
- STAS 9187-84; Surface Water, Groundwater and Wastewater. Residue Determination. Asociatia de Standardizare Din România: (Romanian Standardization Association): Bucharest, Romania, 1984.
- Piper and Stiff. Available online: https://Halfordhydrology.Com/Piper-and-Stiff/ (accessed on 23 April 2023).
- Leclerc, H.; Moreau, A. Microbiological Safety of Natural Mineral Water. FEMS Microbiol. Rev. 2002, 26, 207–222. [Google Scholar] [CrossRef]
- SR EN ISO 6222:2004; Water Quality. Enumeration of Culturable Micro-Organisms. Colony Count by Inoculation in a Nutrient Agar Culture Medium. Asociatia de Standardizare Din România (Romanian Standardization Association): Bucharest, Romania, 2004.
- SR EN ISO 9308:1:2015/A:2017; Water Quality—Enumeration of Escherichia Coli and Coliform Bacteria—Part 1: Membrane Filtration Method for Waters with Low Bacterial Background Flora. Asociatia de Standardizare Din România (Romanian Standardization Association): Bucharest, Romania, 2017.
- SR EN ISO 16266/2008; Water Quality. Detection and Enumeration of Pseudomonas Aeruginosa. Method by Mem-Brane Filtration. Asociatia de Standardizare Din România (Romanian Standardization Association): Bucharest, Romania, 2008.
- SR EN ISO 14189:2016; Water Quality. Enumeration of Clostridium Perfringens. Method Using Membrane Filtration. Asociatia de Standardizare Din România (Romanian Standardization Association): Bucharest, Romania, 2016.
- Madani, D.; Tarai, N.; Tir, C.; Benchikh, A. The State of Awareness about the Phenomenon of Desertification by the Inhabitants of the Region of Khoubana, M’sila, Algeria. Nat. Resour. Sustain. Dev. 2023, 13, 167–178. [Google Scholar] [CrossRef]
- Wang, W.-C.; Lin, C.-H. A Model for Sustainable Tourism Development of Hot Spring Destinations Following Poverty Alleviation: Understanding the Tourists’ Perspective. Sustainability 2021, 13, 9856. [Google Scholar] [CrossRef]
- Cristescu, C.; Negreș, S.; Suciu, M.; Voicu, A.; Buda, V.; Suciu, L.; Proks, M.; Voicu, M. Study Regarding the Parents’use of Self-Medication among Children under 12 Years Old. Farmacia 2018, 66, 5. [Google Scholar] [CrossRef]
- Roulet, L.; Asseray, N.; Foucher, N.; Potel, G.; Lapeyre-Mestre, M.; Ballereau, F. A Questionnaire to Document Self-Medication History in Adult Patients Visiting Emergency Departments. Pharmacoepidemiol. Drug Saf. 2013, 22, 151–159. [Google Scholar] [CrossRef]
- Jain, P.; Sachan, A.; Singla, R.K.; Agrawal, P. Statistical Study on Self Medication Pattern in Haryana, India. Indo Glob. J. Pharm. Sci. 2012, 2, 21–35. [Google Scholar] [CrossRef]
- Mihăilă, N. Cercetări Hidrogeologice Și Hidrochimice În Cuprinsul Foilor Oradea—Aleșd (Hydrogeological and Hydrochemical Researches within the Oradea—Aleșd Sheets); Institutul Geologic: Bucharest, Romania, 1971. [Google Scholar]
- Nicula, M.A. Caracteristici Geochimice Ale Apelor Termale Și Minerale Din Munții Apuseni (Geochemical Characteristics of Thermal and Mineral Waters from the Apuseni Mountains), Rezumatul Tezei de Doctorat. PhD Thesis, Universitatea Babes-Bolyai, Cluj-Napoca, Romania, 2021. Available online: https://www.frontiersin.org/articles/10.3389/feart.2021.648179/full (accessed on 14 November 2022).
- Strategia de Dezvoltare Locală 2014–2020 a Unității Administrativ-Teritoriale Sălard (Local Development Strategy 2014–2020 of the Sălard Administrative-Territorial Unit). Available online: https://www.cjbihor.ro/wp-content/uploads/2021/11/Strategie_Bihor_2021-2027_final_pentru_consultare_publica.pdf (accessed on 4 November 2022).
- Strategia de Dezvoltare Locală Pentru Perioada 2021–2027 a Unității Administrativ-Teritoriale Sălard (The Local Development Strategy for the Period 2021–2027 of the Sălard Administrative-Territorial Unit). Available online: https://www.google.com.hk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwis---0k5OCAxVzywIHHXosD3oQFnoECBoQAQ&url=https%3A%2F%2Fwww.cjbihor.ro%2Fwp-content%2Fuploads%2F2021%2F02%2FStrategie_Bihor_2021-2027_aprobata_CJ_31_martie.pdf&usg=AOvVaw3zrtBoyRoaOXkAzCdNy4Fk&opi=89978449 (accessed on 4 November 2022).
- Stoicescu, C. Farmacodinamia Apelor Minerale de Cură Internă Din România (The Pharmacodynamics of Internal Cure Mineral Waters from Romania); Editura Academiei: Bucharest, Romania, 1982. [Google Scholar]
- Vernesu, M. Apele Minerale (Mineral Waters); Editura Tehnică: Bucharest, Romania, 1988. [Google Scholar]
- Vannucci, L.; Fossi, C.; Quattrini, S.; Guasti, L.; Pampaloni, B.; Gronchi, G.; Giusti, F.; Romagnoli, C.; Cianferotti, L.; Marcucci, G.; et al. Calcium Intake in Bone Health: A Focus on Calcium-Rich Mineral Waters. Nutrients 2018, 10, 1930. [Google Scholar] [CrossRef]
- Heaney, R.P. Absorbability and Utility of Calcium in Mineral Waters. Am. J. Clin. Nutr. 2006, 84, 371–374. [Google Scholar] [CrossRef]
- Morr, S.; Cuartas, E.; Alwattar, B.; Lane, J.M. How Much Calcium Is in Your Drinking Water? A Survey of Calcium Concentrations in Bottled and Tap Water and Their Significance for Medical Treatment and Drug Administration. HSS J. 2006, 2, 130–135. [Google Scholar] [CrossRef]
- Wynn, E.; Krieg, M.-A.; Aeschlimann, J.-M.; Burckhardt, P. Alkaline Mineral Water Lowers Bone Resorption Even in Calcium Sufficiency: Alkaline Mineral Water and Bone Metabolism. Bone 2009, 44, 120–124. [Google Scholar] [CrossRef]
- Garzon, P.; Eisenberg, M.J. Variation in the Mineral Content of Commercially Available Bottled Waters: Implications for Health and Disease. Am. J. Med. 1998, 105, 125–130. [Google Scholar] [CrossRef]
- Jiang, L.; He, P.; Chen, J.; Liu, Y.; Liu, D.; Qin, G.; Tan, N. Magnesium Levels in Drinking Water and Coronary Heart Disease Mortality Risk: A Meta-Analysis. Nutrients 2016, 8, 5. [Google Scholar] [CrossRef]
- Cîmpean, C.D. O Nouă Metodă de Analiză Informațională a Apelor Minerale Medicinale (A New Method of Informational Analysis of Medicinal Mineral Waters), Rezumatul Tezei de Doctorat. PhD Thesis, UMF Carol Davila, Bucharest, Romania, 2020. Available online: https://Umfcd.Ro/Wpcontent/Uploads/2020/TEZA_DOCTORAT/CIMPEAN_I_CRISTINA_DANIELA/TEZA-Rezumat-Cimpean-Cristina.Pdf (accessed on 15 October 2022).
- Seidel, U.; Baumhof, E.; Hägele, F.A.; Bosy-Westphal, A.; Birringer, M.; Rimbach, G. Lithium-Rich Mineral Water Is a Highly Bioavailable Lithium Source for Human Consumption. Mol. Nutr. Food Res. 2019, 63, 1900039. [Google Scholar] [CrossRef]
- Linc, R.; Ilieș, D. Les Modifications Anthropiques Du Paysage Dans Le Bassin Hydrographique de Barcau (Nord-Ouest de La Roumanie). Riv. Geogr. Ital. 2000, 107, 3–16. [Google Scholar]
- Labenz, J.; Anschütz, M.; Walstab, J.; Wedemeyer, R.-S.; Wolters, H.; Schug, B. Heartburn Relief with Bicarbonate-Rich Mineral Water: Results of the Randomised, Placebo-Controlled Phase-III Trial STOMACH STILL. BMJ Open Gastroenterol. 2023, 10, e001048. [Google Scholar] [CrossRef] [PubMed]
- Capurso, A.; Solfrizzi, V.; Panza, F.; Mastroianni, F.; Torres, F.; Del Parigi, A.; Colacicco, A.M.; Capurso, C.; Nicoletti, G.; Veneziani, B.; et al. Increased Bile Acid Excretion and Reduction of Serum Cholesterol after Crenotherapy with Salt-Rich Mineral Water. Aging 1999, 11, 273–276. [Google Scholar] [CrossRef]
- Crespo, P.-V.; Campos, F.; Leal, M.; Maraver, F. Effects of Sodium Chloride-Rich Mineral Water on Intestinal Epithelium. Experimental Study. Int. J. Environ. Res. Public Health 2021, 18, 3261. [Google Scholar] [CrossRef] [PubMed]
- Mennuni, G.; Petraccia, L.; Fontana, M.; Nocchi, S.; Stortini, E.; Romoli, M.; Esposito, E.; Priori, F.; Grassi, M.; Geraci, A.; et al. The Therapeutic Activity of Sulphate-Bicarbonate-Calcium-Magnesiac Mineral Water in the Functional Disorders of the Biliary Tract. Clin. Ter. 2014, 165, e346–e352. [Google Scholar] [CrossRef]
- Munteanu, C.; Munteanu, D.; Onose, G. Hydrogen Sulfide (H2S)-Therapeutic Relevance in Rehabilitation and Balneotherapy Systematic Literature Review and Meta-Analysis Based on the PRISMA Paradigm. Balneo PRM Res. J. 2021, 12, 176–195. [Google Scholar] [CrossRef]
- Detoxification with Lithia Spring Water—Cleansing the Body. Available online: https://Lithinia.Ro/Detoxifiere-Cu-Apa-de-Izvor-Lithia-Curatarea-Organismului/ (accessed on 10 December 2022).
Indicators/U.M. | Methods of Analysis | Reference Documents |
---|---|---|
Determination of pH | Water quality. Determination of pH (Hanna Instruments HI2020-02 multiparameter, Hanna Instruments, Nusfalau, Romania) | [42] |
Conductivity (μS/cm) | Water quality. Determination of electrical conductivity (Conductometer HI6321, Hanna Instruments, Nusfalău, Romania) | [43] |
Calcium, Magnesium (mg/L) | Water quality. Determination of calcium and magnesium content by flame atomic absorption spectrometry (Perkin Elmer Analyst 800, Perkin Elmer LLC, Rodgau, Germany) | [44] |
Potassium, Sodium, (mg/L) | Water quality. Determination of sodium and potassium. Part 3. Determination of sodium and potassium by flame emission spectrometry (Perkin Elmer Analyst 800, Perkin Elmer LLC, Rodgau, Germany) | [45] |
Lithium (mg/L) | Water quality. Determination of selected elements by inductively coupled plasma optical emission spectrometry (ICPE-9800, Shimadzu, Shimadzu Europa GmbH, Duisburg, Germany) | [46] |
Iron (mg/L) | Water quality. Determination of iron content by flame atomic absorption spectrometry (Perkin Elmer Analyst 800, Perkin Elmer LLC, Rodgau, Germany) | [47] |
Manganese (mg/L) | Water quality. Determination of manganese content by flame atomic absorption spectrometry (Perkin Elmer Analyst 800, Perkin Elmer LLC, Rodgau, Germany) | [48] |
Chloride (mg/L) | Water quality. Determination of chloride content. Volumetric (Mohr Method) | [49] |
Sulfate (mg/L) | Water quality. Turbidimetric determination of sulphates | [50] |
Nitrates (mg/L) | Water quality. Determination of nitrate. Part 3. Spectrometric method using sulfosalicylic acid (HACH DR 3900 spectrophotometer—Hach, Romania) | [51] |
Nitrites (mg/L) | Water quality. Determination of nitrites. Molecular spectrometric absorption method (HACH DR 3900 spectrophotometer—Hach, Romania) | [52] |
HCO3− (mg/L) | Water quality. Determination of alkalinity. Part 2. Determination of carbonate alkalinity (volumetric method) | [53] |
CO2 (mg/L) | Water quality. Determination of carbon dioxide (Volumetric method) | [54] |
H2S (mg/L) | Water quality. Determination of sulphide content (Iodometric method) | [55] |
Dry residue at 180 °C (mg/L) | Water, groundwater and wastewater. Determination of residue. Gravimetric method (Biobase BOV-T30C oven, Biobase, China) | [56] |
Type of Analysis | Methods of Analysis | Reference Documents/ Work Technique |
---|---|---|
Determination of the total colony count (CFU) at 22 °C | Water quality. Enumeration of culture microorganisms. (Colony counting by seeding in agar-agar culture medium at a temperature of 22 °C, incubated for 72 h). | [59] |
Determination of the total colony count (CFU) at 37 °C | Water quality. Enumeration of culture microorganisms. (Colony counting by seeding in agar-agar culture medium at a temperature at 37 °C incubated for 24 h). | [59] |
Determination of Coliform bacteria and isolation of Escherichia coli species | Water quality. Enumeration of Escherichia coli and Coliform bacteria. Part 1: Membrane filtration method. | [60] |
Determination of intestinal Enterococci | Water quality. Detection and enumeration of intestinal enterococci. Part 2: Membrane filtration method. (The determination was made after incubating the membrane for 48 h at 36 °C, on Slanetz–Bartley medium). | [44] |
Pseudomonas aeruginosa | Water quality. Detection and enumeration of Pseudomonas aeruginosa. Membrane filtration method. (Pseudomonas agar/CN—agar medium membrane incubated at 36 °C for 49 h). | [61] |
Clostridium perfringens | Water quality. Enumeration of Clostridium perfringens. Membrane filtration method. | [62] |
Microbiological Indicators | Unit | Results | HG 1020/2005 (Government Decision) | Law 458/2002 | ||
---|---|---|---|---|---|---|
Tămășeu | Sîntimreu | Pădurea Neagră | ||||
The total colony count (CFU) at 22 °C | CFU/mL | No abnormal changes | No abnormal changes | No abnormal changes | 100 | 100 |
The total colony count (CFU) at 37°C | CFU/mL | No abnormal changes | No abnormal changes | No abnormal changes | 20 | 20 |
Total Coliform bacteria and Escherichia coli | CFU/250 mL | 0 | 0 | 0 | absent | 0 |
Intestinal enterococci | CFU/250 mL | 0 | 0 | 0 | absent | 0 |
Pseudomonas aeruginosa | CFU/250 mL | 0 | 0 | 0 | absent | 0 |
Clostridium perfringens | CFU/50 mL | 0 | 0 | 0 | absent | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Linc, R.; Pantea, E.; Șerban, E.; Ciurba, A.-P.; Serban, G. Hydrochemical and Microbiological Investigations and the Therapeutic Potential of Some Mineral Waters from Bihor County, Romania. Sustainability 2023, 15, 15640. https://doi.org/10.3390/su152115640
Linc R, Pantea E, Șerban E, Ciurba A-P, Serban G. Hydrochemical and Microbiological Investigations and the Therapeutic Potential of Some Mineral Waters from Bihor County, Romania. Sustainability. 2023; 15(21):15640. https://doi.org/10.3390/su152115640
Chicago/Turabian StyleLinc, Ribana, Emilia Pantea, Eugenia Șerban, Anca-Paula Ciurba (Pastor), and Georgeta Serban. 2023. "Hydrochemical and Microbiological Investigations and the Therapeutic Potential of Some Mineral Waters from Bihor County, Romania" Sustainability 15, no. 21: 15640. https://doi.org/10.3390/su152115640
APA StyleLinc, R., Pantea, E., Șerban, E., Ciurba, A. -P., & Serban, G. (2023). Hydrochemical and Microbiological Investigations and the Therapeutic Potential of Some Mineral Waters from Bihor County, Romania. Sustainability, 15(21), 15640. https://doi.org/10.3390/su152115640