Ecological Risk Evaluation of Heavy Metals in Soils near a Water Dam in Baljurashi, KSA, and Their Accumulation in Dodonaea viscosa
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Soil Sampling
2.3. Chemical Analysis of Heavy Metals
2.4. Soil Sample Preparation for Metal Analysis
2.5. Plant Sampling
2.6. Analysis of Heavy Metals in Plant Materials
2.7. Quantification of Soil Enrichment by Heavy Metals
2.8. Accumulation and Translocation of Heavy Metals in Different Plant Parts
2.9. Statistical Analysis
3. Results and Discussion
- This study is limited to the ecological risk assessment of priority hazard metals according to ATSDR.
- The study is specifically conducted in a soil site near the Al-Janabeen water reservoir dam at Baljurashi, southwest of Saudi Arabia, and near an old open landfill that does not meet standard criteria, with an assumption that wastes rich in heavy metals from the landfill reach the targeted site easily.
- The study especially examined whether the common plant (D. viscosa), which grows naturally at the study site, has the capacity to phyto-uptake heavy metals and may be an appropriate option for phytoremediation.
3.1. Soil Screening
3.2. Heavy Metals Correlation and Relationship Analysis in Soils
3.3. Ecological Assessment of Soils Quality
3.3.1. Calculations of Single Pollution Indices (CF, EF and Igeo)
3.3.2. Calculations of Integrated Indices (mCd, PLI, PERI and NI)
3.4. Distribution of Heavy Metals of Concern in Plant Parts
3.5. Accumulation and Translocation of Heavy Metals in Different Plant Parts
4. Conclusions
- CF calculations revealed considerable contamination due to Mn, Zn, Co and Cr.
- EF values revealed substantial enrichment due to Cu, Zn and Pb.
- The Igeo values for Cu, Zn and Pb suggested significant contamination.
- The PLI and mCd values were low, indicating that the observed heavy metals caused no major contamination in the soil of the investigated site.
- The obtained PERF and PERI values indicated low ecological risk owing to single heavy metal and the accumulative metals found in the analyzed site.
- The NI calculations revealed that Cu, Zn and Pb are highly polluted in the examined soils.
- The calculated TF and BCF values for the investigated plant components were less than one, indicating a low ability to absorb and accumulate any of the metals of concern studied; hence, it is not a suitable candidate for phytoremediation of heavy metals.
Funding
Data Availability Statement
Conflicts of Interest
References
- Turner, A. Heavy metals in the glass and enamels of consumer container bottles. Environ. Sci. Technol. 2019, 53, 8398–8404. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Hu, L.; Li, S.; Zeng, Q.; Zhong, H.; He, Z. Exploration on the bioreduction mechanisms of Cr(VI) and Hg(II) by a newly isolated bacterial strain Pseudomonas umsongensis CY-1. Ecotoxicol. Environ. Saf. 2020, 201, 110850. [Google Scholar] [CrossRef] [PubMed]
- Gjorgieva Ackova, D. Heavy metals and their general toxicity for plants. Plant Sci. Today 2018, 5, 15–19. [Google Scholar] [CrossRef]
- Zhao, L.; Hu, G.; Yan, Y.; Yu, R.; Cui, J.; Wang, X.; Yan, Y. Source apportionment of heavy metals in urban road dust in a continental city of eastern China: Using Pb and Sr isotopes combined with multivariate statistical analysis. Atmos. Environ. 2019, 201, 201–211. [Google Scholar] [CrossRef]
- Zhang, Y.; Hou, D.; O’connor, D.; Shen, Z.; Shi, P.; Ok, Y.S.; Tsang, D.C.W.; Wen, Y.; Luo, M. Lead contamination in Chinese surface soils: Source identification, spatial-temporal distribution and associated health risks. Crit. Rev. Environ. Sci. Technol. 2019, 49, 1386–1423. [Google Scholar] [CrossRef]
- Butt, A.; Rehman, K.; Khan, M.X.; Hesselberg, T. Bioaccumulation of cadmium, lead, and zinc in agriculture-based insect food chains. Environ. Monit. Assess. 2018, 190, 698. [Google Scholar] [CrossRef] [PubMed]
- Ding, C.; Chen, J.; Zhu, F.; Chai, L.; Lin, Z.; Zhang, K.; Shi, Y. Biological Toxicity of Heavy Metal (loid)s in Natural Environments: From Microbes to Humans. Front. Environ. Sci. 2022, 10, 920957. [Google Scholar] [CrossRef]
- Olaniran, A.O.; Balgobind, A.; Pillay, B. Bioavailability of heavy metals in soil: Impact on microbial biodegradation of organic compounds and possible improvement strategies. Int. J. Mol. Sci. 2013, 14, 10197–10228. [Google Scholar] [CrossRef]
- González Henao, S.; Ghneim-Herrera, T. Heavy Metals in Soils and the Remediation Potential of Bacteria Associated with the Plant Microbiome. Front. Environ. Sci. 2021, 9, 604216. [Google Scholar] [CrossRef]
- ATSDR (Agency for Toxic Substances and Disease Registry). ATSDR’s Substances of Priority List. Available online: https://www.atsdr.cdc.gov/spl/index.html#2022spl (accessed on 3 March 2023).
- Zhai, X.; Li, Z.; Huang, B.; Luo, N.; Huang, M.; Zhang, Q.; Zeng, G. Remediation of multiple heavy metal-contaminated soil through the combination of soil washing and in situ immobilization. Sci. Total Environ. 2018, 635, 92–99. [Google Scholar] [CrossRef] [PubMed]
- Yan, A.; Wang, Y.; Tan, S.N.; Mohd Yusof, M.L.; Ghosh, S.; Chenm, Z. Phytoremediation: A promising approach for revegetation of heavy metal-polluted land. Front. Plant Sci. 2020, 11, 359. [Google Scholar] [CrossRef] [PubMed]
- Kowalska, J.B.; Mazurek, R.; Gasiorek, M.; Zaleski, T. Pollution indices as useful tools for the comprehensive evaluation of the degree of soil contamination—A review. Environ. Geochem. Health 2018, 40, 2395–2420. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.; Yang, Y.; Hua, Y. Source Analysis Based on the Positive Matrix Factorization Models and Risk Assessment of Heavy Metals in Agricultural Soil. Sustainability 2023, 15, 13225. [Google Scholar] [CrossRef]
- Alzahrani, Y.; Alshehri, F.; El-Sorogy, A.S.; Alzahrani, H. Environmental assessment of heavy metals in soils around Al-Janabeen Dam, southwest Saudi Arabia. J. King Saud Univ. Sci. 2023, 35, 102503. [Google Scholar] [CrossRef]
- Alarifi, S.S.; El-Sorogy, A.S.; Al-Kahtani, K.; Hazaea, S.A. Contamination and health risk assessment of potentially toxic elements in Al-Ammariah agricultural soil, Saudi Arabia. J. King Saud Univ. Sci. 2023, 35, 102826. [Google Scholar] [CrossRef]
- Xia, X.; Yang, Z.; Cui, Y.; Li, Y.; Hou, Q.; Yu, T. Soil heavy metal concentrations and their typical input and output fluxes on the southern song-nen plain, Heilongjiang province, China. J. Geochem. Explor. 2014, 139, 85–96. [Google Scholar] [CrossRef]
- Li, P.; Lin, C.; Cheng, H.; Duan, X.; Lei, K. Contamination and health risks of soil heavy metals around a lead/zinc smelter in Southwestern China. Ecotoxicol. Environ. Saf. 2015, 113, 391–399. [Google Scholar] [CrossRef]
- Meng, J.; Wang, L.; Zhong, L.B.; Liu, X.M.; Brookes, P.C.; Xu, J.M.; Chen, H.J. Contrasting effects of composting and pyrolysis on bioavailability and speciation of Cu and Zn in pig manure. Chemosphere 2017, 180, 93–99. [Google Scholar] [CrossRef]
- Tan, H.W.; Pang, Y.L.; Lim, S.; Chong, W.C. A state-of-the-art of phytoremediation approach for sustainable management of heavy metals recovery. Environ. Technol. Innov. 2023, 30, 103043. [Google Scholar] [CrossRef]
- Khan, I.U.; Qi, S.S.; Gul, F.; Manan, S.; Rono, J.K.; Naz, M.; Shi, X.N.; Zhang, H.; Dai, Z.C.; Du, D.L. A green approach used for heavy metals ‘phytoremediation’via invasive plant species to mitigate environmental pollution: A review. Plants 2023, 12, 725. [Google Scholar] [CrossRef]
- Rane, N.R.; Chandanshive, V.V.; Watharkar, A.D.; Khandare, R.V.; Patil, T.S.; Pawar, P.K.; Govindwar, S.P. Phytoremediation of sulfonated Remazol Red dye and textile effluents by Alternanthera philoxeroides: An anatomical, enzymatic and pilot scale study. Water Res. 2015, 83, 271–281. [Google Scholar] [CrossRef] [PubMed]
- Singh, H.; Pandey, R.; Singh, S.K.; Shukla, D.N. Assessment of heavy metal contamination in the sediment of the River Ghaghara, a major tributary of the River Ganga in Northern India. Appl. Water Sci. 2017, 7, 4133–4149. [Google Scholar] [CrossRef]
- Nguyen, D.T.C.; Tran, T.V.; Kumar, P.S.; Din, A.T.M.; Jalil, A.A.; Vo, D.V.N. Invasive plants as biosorbents for environmental remediation: A review. Environ. Chem. Lett. 2022, 20, 1421–1451. [Google Scholar] [CrossRef] [PubMed]
- Kafle, A.; Timilsina, A.; Gautam, A.; Adhikari, K.; Bhattarai, A.; Aryal, N. Phytoremediation: Mechanisms, plant selection and enhancement by natural and synthetic agents. Environ. Adv. 2022, 8, 100203. [Google Scholar] [CrossRef]
- Mahar, A.; Wang, P.; Ali, A.; Awasthi, M.K.; Lahori, A.H.; Wang, Q.; Li, R.; Zhang, Z. Challenges and opportunities in the phytoremediation of heavy metals contaminated soils: A review. Ecotoxicol. Environ. Saf. 2016, 126, 111–121. [Google Scholar] [CrossRef]
- Saleem, M.H.; Ali, S.; Rehman, M.; Hasanuzzaman, M.; Rizwan, M.; Irshad, S.; Shafiq, F.; Iqbal, M.; Alharbi, B.M.; Alnusaire, T.S.; et al. Jute: A potential candidate for phytoremediation of metals—A review. Plants 2020, 9, 258. [Google Scholar] [CrossRef]
- Riaz, U.; Athar, T.T.; Mustafa, U.; Iqbal, R. Economic feasibility of phytoremediation. In Phytoremediation; Bhat, R.A., Tonelli, F.M.P., Dar, G.H., Hakeem, K., Eds.; Academic Press: Amsterdam, The Netherlands, 2022; pp. 481–502. [Google Scholar]
- Selvi, F.; Carrari, E.; Colzi, I.; Coppi, A.; Gonnelli, C. Responses of serpentine plants to pine invasion: Vegetation diversity and nickel accumulation in species with contrasting adaptive strategies. Sci. Total Environ. 2017, 595, 72–80. [Google Scholar] [CrossRef]
- Sun, J.; Rutherford, S.; Saif Ullah, M.; Ullah, I.; Javed, Q.; Rasool, G.; Ajmal, M.; Azeem, A.; Nazir, M.J.; Du, D. Plant-soil feedback during biological invasions: Effect of litter decomposition from an invasive plant (Sphagneticola trilobata) on its native congener (S. calendulacea). J. Plant Ecol. 2022, 15, 610–624. [Google Scholar] [CrossRef]
- Aloud, S.S.; Alotaibi, K.D.; Almutairi, K.F.; Albarakah, F.N. Assessment of Heavy Metals Accumulation in Soil and Native Plants in an Industrial Environment, Saudi Arabia. Sustainability 2022, 14, 5993. [Google Scholar] [CrossRef]
- Al-Namazi, A.A.; Al-Ammari, B.S.; Davy, A.J.; Al-Turki, T.A. Seed dormancy and germination in Dodonaea viscosa (Sapindaceae) from south-western Saudi Arabia. Saudi J. Biol. Sci. 2020, 27, 2420–2424. [Google Scholar] [CrossRef]
- Castañeda-Espinoza, J.; Salinas-Sánchez, D.O.; Mussali-Galante, P.; Castrejón-Godínez, M.L.; Rodríguez, A.; González-Cortazar, M.; Zamilpa-Álvarez, A.; Tovar-Sánchez., E. Dodonaea viscosa (Sapindaceae) as a phytoremediator for soils contaminated by heavy metals in abandoned mines. Environ. Sci. Pollut. Res. Int. 2023, 30, 2509–2529. [Google Scholar] [CrossRef]
- Orellana-Mendoza, E.; Acevedo, R.R.; Huamán, C.H.; Zamora, Y.M.; Bastos, M.C.; Loardo-Tovar, H. Ecological risk assessment for heavy metals in agricultural soils Surrounding dumps, Huancayo Province, Peru. J. Ecol. Eng. 2022, 23, 75–89. [Google Scholar] [CrossRef]
- USEPA. Method 200.7: Determination of Metals and Trace Elements in Water and Wastes by Inductively Coupled Plasma-Atomic Emission Spectrometry; Revision 4.4; USEPA: Cincinnati, OH, USA, 1994.
- Alghamdi, B.M.; El ManoubI, I.; Zabin, S.A. Heavy metals contamination in sediments of Wadi Al-aqiq water reservoir dam at Al-Baha Region, KSA: Their identification and assessment. Ecol. Risk Assess. 2019, 25, 793–818. [Google Scholar] [CrossRef]
- Yi, Y.J.; Sun, J.; Tanf, C.H.; Zhang, S.H. Ecological risk assessment of heavy metals in sediment in the upper reach of the Yangtze River. Environ. Sci. Pollut. Res. 2016, 23, 11002–11013. [Google Scholar] [CrossRef]
- Guan, Y.; Shao, C.; Ju, M. Heavy metal contamination assessment and partition for industrial and mining gathering areas. Int. J. Environ. Res. Public Health 2014, 11, 7286–7303. [Google Scholar] [CrossRef] [PubMed]
- Custodio, M.; Espinoza, C.; Orellana, E.; Chanamé, F.; Fow, A.; Peñaloza, R. Assessment of toxic metal contamination, distribution and risk in the sediments from lagoons used for fish farming in the central region of Peru. Toxicol. Rep. 2022, 9, 1603–1613. [Google Scholar] [CrossRef] [PubMed]
- Zhao, G.; Ma, Y.; Liu, Y.; Cheng, J.; Wang, X. Source analysis and ecological risk assessment of heavy metals in farmland soils around heavy metal industry in Anxin County. Sci. Rep. 2022, 12, 10562. [Google Scholar] [CrossRef]
- Akoto, R.; Anning, A.K. Heavy metal enrichment and potential ecological risks from different solid mine wastes at a mine site in Ghana. Environ. Adv. 2021, 3, 100028. [Google Scholar] [CrossRef]
- Benhaddya, M.L.; Hadjel, M. Spatial distribution and contamination assessment of heavy metals in surface soils of Hassi Messaoud, Algeria. Environ. Earth Sci. 2013, 71, 1473–1486. [Google Scholar] [CrossRef]
- Ghrefat, H.A.; Abu-Rukah, Y.; Rosen, M.A. Application of geoaccumulation index and enrichment factor for assessing metal contamination in the sediments of Kafrain Dam, Jordan. Environ. Monit. Assess. 2011, 178, 95–109. [Google Scholar] [CrossRef]
- Li, M.S.; Yang, S.X. Heavy metal contamination in soils and phytoaccumulation in a manganese mine wasteland, South China. Air, Soil Water Res. 2008, 1, ASWR-S2041. [Google Scholar] [CrossRef]
- Wang, J.; Liu, W.; Yang, R.; Zhang, L.; Ma, J. Assessment of the potential ecological risk of heavy metals in reclaimed soils at an opencast coal mine. Disaster Adv. 2013, 6, 366–377. [Google Scholar]
- Jiao, X.; Teng, Y.; Zhan, Y.; Wu, J.; Lin, X. Soil heavy metal pollution and risk assessment in Shenyang Industrial District, Northeast China. PLoS ONE 2015, 10, e0127736. [Google Scholar] [CrossRef] [PubMed]
- Soliman, N.F.; Nasr, S.M.; Okbah, M.A. Potential ecological risk of heavy metals in sediments from the Mediterranean coast, Egypt. J. Environ. Health Sci. Eng. 2015, 13, 70. [Google Scholar] [CrossRef]
- Holtra, A.; Zamorska-Wojdyła, D. The pollution indices of trace elements in soils and plants close to the copper and zinc smelting works in Poland’s Lower Silesia. Environ. Sci. Pollut. Res. 2020, 27, 16086–16099. [Google Scholar] [CrossRef]
Heavy Metal | Minimum Concentration (mg/kg) | Maximum Concentration (mg/kg) | Mean Concentration (mg/kg) | International Level Values (mg/kg) |
---|---|---|---|---|
Fe | 18,790 | 33,217 | 24,325.67 | 14,000 * |
Mn | 536.2 | 658.8 | 579.56 | 583 |
Cu | 265 | 315 | 295.53 | 22.6 |
Ni | 23.46 | 30.82 | 28.21 | 26.9 |
Zn | 698 | 815.9 | 738.20 | 74.2 |
Co | 7.732 | 15.4 | 10.77 | 12.7 |
Cr | 45.48 | 58.79 | 50.29 | 61 |
As | ND | ND | ND | - |
Cd | ND | ND | ND | - |
Pb | 101.1 | 155 | 128.05 | 20 |
Mg | Fe | Mn | Cu | Ni | Zn | Co | Cr | Al | Pb | |
---|---|---|---|---|---|---|---|---|---|---|
Mg | 1 | 0.776 * | 0.365 | 0.135 | −0.385 | −0.268 | 0.620 | −0.828 | −0.180 | −0.641 |
Fe | 1 | 0.139 | 0.210 | 0.758 | 0.250 | 0.927 ** | −0.533 | −0.198 | −0.865 | |
Mn | 1 | 0.467 | 0.134 | 0.108 | 0.176 | 0.606 | 0.161 | 0.166 | ||
Cu | 1 | −0.513 | −0.624 | 0.121 | −0.478 | −0.325 | −0.431 | |||
Ni | 1 | 0.335 | −0.745 | 0.476 | 0.104 | 0.686 | ||||
Zn | 1 | 0.085 | 0.539 | 0.912 | 0.671 | |||||
Co | 1 | −0.326 | 0.151 | −0.650 | ||||||
Cr | 1 | 0.281 | 0.540 | |||||||
Al | 1 | 0.645 | ||||||||
Pb | 1 |
Metal | Average Metal Concentration in Studied Soil Samples (mg/kg) | International Average Metal Concentration in Soils (mg/kg) | CF | EF | Igeo |
---|---|---|---|---|---|
Fe | 24,325.67 | 14,000 * | 0.58 | 1.00 | 0.21 |
Mn | 579.56 | 583 | 1.01 | 0.57 | −0.6 |
Cu | 295.53 | 22.6 | 0.08 | 7.53 | 3.12 |
Ni | 28.21 | 26.9 | 0.95 | 0.60 | −0.52 |
Zn | 738.20 | 74.2 | 0.1 | 5.7 | 2.73 |
Co | 10.77 | 12.7 | 1.18 | 0.48 | −0.8 |
Cr | 50.29 | 61 | 1.21 | 0.47 | −0.86 |
Pb | 128.05 | 20 | 0.2 | 2.83 | 2.09 |
As | ND | - | - | - | - |
Cd | ND | - | - | - | - |
Element | Co | Cu | Cr | Fe | Mn | Ni | Pb | Zn |
---|---|---|---|---|---|---|---|---|
Toxic-response factor (TRF) | 5 | 5 | 2 | - | 1 | 5 | 5 | 1 |
Contamination factor (CF) | 1.18 | 0.08 | 1.21 | 0.58 | 1.01 | 0.95 | 0.2 | 0.1 |
Potential ecological risk factor (PERF) | 5.9 | 0.4 | 2.42 | - | 1.01 | 4.75 | 1 | 0.1 |
Element | Co | Cu | Cr | Fe | Mn | Ni | Pb | Zn |
---|---|---|---|---|---|---|---|---|
Igeomax | −0.60 | 3.22 | −0.64 | 0.66 | −0.40 | −0.39 | 2.37 | 2.87 |
Igeo mean | −0.8 | 3.12 | −0.80 | 0.21 | 0.60 | −0.51 | 2.09 | 2.37 |
NI | 0.75 | 4.50 | 1.03 | 0.74 | 0.68 | 0.62 | 3.16 | 3.99 |
Elements | Average in Roots | Average in Stems | Average in Leaves | Average in Soil |
---|---|---|---|---|
S | 2335.33 | 1254.33 | 3419.67 | 4259.67 |
K | 3047.00 | 4275.33 | 12,126.67 | 5504.00 |
Ca | 9535.00 | 9061.33 | 6832.00 | 23,083.33 |
Mg | 1114.17 | 993.70 | 1847.00 | 5793.33 |
Fe | 967.70 | 900.33 | 432.70 | 24,325.67 |
Mn | 40.40 | 37.17 | 38.66 | 579.57 |
Cu | 200.76 | 16.23 | 23.95 | 295.53 |
Ni | 9.30 | 4.87 | 3.31 | 28.21 |
Zn | 133.67 | 18.67 | 5.09 | 738.20 |
Mo | - | - | - | - |
Co | 0.48 | 0.72 | 0.48 | 10.73 |
Cr | 13.00 | 10.12 | 6.88 | 50.29 |
Na | 2997.33 | 1179.57 | 4499.00 | 2344.67 |
Al | 505.33 | 618.17 | 284.53 | 19,500.00 |
As | - | - | - | - |
Cd | 0.57 | 0.47 | 0.64 | - |
Pb | 20.79 | 3.47 | 2.61 | 128.05 |
Metals | Biological Concentration Factor (BCF) | Translocation Factor (TF) | ||||
---|---|---|---|---|---|---|
Roots | Stems | Leaves | Root/Soil | Stem/Root | Leaves/Stem | |
Fe | 0.04 | 0.04 | 0.02 | 0.04 | 0.93 | 0.48 |
Mn | 0.07 | 0.06 | 0.07 | 0.07 | 0.92 | 1.04 |
Cu | 0.68 | 0.05 | 0.08 | 0.68 | 0.08 | 1.48 |
Ni | 0.33 | 0.17 | 0.12 | 0.33 | 0.52 | 0.68 |
Zn | 0.18 | 0.03 | 0.01 | 0.18 | 0.14 | 0.27 |
Co | 0.04 | 0.07 | 0.04 | 0.04 | 1.50 | 0.67 |
Cr | 0.26 | 0.20 | 0.14 | 0.26 | 0.78 | 0.68 |
Pb | 0.16 | 0.03 | 0.02 | 0.16 | 0.17 | 0.75 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Robai, S.A. Ecological Risk Evaluation of Heavy Metals in Soils near a Water Dam in Baljurashi, KSA, and Their Accumulation in Dodonaea viscosa. Sustainability 2023, 15, 15646. https://doi.org/10.3390/su152115646
Al-Robai SA. Ecological Risk Evaluation of Heavy Metals in Soils near a Water Dam in Baljurashi, KSA, and Their Accumulation in Dodonaea viscosa. Sustainability. 2023; 15(21):15646. https://doi.org/10.3390/su152115646
Chicago/Turabian StyleAl-Robai, Sami Asir. 2023. "Ecological Risk Evaluation of Heavy Metals in Soils near a Water Dam in Baljurashi, KSA, and Their Accumulation in Dodonaea viscosa" Sustainability 15, no. 21: 15646. https://doi.org/10.3390/su152115646
APA StyleAl-Robai, S. A. (2023). Ecological Risk Evaluation of Heavy Metals in Soils near a Water Dam in Baljurashi, KSA, and Their Accumulation in Dodonaea viscosa. Sustainability, 15(21), 15646. https://doi.org/10.3390/su152115646