Modeling Water Flow in Variably Saturated Porous Soils and Alluvial Sediments
Abstract
:1. Introduction
2. Equations of Water Flow in Unsaturated Soils and Sediments
2.1. Basic Equations and Notation
- (dimensionless) is the volumetric water content,
- () is the water flow through a unit surface of a porous medium.
- K () is the ( dependent) hydraulic conductivity,
- () is the hydraulic head or soil water potential per unit weight (z axis is taken positive upwards),
- () is the matric potential, often referred to as suction; recall that for saturated porous media, it is substituted by the pressure head , where p is the water pressure, is the atmospheric pressure, is the water density and g is the gravity acceleration.
- isothermal conditions;
- water and, even more acceptable, solid grains are considered to be incompressible, i.e., their density is assumed to be constant in space and time;
- the soil or sediment is assumed to be non-deformable;
- the influence of the air phase on water flow is negligible;
- hysteresis effects, which would give a non-unique dependence between h and , are disregarded; such an approximation is acceptable either if the medium does not show any difference in the h-to- relationship during the wetting and draining phases or if only one of the two phases (wetting or draining) is considered;
- the medium is supposed to be homogeneous, i.e., the functions relating K and h to are the same at every point of the domain;
- the medium is assumed to be porous.
- the Fokker–Planck equation, obtained when (3) is expressed as an equation for ;
- the Richards equation, when (3) is transformed in an equation for h;
- -based equation, when the matric flux potential, , is introduced and used as a dependent variable;
- K-based equation, when the dependent variable is the K function.
2.2. The Fokker–Planck Equation
2.3. The Richards Equation
2.4. Generalized Matric Flux Potential Equation
2.5. K-Based Equation
3. Discussion about Initial and Boundary Conditions and about Phenomenological Relationships among , and
3.1. Properties of the Relationship of K and h to
3.2. Critical Analysis of the Most Common Phenomenological Laws
3.3. Initial and Boundary Conditions
3.3.1. Prescribed Value of Water Content at Saturation
- the position of the water table should be independent of the water flow in the vadose zone, i.e., the unsaturated portion of the subsurface;
- the capillary fringe should have a negligible thickness, otherwise, more complex approaches are necessary for a rigorous treatment [16].
3.3.2. Prescribed Value of
3.3.3. Interaction between Groundwater and Surface Water
3.3.4. Conditions at the Interface between Media with Different Physical Properties
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- UNESCO World Water Assessment Programme. The United Nations World Water Development Report 2022: Groundwater: Making the Invisible Visible. 2022. Available online: https://unesdoc.unesco.org/ark:/48223/pf0000380721.locale=en (accessed on 5 November 2023).
- Bierkens, M.F.P.; Wada, Y. Non-renewable groundwater use and groundwater depletion: A review. Environ. Res. Lett. 2019, 14, 063002. [Google Scholar] [CrossRef]
- Bredehoeft, J. Safe Yield and the Water Budget Myth. Groundwater 1997, 35, 929. [Google Scholar] [CrossRef]
- Paniconi, C.; Putti, M. Physically based modeling in catchment hydrology at 50: Survey and outlook. Water Resour. Res. 2015, 51, 7090–7129. [Google Scholar] [CrossRef]
- Vassena, C.; Rienzner, M.; Ponzini, G.; Giudici, M.; Gandolfi, C.; Durante, C.; Agostani, D. Modeling water resources of a highly irrigated alluvial plain (Italy): Calibrating soil and groundwater models. Hydrogeol. J. 2012, 20, 449–467. [Google Scholar] [CrossRef]
- Martin-Ortega, J.; Ferrier, R.C.; Gordon, I.J.; Khan, S. Water Ecosystem Services: A Global Perspective; UNESCO: Paris, France; Cambridge University Press: Cambridge, UK, 2015; Available online: https://unesdoc.unesco.org/ark:/48223/pf0000244743.locale=en (accessed on 5 November 2023).
- Nielsen, D.R.; Van Genuchten, M.Th.; Biggar, J.W. Water flow and solute transport processes in the unsaturated zone. Water Resour. Res. 1986, 22, 89S–108S. [Google Scholar] [CrossRef]
- van Genuchten, M.T.; Jury, W.A. Progress in unsaturated flow and transport modeling. Rev. Geophys. 1987, 25, 135–140. [Google Scholar] [CrossRef]
- Feddes, R.; Kabat, P.; Van Bakel, P.; Bronswijk, J.; Halbertsma, J. Modelling soil water dynamics in the unsaturated zone—State of the art. J. Hydrol. 1988, 100, 69–111. [Google Scholar] [CrossRef]
- Raats, P.A. Developments in soil–water physics since the mid 1960s. Geoderma 2001, 100, 355–387. [Google Scholar] [CrossRef]
- Diamantopoulos, E.; Durner, W. Dynamic Nonequilibrium of Water Flow in Porous Media: A Review. Vadose Zone J. 2012, 11, vzj2011.0197. [Google Scholar] [CrossRef]
- Subbaiah, R. A review of models for predicting soil water dynamics during trickle irrigation. Irrig. Sci. 2013, 31, 225–258. [Google Scholar] [CrossRef]
- Vereecken, H.; Schnepf, A.; Hopmans, J.; Javaux, M.; Or, D.; Roose, T.; Vanderborght, J.; Young, M.; Amelung, W.; Aitkenhead, M.; et al. Modeling Soil Processes: Review, Key Challenges, and New Perspectives. Vadose Zone J. 2016, 15, vzj2015.09.0131. [Google Scholar] [CrossRef]
- Reeves, M.; Baker, N.A.; Duguid, J.O. Review and Selection of Unsaturated Flow Models; TRW Environmental Safety Systems Inc.: Las Vegas, NV, USA; INTERA Inc.: Las Vegas, NV, USA, 1994. [Google Scholar] [CrossRef]
- Zha, Y.; Yang, J.; Zeng, J.; Tso, C.H.M.; Zeng, W.; Shi, L. Review of numerical solution of Richardson–Richards equation for variably saturated flow in soils. WIREs Water 2019, 6, e1364. [Google Scholar] [CrossRef]
- Bear, J. Dynamics of Fluids in Porous Media; American Elsevier Publishing Company: Amsterdam, The Netherlands, 1972. [Google Scholar]
- Carrillo, F.J.; Bourg, I.C. A Darcy-Brinkman-Biot Approach to Modeling the Hydrology and Mechanics of Porous Media Containing Macropores and Deformable Microporous Regions. Water Resour. Res. 2019, 55, 8096–8121. [Google Scholar] [CrossRef]
- Hassanizadeh, M.; Gray, W.G. General conservation equations for multi-phase systems: 1. Averaging procedure. Adv. Water Resour. 1979, 2, 131–144. [Google Scholar] [CrossRef]
- Nimmo, J.R. The processes of preferential flow in the unsaturated zone. Soil Sci. Soc. Am. J. 2021, 85, 1–27. [Google Scholar] [CrossRef]
- Fokker, A.D. Die mittlere Energie rotierender elektrischer Dipole im Strahlungsfeld. Ann. Der Phys. 1914, 348, 810–820. [Google Scholar] [CrossRef]
- Planck, M. Über einen Satz der statistischen Dynamik und seine Erweiterung in der Quantentheorie. Sitzungsberichte Der K. Preuss. Akad. Der Wiss. Berl. 1917, 24, 324–341. [Google Scholar]
- Philip, J.R. The theory of infiltration: 1. The infiltration equation and its solutions. Soil Sci. 1957, 83, 345–358. [Google Scholar] [CrossRef]
- Richards, L.A. Capillary conduction of liquids through porous mediums. Physics 1931, 1, 318–333. [Google Scholar] [CrossRef]
- Raats, P.A.C. Steady Infiltration from Line Sources and Furrows. Soil Sci. Soc. Am. J. 1970, 34, 709–714. [Google Scholar] [CrossRef]
- Braester, C. Moisture variation at the soil surface and the advance of the wetting front during infiltration at constant flux. Water Resour. Res. 1973, 9, 687–694. [Google Scholar] [CrossRef]
- Warrick, A.W.; Amoozegar-Fard, A. Soil water regimes near porous cup water samplers. Water Resour. Res. 1977, 13, 203–207. [Google Scholar] [CrossRef]
- Pullan, A.J. The quasilinear approximation for unsaturated porous media flow. Water Resour. Res. 1990, 26, 1219–1234. [Google Scholar] [CrossRef]
- van Lier, Q.d.J.; Metselaar, K.; van Dam, J.C. Root Water Extraction and Limiting Soil Hydraulic Conditions Estimated by Numerical Simulation. Vadose Zone J. 2006, 5, 1264–1277. [Google Scholar] [CrossRef]
- Kirchhoff, G. Vorlesungen über Mathematische Physik: Bd. Vorlesungen über die Theorie der Wärme; B.G. Teubner: Berlin, Germany, 1894; Volume 4. [Google Scholar]
- Philip, J.R. Steady Infiltration From Buried Point Sources and Spherical Cavities. Water Resour. Res. 1968, 4, 1039–1047. [Google Scholar] [CrossRef]
- Wooding, R.A. Steady Infiltration from a Shallow Circular Pond. Water Resour. Res. 1968, 4, 1259–1273. [Google Scholar] [CrossRef]
- Davidson, M.R. Numerical calculation of saturated-unsaturated infiltration in a cracked soil. Water Resour. Res. 1985, 21, 709–714. [Google Scholar] [CrossRef]
- Batu, V. Time-dependent linearized two-dimensional infiltration and evaporation from nonuniform and periodic strip sources. Water Resour. Res. 1983, 19, 1523–1529. [Google Scholar] [CrossRef]
- Srivastava, R.; Yeh, T.C.J. Analytical solutions for one-dimensional, transient infiltration toward the water table in homogeneous and layered soils. Water Resour. Res. 1991, 27, 753–762. [Google Scholar] [CrossRef]
- Shan, C.; Stephens, D.B. Steady Infiltration Into a Two-Layered Soil from a Circular Source. Water Resour. Res. 1995, 31, 1945–1952. [Google Scholar] [CrossRef]
- Ursino, N. Linear Stability Analysis of Infiltration, Analytical and Numerical Solution. Transp. Porous Media 2000, 38, 261–271. [Google Scholar] [CrossRef]
- Romano, N.; Brunone, B.; Santini, A. Numerical analysis of one-dimensional unsaturated flow in layered soils. Adv. Water Resour. 1998, 21, 315–324. [Google Scholar] [CrossRef]
- Freeze, R.; Cherry, J. Groundwater; Prentice-Hall: Englewood Cliffs, NJ, USA, 1979; ISBN 0-13-365312-9. [Google Scholar]
- Hillel, D. Environmental Soil Physics: Fundamentals, Applications, and Environmental Considerations; Elsevier Science: Amsterdam, The Netherlands, 1998. [Google Scholar]
- Hohenbrink, T.L.; Jackisch, C.; Durner, W.; Germer, K.; Iden, S.C.; Kreiselmeier, J.; Leuther, F.; Metzger, J.C.; Naseri, M.; Peters, A. Soil water retention and hydraulic conductivity measured in a wide saturation range. Earth Syst. Sci. Data 2023, 15, 4417–4432. [Google Scholar] [CrossRef]
- Nemes, A.; Schaap, M.; Leij, F.; Wösten, J. Description of the unsaturated soil hydraulic database UNSODA version 2.0. J. Hydrol. 2001, 251, 151–162. [Google Scholar] [CrossRef]
- Peters, A. Simple consistent models for water retention and hydraulic conductivity in the complete moisture range. Water Resour. Res. 2013, 49, 6765–6780. [Google Scholar] [CrossRef]
- Luo, Z.; Kong, J.; Shen, C.; Lu, C.; Hua, G.; Zhao, Z.; Zhao, H.; Li, L. Evaluation and application of the modified van Genuchten function for unsaturated porous media. J. Hydrol. 2019, 571, 279–287. [Google Scholar] [CrossRef]
- Mantovani, F.; Menziani, M.; Pugnaghi, S.; Rivasi, M.R.; Santangelo, R. Approximating functions in hydrology of unsaturated soils—I. Nuovo C. C 1988, 11, 527–535. [Google Scholar] [CrossRef]
- Giudici, M.; Menziani, M.; Pugnaghi, S.; Rivasi, M.R.; Santangelo, R. Approximating functions in hydrology of unsaturated soils—II. Nuovo C. C 1989, 12, 781–786. [Google Scholar] [CrossRef]
- Giudici, M.; Menziani, M.; Rivasi, M.R. Determination of soil water content by mathematical models. In Proceedings of the Monitorare l’Ambiente Agrario e Forestale, Porto Conte, Italy, 4–6 June 1991; Accademia dei Georgofili: Florence, Italy, 1991; pp. 769–782. [Google Scholar]
- Gilding, B.H. The occurrence of interfaces in nonlinear diffusion-advection processes. Arch. Ration. Mech. Anal. 1988, 100, 243–263. [Google Scholar] [CrossRef]
- Gilding, B.H. Qualitative mathematical analysis of the Richards equation. Transp. Porous Media 1991, 6, 651–666. [Google Scholar] [CrossRef]
- Witelsky, T.P. Perturbation Analysis for Wetting Fronts in Richard’s Equation. Transp. Porous Media 1997, 27, 121–134. [Google Scholar] [CrossRef]
- Morelli, S.; Santangelo, R.; Vincenzi, S. Confined diffusion. Nuovo C. C 1991, 14, 377–390. [Google Scholar] [CrossRef]
- Kool, J.; Parker, J.; van Genuchten, M. Parameter estimation for unsaturated flow and transport models—A review. J. Hydrol. 1987, 91, 255–293. [Google Scholar] [CrossRef]
- Hopmans, J.W.; Šimůnek, J.; Romano, N.; Durner, W. 3.6.2. Inverse Methods. In Methods of Soil Analysis; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2002; pp. 963–1008. [Google Scholar] [CrossRef]
- Durner, W.; Lipsius, K. Determining Soil Hydraulic Properties. In Encyclopedia of Hydrological Sciences; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2006; tg 4 r 75. [Google Scholar] [CrossRef]
- Giudici, M.; Baratelli, F.; Cattaneo, L.; Comunian, A.; Filippis, G.D.; Durante, C.; Giacobbo, F.; Inzoli, S.; Mele, M.; Vassena, C. A conceptual framework for discrete inverse problems in geophysics. arXiv 2021, arXiv:1901.07937. [Google Scholar] [CrossRef]
- Dai, Z.; Samper, J. Inverse problem of multicomponent reactive chemical transport in porous media: Formulation and applications. Water Resour. Res. 2004, 40, W07407. [Google Scholar] [CrossRef]
- Zheng, L.; Samper, J. Formulation of the inverse problem of non-isothermal multiphase flow and reactive transport in porous media. In Computational Methods in Water Resources: Volume 2; Developments in Water Science; Miller, C.T., Pinder, G.F., Eds.; Elsevier: Amsterdam, The Netherlands, 2004; Volume 55, pp. 1317–1327. [Google Scholar] [CrossRef]
- Brooks, R.; Corey, A. Hydraulic Properties of Porous Media; Hydrology Paper No. 3; Civil Engineering Department, Colorado State University: Fort Collins, CO, USA, 1964. [Google Scholar]
- van Genuchten, M.T. A Closed-form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils. Soil Sci. Soc. Am. J. 1980, 44, 892–898. [Google Scholar] [CrossRef]
- Kozeny, J. Über kapillare Leitung des Wassers im Boden. Sitzungsberichte Der Kais. Akad. Der Wiss. Wien 1927, 136, 271–306. [Google Scholar]
- Carman, P.C. Fluid flow through a granular bed. Trans. Inst. Chem. Eng. 1937, 15, 150–156. [Google Scholar] [CrossRef]
- Burdine, N. Relative Permeability Calculations From Pore Size Distribution Data. J. Pet. Technol. 1953, 5, 71–78. [Google Scholar] [CrossRef]
- Mualem, Y. A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resour. Res. 1976, 12, 513–522. [Google Scholar] [CrossRef]
- Leij, F.J.; Russell, W.B.; Lesch, S.M. Closed-Form Expressions for Water Retention and Conductivity Data. Groundwater 1997, 35, 848–858. [Google Scholar] [CrossRef]
- Facchi, A.; Ortuani, B.; Maggi, D.; Gandolfi, C. Coupled SVAT—Groundwater model for water resources simulation in irrigated alluvial plains. Environ. Model. Softw. 2004, 19, 1053–1063. [Google Scholar] [CrossRef]
- Romano, E.; Giudici, M. Experimental and modeling study of the soil-atmosphere interaction and unsaturated water flow to estimate the recharge of a phreatic aquifer. ASCE J. Hydrol. Eng. 2007, 12, 573–584. [Google Scholar] [CrossRef]
- Romano, E.; Giudici, M. On the use of meteorological data to assess the evaporation from a bare soil. J. Hydrol. 2009, 372, 30–40. [Google Scholar] [CrossRef]
- Comunian, A.; Giudici, M.; Landoni, L.; Pugnaghi, S. Improving Bowen-ratio estimates of evaporation using a rejection criterion and multiple-point statistics. J. Hydrol. 2018, 563, 43–50. [Google Scholar] [CrossRef]
- Liu, L.; Dai, S.; Ning, F.; Cai, J.; Liu, C.; Wu, N. Fractal characteristics of unsaturated sands—Implications to relative permeability in hydrate-bearing sediments. J. Nat. Gas Sci. Eng. 2019, 66, 11–17. [Google Scholar] [CrossRef]
- Chen, H.; Yang, M.; Chen, K.; Zhang, C. Relative Permeability of Porous Media with Nonuniform Pores. Geofluids 2020, 2020, 5705424. [Google Scholar] [CrossRef]
- Chen, H.; Chen, K.; Yang, M.; Xu, P. A fractal capillary model for multiphase flow in porous media with hysteresis effect. Int. J. Multiph. Flow 2020, 125, 103208. [Google Scholar] [CrossRef]
- Solazzi, S.G.; Rubino, J.G.; Jougnot, D.; Holliger, K. Dynamic permeability functions for partially saturated porous media. Geophys. J. Int. 2020, 221, 1182–1189. [Google Scholar] [CrossRef]
- Nguyen, V.N.A.; Jougnot, D.; Luong, D.T.; Phan, V.D.; Tran, T.C.T.; Dang, T.M.H.; Nguyen, M.H. Predicting water flow in fully and partially saturated porous media: A new fractal-based permeability model. Hydrogeol. J. 2021, 29, 2017–2031. [Google Scholar] [CrossRef]
- Carrillo, F.J.; Bourg, I.C. Capillary and viscous fracturing during drainage in porous media. Phys. Rev. E 2021, 103, 063106. [Google Scholar] [CrossRef] [PubMed]
- Stults, J.; Illangasekare, T.; Higgins, C.P. The Mass Transfer Index (MTI): A semi-empirical approach for quantifying transport of solutes in variably saturated porous media. J. Contam. Hydrol. 2021, 242, 103842. [Google Scholar] [CrossRef] [PubMed]
- Ladd, A.J.; Szymczak, P. Reactive Flows in Porous Media: Challenges in Theoretical and Numerical Methods. Annu. Rev. Chem. Biomol. Eng. 2021, 12, 543–571. [Google Scholar] [CrossRef] [PubMed]
Function | Properties |
---|---|
, for ; , as . | |
, for ; , as ; , as . | |
, as ; , as ; , for some . | |
, for ; ; ; for some and . | |
, for . | |
, for ; be integrable for . | |
, for ; ; , as . |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giudici, M. Modeling Water Flow in Variably Saturated Porous Soils and Alluvial Sediments. Sustainability 2023, 15, 15723. https://doi.org/10.3390/su152215723
Giudici M. Modeling Water Flow in Variably Saturated Porous Soils and Alluvial Sediments. Sustainability. 2023; 15(22):15723. https://doi.org/10.3390/su152215723
Chicago/Turabian StyleGiudici, Mauro. 2023. "Modeling Water Flow in Variably Saturated Porous Soils and Alluvial Sediments" Sustainability 15, no. 22: 15723. https://doi.org/10.3390/su152215723
APA StyleGiudici, M. (2023). Modeling Water Flow in Variably Saturated Porous Soils and Alluvial Sediments. Sustainability, 15(22), 15723. https://doi.org/10.3390/su152215723