Transformative Potential of Vertical Farming—An Urban Planning Investigation Using Multi-Level Perspective
Abstract
:1. Introduction
1.1. Vertical Farming and Urban Planning
1.2. Research Gap and Objectives
2. Theoretical and Analytical Framework
2.1. Analytical Framework and Methods
2.2. Transformation Research
2.3. Multi-Level Perspective and Classification of Vertical Farming as a Niche Innovation
3. Results
3.1. Strengths, Weaknesses, Opportunities, and Threats of Vertical Farming for Urban Planning
3.1.1. Strengths as Influenceable Advantages of Vertical Farming for Urban Planning
3.1.2. Weaknesses as Influenceable Disadvantages of Vertical Farming for Urban Planning
3.1.3. Opportunities as Uninfluenceable Advantages of Vertical Farming for Urban Planning
3.1.4. Threats as Influenceable Disadvantages of Vertical Farming for Urban Planning
3.2. Conditions for the Stabilization of Vertical Farming in the Regime of Urban Planning
3.2.1. Condition 1—Organize and Shape Urban Food Policy
3.2.2. Condition 2—Use Vertical Farming as a Sustainable and Multifunctional Urban Building Block
3.2.3. Condition 3—Enable Policy and Urban Planning Facilitation
3.2.4. Condition 4—Intensify Research on Vertical Farming
3.2.5. Condition 5—Drive Actor Networking and Initiate Iterative Learning Processes
3.2.6. Condition 6—Encourage Participation and Pilot Projects to Increase Acceptance
3.3. Recommendations for Urban Planning
3.3.1. For Condition 1: Organize and Shape Urban Food Policy
3.3.2. For Condition 2: Use Vertical Farming as a Sustainable and Multifunctional Urban Building Block
3.3.3. For Condition 3: Enable Policy and Urban Planning Facilitation
3.3.4. For Condition 5: Drive Actor Networking and Initiate Iterative Learning Processes
3.3.5. For Condition 6: Encourage Participation and Pilot Projects to Increase Acceptance
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alexandratos, N.; Bruinsma, J. World Agriculture Towards 2030/2050: The 2012 Revision; ESA Working Paper 12-03; Food and Agriculture Organization of the United Nations: Rome, Italy, 2012; Available online: https://www.fao.org/3/ap106e/ap106e.pdf (accessed on 16 March 2022).
- Lajoie-O’Malley, A.; Bronson, K.; van der Burg, S.; Klerkx, L. The future(s) of digital agriculture and sustainable food systems: An analysis of high-level policy documents. Ecosyst. Serv. 2020, 45, 101183. [Google Scholar] [CrossRef]
- Ramankutty, N.; Mehrabi, Z.; Waha, K.; Jarvis, L.; Kremen, C.; Herrero, M.; Rieseberg, L.H. Trends in Global Agricultural Land Use: Implications for Environmental Health and Food Security. Annu. Rev. Plant Biol. 2018, 69, 789–815. [Google Scholar] [CrossRef]
- United Nations. World Urbanization Prospects: The 2018 Revision; Department of Economic and Social Affairs, Population Division: New York, NY, USA, 2019. Available online: https://population.un.org/wup/Publications/Files/WUP2018-Report.pdf (accessed on 16 March 2022).
- United Nations. Transforming Our World: The 2030 Agenda for Sustainable Development—Resolution A/RES/70/1 Adopted by the General Assembly on 25 September 2015; United Nations: Paris, France, 2015. Available online: https://documents-dds-ny.un.org/doc/UNDOC/GEN/N15/291/89/PDF/N1529189.pdf?OpenElement (accessed on 11 April 2023).
- Petrovics, D.; Giezen, M. Planning for sustainable urban food systems: An analysis of the up-scaling potential of vertical farming. J. Environ. Plan. Manag. 2021, 65, 785–808. [Google Scholar] [CrossRef]
- Banerjee, C.; Adenaeuer, L. Up, Up and Away! The Economics of Vertical Farming. J. Agric. Stud. 2014, 2, 40–60. [Google Scholar] [CrossRef]
- Despommier, D. The Vertical Farm, 1st ed.; Thomas Dunne Books: New York, NY, USA, 2010. [Google Scholar]
- Kalantari, F.; Tahir, O.M.; Joni, R.A.; Fatemi, E. Opportunities and Challenges in Sustainability of Vertical Farming: A Review. J. Landsc. Ecol. 2017, 11, 35–60. [Google Scholar] [CrossRef]
- Engler, N.; Krarti, M. Review of energy efficiency in controlled environment agriculture. Renew. Sustain. Energy Rev. 2021, 141, 110786. [Google Scholar] [CrossRef]
- O’Sullivan, C.A.; Bonnett, G.D.; McInterye, C.L.; Hochman, Z.; Wasson, A.P. Strategies to improve the productivity, product diversity and profitability of urban agriculture. Agric. Syst. 2019, 174, 133–144. [Google Scholar] [CrossRef]
- Csordás, A.; Füzesi, I. The Impact of Technophobia on Vertical Farms. Sustainability 2023, 15, 7476. [Google Scholar] [CrossRef]
- Benis, K.; Ferrão, P. Commercial farming within the urban built environment—Taking stock of an evolving field in northern countries. Glob. Food Secur. 2018, 17, 30–37. [Google Scholar] [CrossRef]
- Butturini, M.; Marcelis, L.F.M. Vertical farming in Europe. In Plant Factory: An Indoor Vertical Farming System for Efficient Quality Food Production, 2nd ed.; Kozai, T., Niu, G., Takagaki, M., Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 77–91. [Google Scholar] [CrossRef]
- Ostuni, M.; Zaffi, L. Nurturing Cities: Pathways Towards a Circular Urban Agriculture. World Heritage and Design for Health. 2021. Available online: https://www.researchgate.net/profile/michele-dostuni-2/publication/353851009_nurturing_cities_pathways_towards_a_circular_urban_agriculture/links/611562711e95fe241aca3804/nurturing-cities-pathways-towards-a-circular-urban-agriculture.pdf (accessed on 7 May 2022).
- Specht, K.; Siebert, R.; Hartmann, I.; Freisinger, U.B.; Sawicka, M.; Werner, A.; Thomaier, S.; Henckel, D.; Walk, H.; Dierich, A. Urban agriculture of the future: An overview of sustainability aspects of food production in and on buildings. Agric. Hum. Values 2014, 31, 33–51. [Google Scholar] [CrossRef]
- Blom, T.; Jenkins, A.; Pulselli, R.M.; van den Dobbelsteen, A.A.J.F. The embodied carbon emissions of lettuce production in vertical farming, greenhouse horticulture, and open-field farming in the Netherlands. J. Clean. Prod. 2022, 377, 134443. [Google Scholar] [CrossRef]
- Kobayashi, Y.; Kotilainen, T.; Carmona-García, G.; Leip, A.; Tuomisto, H.L. Vertical farming: A trade-off between land area need for crops and for renewable energy production. J. Clean. Prod. 2022, 379, 134507. [Google Scholar] [CrossRef]
- Zhou, H.; Specht, K.; Kirby, C.K. Consumers’ and Stakeholders’ Acceptance of Indoor Agritecture in Shanghai (China). Sustainability 2022, 14, 2771. [Google Scholar] [CrossRef]
- Horst, M.; McClintock, N.; Hoey, L. The Intersection of Planning, Urban Agriculture, and Food Justice: A Review of the Literature. J. Am. Plan. Assoc. 2017, 83, 277–295. [Google Scholar] [CrossRef]
- Specht, K.; Zoll, F.; Schümann, H.; Bela, J.; Kachel, J.; Robischon, M. How Will We Eat and Produce in the Cities of the Future? From Edible Insects to Vertical Farming—A Study on the Perception and Acceptability of New Approaches. Sustainability 2019, 11, 4315. [Google Scholar] [CrossRef]
- Braun, J.V.; Afsana, K.; Fresco, L.O.; Hassan, M. Science and Innovations for Food Systems Transformations and Summit Actions. 2021. Available online: https://sc-fss2021.org/wp-content/uploads/2021/09/ScGroup_Reader_UNFSS2021.pdf (accessed on 23 April 2022).
- BBSR—Bundesinstitut für Bau-, Stadt- und Raumforschung (Federal Office for Building and Regional Planning). Vom Stadtumbau Zur Städtischen Transformationsstrategie (From Urban Redevelopment to Urban Transformation Strategy). Bonn. BBSR-Online-Publikation 09/2020. 2020. Available online: https://www.bbsr.bund.de/BBSR/DE/veroeffentlichungen/bbsr-online/2020/bbsr-online-09-2020-dl.pdf?__blob=publicationFile&v=2 (accessed on 25 January 2022).
- Rockström, J.; Steffen, W.; Noone, K.; Persson, Å.; Chapin, F.S., III; Lambin, E.; Lenton, T.M.; Scheffer, M.; Folke, C.; Schellnhuber, H.J.; et al. Planetary Boundaries: Exploring the Safe Operating Space for Humanity. Ecol. Sci. 2009, 14, 32. Available online: http://www.ecologyandsociety.org/vol14/iss2/art32/ (accessed on 24 May 2022). [CrossRef]
- Steffen, W.; Richardson, K.; Rockström, J.; Cornell, S.E.; Fetzer, I.; Bennett, E.M.; Biggs, R.; Carpenter, S.R.; de Vries, W.; de Wit, C.A.; et al. Planetary boundaries: Guiding human development on a changing plant. Science 2015, 347, 736–747. [Google Scholar] [CrossRef]
- UBA—Umweltbundesamt (German Environment Agency). Transformationsforschung. Definitionen, Ansätze, Methoden. (Transformational Research. Definitions, Approaches, Methods.) Dessau-Roßlau. Texte 103/2017. 2017. Available online: https://www.umweltbundesamt.de/sites/default/files/medien/1410/publikationen/2017-11-08_texte_103-2017_transformationsforschung.pdf (accessed on 14 May 2022).
- WBGU—Wissenschaftlicher Beirat der Bundesregierung Globale Umweltveränderungen (German Advisory Council on Global Change), Welt Im Wandel. Gesellschaftsvertrag Für Eine Große Transformation (World in Transition. Social Contract for a Great Transformation). 2. Aufl. Berlin. 2011. Available online: https://www.wbgu.de/fileadmin/user_upload/wbgu/publikationen/hauptgutachten/hg2011/pdf/wbgu_jg2011.pdf (accessed on 15 March 2022).
- WBGU—Wissenschaftlicher Beirat der Bundesregierung Globale Umweltveränderungen (German Advisory Council on Global Change), 2016. Der Umzug der Menschheit. Die Transformative Kraft der Städte (Moving Humanity. The Transformative Power of Cities). Berlin. 2016. Available online: https://www.wbgu.de/fileadmin/user_upload/wbgu/publikationen/hauptgutachten/hg2016/pdf/wbgu_hg2016.pdf (accessed on 15 March 2022).
- European Union. The New Leipzig Charta. The Transformative Power of Cities for the Common Good. Leipzig. 2020. Available online: https://futurium.ec.europa.eu/sites/default/files/2021-03/new_leipzig_charter_en.pdf (accessed on 11 April 2023).
- Stierand, P. Speiseräume: Die Ernährungswende Beginnt in der Stadt (Dining Room: The Nutrition Turnaround Begins in the City); Stierand: München, Germany, 2014. [Google Scholar]
- Pothukuchi, K.; Kaufman, J.L. The Food System. J. Am. Plan. Assoc. 2000, 66, 113–124. [Google Scholar] [CrossRef]
- Pothukuchi, K.; Kaufman, J.L. Placing the food system on the urban agenda: The role of municipal institutions in food systems planning. Agric. Hum. Values 1999, 16, 213–224. [Google Scholar] [CrossRef]
- Cohen, N.; Reynolds, K. Urban Agriculture Policy Making in New York’s “New Political Spaces”. J. Plan. Educ. Res. 2014, 34, 221–234. [Google Scholar] [CrossRef]
- Pothukuchi, K. Five Decades of Community Food Planning in Detroit. J. Plan. Educ. Res. 2015, 35, 419–434. [Google Scholar] [CrossRef]
- Levin-Keitel, M.; Mölders, T.; Othengrafen, F.; Ibendorf, J. Sustainability Transitions and the Spatial Interface: Developing Conceptual Perspectives. Sustainability 2018, 10, 1880. [Google Scholar] [CrossRef]
- Lin, B.B.; Philpott, S.M.; Jha, S. The future of urban agriculture and biodiversity-ecosystem services: Challenges and next steps. Basic Appl. Ecol. 2015, 16, 189–201. [Google Scholar] [CrossRef]
- Benzaghta, M.A.; Elwalda, A.; Mousa, M.M.; Erkan, I.; Rahman, M. SWOT analysis applications: An integrative literature review. J. Glob. Bus. Insights 2021, 6, 55–73. [Google Scholar] [CrossRef]
- Comino, E.; Ferretti, V. Indicators-based spatial SWOT analysis: Supporting the strategic planning and management of complex territorial systems. Ecol. Indic. 2016, 60, 1104–1117. [Google Scholar] [CrossRef]
- Kuster, J.; Bachmann, C.; Huber, E.; Hubmann, M.; Lippmann, R.; Schneider, P. Handbuch Projektmanagement. Agil—Klassisch—Hybrid (Project Management Handbook. Agile—Classic—Hybrid), 5th ed.; Springer: Berlin/Heidelberg, Germany, 2022. [Google Scholar] [CrossRef]
- Scholles, F. Bewertungsmethoden (Valuation Methods). In Handbuch Theorien und Methoden der Raum-und Umweltplanung (Handbook of Theories and Methods of Spatial and Environmental Planning), 3rd ed.; Fürst, D., Scholles, F., Eds.; Rohn: Dortmund, Germany, 2008; pp. 403–532. [Google Scholar]
- Muiderman, K.; Zurek, M.; Verwoort, J.; Gupta, A.; Hasnain, S.; Driessen, P. The anticipatory governance of sustainability transformations: Hybrid approaches and dominant perspectives. Glob. Environ. Change 2022, 73, 102452. [Google Scholar] [CrossRef]
- Klerkx, L.; Rose, D. Dealing with the game-changing technologies of Agriculture 4.0: How do we manage diversity and responsibility in food system transition pathways? Glob. Food Secur. 2020, 24, 100347. [Google Scholar] [CrossRef]
- EEA—European Energy Agency. In Perspectives on Transitions to Sustainability; EEA Report 15/2017; European Environment Agency: Luxembourg, 2017. Available online: https://www.eea.europa.eu/publications/perspectives-on-transitions-to-sustainability/file (accessed on 24 May 2022).
- Geels, F.W. Technological transitions as evolutionary reconfiguration processes: A multi-level perspective and a case-study. Res. Policy 2002, 31, 1257–1274. [Google Scholar] [CrossRef]
- Geels, F.W. Major system change through stepwise reconfiguration: A multi-level analysis of the transformation of American factory production (1850–1930). Technol. Soc. 2006, 28, 445–476. [Google Scholar] [CrossRef]
- Geels, F.W.; Schot, J. Typology of sociotechnical transition pathways. Res. Policy 2007, 36, 399–417. [Google Scholar] [CrossRef]
- UBA—Umweltbundesamt (German Environment Agency). Transformationsstrategien und Models of Change Für Nachhaltigen Gesellschaftlichen Wandel: Gesellschaftlicher Wandel als Mehrebenenansatz. (Transformation Strategies and Models of change for Sustainable Societal Change: Societal Change as a Multi-Level Approach.) Dessau-Roßlau. Texte 66/2015. 2015. Available online: https://www.umweltbundesamt.de/sites/default/files/medien/378/publikationen/texte_66_2015_gesellschaftlicher_wandel_als_mehrebenenansatz_3.pdf (accessed on 16 October 2021).
- Schrape, J.F. Kurze Einführung in Die Multi-Level Perspective (Short Introduction to the Multi-Level Perspective). 2014. Available online: https://gedankenstrich.org/wp-content/uploads/2014/11/kurze-einf%c3%bchrung-in-die-multi-level-perspective.pdf (accessed on 1 November 2021).
- Maassen, A. Heterogeneity of Lock-In and the Role of Strategic Technological Interventions in Urban Infrastructure Transformations. Eur. Plan. Stud. 2012, 20, 441–460. [Google Scholar] [CrossRef]
- DeHaan, J.H.; Rotmans, J. Patterns in transitions: Understanding complex chains of change. Technol. Forecast. Soc. Change 2011, 34, 90–102. [Google Scholar] [CrossRef]
- Sovacool, B.K.; Bazilian, M.; Griffith, R.; Kim, J.; Foley, A.; Rooney, D. Decarbonizing the food and beverages industry: A critical and systematic review of developments, sociotechnical systems and policy options. Renew. Sustain. Energy Rev. 2021, 143, 110856. [Google Scholar] [CrossRef]
- Pigford, A.A.E.; Hickey, G.M.; Klerkx, L. Beyond agricultural innovation systems? Exploring an agricultural innovation ecosystems approach for niche design and development in sustainability transitions. Agric. Syst. 2018, 164, 116–121. [Google Scholar] [CrossRef]
- Kemp, R.; Schot, J.; Hoogma, R. Regime shifts to sustainability through processes of niche formation: The approach of strategic niche management. Technol. Anal. Strateg. Manag. 1998, 10, 175–198. [Google Scholar] [CrossRef]
- UBA—Umweltbundesamt (German Environment Agency). Innenentwicklung in Städtischen Quartieren: Die Bedeutung von Umweltqualität, Gesundheit und Sozialverträglichkeit. (Interior Development in Urban Neighborhoods: The Importance of Environmental Quality, Health, and Social Compatibility). Dessau-Roßlau. Hintergrund 2019. 2019. Available online: https://www.umweltbundesamt.de/sites/default/files/medien/1410/publikationen/2020-01-13_hgp_innenentwicklung_umweltqualitaet_gesundheit_sozialvertraeglichkeit_final_bf.pdf (accessed on 13 July 2022).
- McClements, D.J.; Barrangou, R.; Hill, C.; Kokini, J.L.; Lila, M.A.; Meyer, A.S.; Yu, L. Building a Resilient, Sustainable, and Healthier Food Supply Through Innovation and Technology. Annu. Rev. Food Sci. Technol. 2021, 12, 1–28. [Google Scholar] [CrossRef]
- Carolan, M. Urban Farming Is Going High Tech. J. Am. Plan. Assoc. 2020, 86, 47–59. [Google Scholar] [CrossRef]
- Germer, J.; Sauerborn, J.; Asch, F.; de Boer, J.; Schreiber, J.; Weber, G.; Müller, J. Skyfarming an ecological innovation to enhance global food security. J. Verbraucherschutz Leb. 2011, 6, 237–251. [Google Scholar] [CrossRef]
- Kaur, G.; Chawla, P. All about Vertical Farming: A Review. Turk. J. Comput. Math. Educ. 2021, 12, 1–14. [Google Scholar] [CrossRef]
- Mir, M.S.; Naikoo, N.B.; Kanth, R.H.; Bahar, F.A.; Bhat, M.A.; Nazir, A.; Mahdi, S.S.; Amin, Z.; Singh, L.; Raja, W.; et al. Vertical farming: The future of agriculture: A review. Pharma Innov. J. 2022, 11, 1175–1195. Available online: https://www.researchgate.net/profile/zakir-amin/publication/358749034_vertical_farming_the_future_of_agriculture_a_review/links/6213b0604be28e145ca7aab5/vertical-farming-the-future-of-agriculture-a-review.pdf (accessed on 3 May 2022).
- Marvin, S.; Rutherford, J. Controlled environments: An urban research agenda on microclimatic enclosure. Urban Stud. 2018, 55, 1143–1162. [Google Scholar] [CrossRef]
- Ragaveena, S.; Shirly, A.E.; Surendran, U. Smart controlled environment agriculture methods: A holistic review. Rev. Environ. Sci. Biotechnol. 2021, 20, 887–913. [Google Scholar] [CrossRef]
- Sørensen, M.; Andersen-Ranberg, J.; Hankamer, B.; Møller, B.L. Circular biomanufacturing through harvesting solar energy and CO2. Trends Plant Sci. 2022, 27, 655–673. [Google Scholar] [CrossRef]
- Kalantari, F.; Tahir, O.M.; Lahijani, A.M.; Kalantari, S. A Review of Vertical Farming Technology: A Guide for Implementation of Building Integrated Agriculture in Cities. Adv. Eng. Forum 2017, 24, 76–91. [Google Scholar] [CrossRef]
- Specht, K.; Zoll, F.; Siebert, R. Application and evaluation of a participatory “open innovation” approach (ROIR): The case of introducing zero-acreage farming in Berlin. Landsc. Urban Plan. 2016, 151, 45–54. [Google Scholar] [CrossRef]
- Henry, R. Innovations in Agriculture and Food Supply in Response to the COVID-19 Pandemic. Mol. Plant 2020, 13, 1095–1097. [Google Scholar] [CrossRef] [PubMed]
- Sreeharsha, R.V.; Mohan, S.V. Symbiotic integration of bioprocesses to design a self-sustainable life supporting ecosystem in a circular economy framework. Bioresour. Technol. 2021, 326, 124712. [Google Scholar] [CrossRef] [PubMed]
- Graamans, L.; Baeza, E.; van den Dobbelsten, A.; Tsafaras, I.; Stanghellini, C. Plant factories versus greenhouses: Comparison of resource use efficiency. Agric. Syst. 2018, 160, 31–43. [Google Scholar] [CrossRef]
- Mok, W.K.; Tan, Y.X.; Chen, W.N. Technology innovations for food security in Singapore: A case study of future food systems for an increasingly natural resource-scarce world. Trends Food Sci. Technol. 2020, 102, 155–168. [Google Scholar] [CrossRef] [PubMed]
- Gentry, M. Local heat, local food: Integrating vertical hydroponic farming with district heating in Sweden. Energy 2019, 174, 191–197. [Google Scholar] [CrossRef]
- Eigenbrod, C.; Gruda, N. Urban vegetable for food security in cities. A review. Agron. Sustain. Dev. 2015, 35, 483–498. [Google Scholar] [CrossRef]
- Saxena, N.N. The Review on Techniques of Vertical Farming. Int. J. Mod. Agric. 2021, 10, 732–738. Available online: http://www.modern-journals.com/index.php/ijma/article/view/662 (accessed on 21 April 2022).
- Benke, K.; Tomkins, B. Future food-production systems: Vertical farming and controlled-environment agriculture: Insights from design and management sciences and future directions. Agric. Syst. 2017, 165, 111–115. [Google Scholar] [CrossRef]
- Hiwasa-Tanase, K.; Ezura, H. Molecular Breeding to Create Optimized Crops: From Genetic Manipulation to Potential Applications in Plant Factories. Front. Plant Sci. 2016, 7, 539. [Google Scholar] [CrossRef]
- SharathKumar, M.; Heuvelink, E.; Marcelis, L.F.M. Vertical Farming: Moving from Genetic to Environmental Modification. Trends Plant Sci. 2020, 8, 724–727. [Google Scholar] [CrossRef]
- Specht, K.; Sanyé-Mengual, E. Risks in urban rooftop agriculture: Assessing stakeholders’ perceptions to ensure efficient policymaking. Environ. Sci. Policy 2017, 69, 13–21. [Google Scholar] [CrossRef]
- Kosorić, V.; Huang, H.; Tablada, A.; Lau, S.K.; Tan, H.T.W. Survey on the social acceptance of the productive façade concept integrating photovoltaic and farming systems in high-rise public housing blocks in Singapore. Renew. Sustain. Energy Rev. 2019, 111, 197–214. [Google Scholar] [CrossRef]
- Safikhani, T.; Abdullah, A.M.; Ossen, D.R.; Baharvand, M. A review of energy characteristic of vertical greenery systems. Renew. Sustain. Energy Rev. 2014, 40, 450–462. [Google Scholar] [CrossRef]
- Dinesh, D.; Hegger, D.L.T.; Klerkx, L.; Verwoort, J.; Campbell, B.M.; Driessen, P.P.J. Enacting theories of change for food systems transformation under climate change. Glob. Food Secur. 2021, 31, 100583. [Google Scholar] [CrossRef]
- Aschemann-Witzel, J.; Ares, G.; Thogersen, J.; Monteleone, E. A sense of sustainability? How sensory consumer science can contribute to sustainable development of the food sector. Trends Food Sci. Technol. 2019, 90, 180–185. [Google Scholar] [CrossRef]
- Berthet, E.T.; Hickey, G.M.; Klerkx, L. Opening design and innovation processes in agriculture: Insights from design and management sciences and future directions. Agric. Syst. 2018, 165, 111–115. [Google Scholar] [CrossRef]
- Loorbach, D.; Frantzeskaki, N.; Avelino, F. Sustainability Transitions Research: Transforming Science and Practice for Societal Change. Annu. Rev. Environ. Resour. 2017, 42, 599–626. [Google Scholar] [CrossRef]
- Specht, K.; Weith, T.; Swoboda, K.; Siebert, R. Socially acceptable urban agriculture businesses. Agron. Sustain. Dev. 2016, 36, 17. [Google Scholar] [CrossRef]
- Pothukuchi, K. Community Food Assessment: A First Step in Planning for Community Food Security. J. Plan. Educ. Res. 2004, 4, 356–377. [Google Scholar] [CrossRef]
- Sonnino, R. Food system transformation: Urban perspectives. Cities 2023, 134, 104164. [Google Scholar] [CrossRef]
Strengths | |
---|---|
S1: | Reduction in shopping and transport traffic |
S2: | More efficient use of urban heat |
S3: | Vertical farming as a suitable reuse of brownfields and old building structures |
S4: | Reduction in and recycling of organic waste |
S5: | Contribution to urban economic growth |
S6: | Vertical farming buildings as a flexible building block in urban planning |
S7: | Vertical farming as part of an ecological building block for improving urban air and the microclimate |
Weaknesses | |
---|---|
W1: | Regulatory restrictions for vertical farms |
W2: | Increased land pressure and competition |
Opportunities | |
---|---|
O1: | Contribution to sustainable spatial development through efficient production methods |
O2: | Contribution to water protection |
O3: | Reduction in pesticides and fertilizers |
O4: | Creation of jobs |
O5: | Possibilities to control food production as a local market advantage |
O6: | Nutrition education and food awareness creation |
O7: | Contribution to urban food security and resilience |
O8: | Healthier and more hygienic food production |
Threats | |
---|---|
T1: | Increased urban energy demand |
T2: | High initial investment and expensive operating costs for vertical farming companies |
T3: | Selective supply due to limited farming methods |
T4: | Acceptance problems of vertical farms and their products |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Buscher, J.; Bakunowitsch, J.; Specht, K. Transformative Potential of Vertical Farming—An Urban Planning Investigation Using Multi-Level Perspective. Sustainability 2023, 15, 15861. https://doi.org/10.3390/su152215861
Buscher J, Bakunowitsch J, Specht K. Transformative Potential of Vertical Farming—An Urban Planning Investigation Using Multi-Level Perspective. Sustainability. 2023; 15(22):15861. https://doi.org/10.3390/su152215861
Chicago/Turabian StyleBuscher, Jost, Julija Bakunowitsch, and Kathrin Specht. 2023. "Transformative Potential of Vertical Farming—An Urban Planning Investigation Using Multi-Level Perspective" Sustainability 15, no. 22: 15861. https://doi.org/10.3390/su152215861
APA StyleBuscher, J., Bakunowitsch, J., & Specht, K. (2023). Transformative Potential of Vertical Farming—An Urban Planning Investigation Using Multi-Level Perspective. Sustainability, 15(22), 15861. https://doi.org/10.3390/su152215861