Research Progress on Anaerobic Digestion of Cellulose Waste Based on Bibliometric Analysis
Abstract
:1. Introduction
2. Materials and Methods
3. Results of Bibliometrics Analysis
3.1. Article Output Trend Analysis
3.2. Authors with the Highest Number of Articles
3.3. Distribution of Journals and Subject Categories
3.4. Research Trends and Hotspots Analysis
4. Treatment to Improve the Efficiency of AD of Cellulose Waste
4.1. Pretreatment
Pretreatment Methods | Substrate | Processing Conditions | Pretreatment Effect | Reference |
---|---|---|---|---|
Mechanical crushing | Rice straw | 20, 1, 0.15, 0.075 mm | 0.075 mm biogas production is 1.8 times higher than 20 mm | [30] |
Ultrasonic | Wheat straw | 20 kHz intermittent treatment for 20 min combined with lye immersion | 19% increase in methane production | [31] |
Microwave | Rice straw | 130 °C–230 °C treatment for 1–5 min | Increased methane production potential | [32] |
Thermal pretreatment | Rice straw | 200 °C–220 °C for 60–240 s steam explosion | Increased by 51% compared with the control group when pretreated at 200 °C for 200 s | [33] |
Acid pretreatment | Rice straw | 15% wt critic acid | 7.40 times compared with the control group | [34] |
Alkali pretreatment | Olive pomace | 0.03, 0.07, 0.14 g NaOH/2 g olive pomace | Increased by 30% | [35] |
Organic solvents | Pinewood, elmwood, and rice straw | 75% ethanol with sulfuric acid as catalyst | Increased by 84%, 73%, and 32% | [36] |
Oxidizing agent | Rice straw | 1–4% H2O2 pre-treated at 25 ± 2 °C for 7 days | Increased by 50–120% | [37] |
Ionic liquids | Grass | Imidazolium-based ionic liquids | Higher than the control group | [38] |
Electrohydrolysis pretreatment | Rice straw | At 25 V DC voltage for 60 min | Increased by 42.4% | [39] |
Compost pretreatment | Corn stover | Stack 1 m for pretreatment | Higher than the control group | [40] |
Micro-aerobic pretreatment | Rice straw | 0, 2, 4, 6, 8 d aeration | Aeration at 35 °C for 2 days has higher methane production | [41] |
Ruminal fluid pretreatment | Stems and leaves of rapeseed | 9 g rapeseed mixed with 300 mL rumen fluid at 37 °C | 1.5 times more than the control group | [42] |
Fungal pretreatment | Japanese cedarwood | Ceriporiopsis subvermispora | Four times higher than the control | [43] |
Enzyme pretreatment | Corn stover | Enzyme loading of 30 FPU/g, pretreatment for 24 h | Increased by 36.9% | [44] |
Combined pretreatment method | Mallow | Microwave heating, conventional heating, alkali–heat pretreatment | Microwave heating and alkali combine to produce more biogas | [45] |
Combined pretreatment method | Corn stover | Dual frequency ultrasound combined with alkali pre-treatment | Biogas yield increased by 56.6% compared to the group without pretreatment and by 28.2% compared to the alkali pretreatment | [46] |
Combined pretreatment method | Soybean straw | Thermal pretreatment combined with different concentrations of H2O2 and lye | Thermal pretreatment combined with combined lye and H2O2 pretreatment produces more biogas | [47] |
4.2. Co-Digestion
4.3. Microbial Community
4.3.1. Bacterial Community
4.3.2. Methanogenic Archaeal Community
4.3.3. Effect of Changing Environmental Conditions on Microbial Communities
4.4. LCA
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Top Countries in Paperboard and Packaging Paper Production. Available online: https://www.nationmaster.com/nmx/ranking/paperboard-and-packaging-paper-production (accessed on 20 October 2021).
- The Main by-Products of Rice Are Rice Straw, Rice Husk or Hull, and Rice Bran. Available online: http://www.knowledgebank.irri.org/step-by-step-production/postharvest/rice-by-products (accessed on 6 June 2022).
- Chen, B.; Mohrmann, S.; Li, H.; Gaff, M.; Lorenzo, R.; Corbi, I.; Corbi, O.; Fang, K.; Li, M. Research and Application Progress of Straw. J. Renew. Mater. 2023, 11, 599–623. [Google Scholar] [CrossRef]
- Xu, M.; Yang, M.; Xie, D.; Ni, J.; Meng, J.; Wang, Q.; Gao, M.; Wu, C. Research trend analysis of composting based on Web of Science database. Environ. Sci. Pollut. Res. 2021, 28, 59528–59541. [Google Scholar] [CrossRef] [PubMed]
- Gao, Z.; Ma, Y.; Liu, Y.; Wang, Q. Waste cooking oil used as carbon source for microbial lipid production: Promoter or inhibitor. Environ. Res. 2022, 203, 111881. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Wang, X.; Gao, M.; Guan, Y.; Wu, C.; Wang, Q.; Rao, Y.; Liu, S. Heavy metal leaching behaviour and long-term environmental risk assessment of cement-solidified municipal solid waste incineration fly ash in sanitary landfill. Chemosphere 2022, 300, 134571. [Google Scholar] [CrossRef]
- Song, C.; Li, W.; Cai, F.; Liu, G.; Chen, C. Anaerobic and Microaerobic Pretreatment for Improving Methane Production from Paper Waste in Anaerobic Digestion. Front. Microbiol. 2021, 12, 688290. [Google Scholar] [CrossRef]
- Guo, M.; Song, W.; Buhain, J. Bioenergy and biofuels: History, status, and perspective. Renew. Sustain. Energy Rev. 2015, 42, 712–725. [Google Scholar] [CrossRef]
- Fauzi, M.A.; Abidin, N.H.Z.; Omer, M.M.; Kineber, A.F.; Rahman, A.R.A. Role of sustainable development goals in advancing the circular economy: A state-of-the-art review on past, present and future directions. Waste Manag. Res. 2023, 0734242X231196765. [Google Scholar] [CrossRef]
- Xi, Y.; Liu, Y.; Ye, X.; Du, J.; Kong, X.; Guo, D.; Xiao, Q. Enhanced Anaerobic Biogas Production from Wheat Straw by Herbal-Extraction Process Residues Supplementation. Front. Bioeng. Biotechnol. 2021, 9, 623594. [Google Scholar] [CrossRef]
- Hendriks, A.; Zeeman, G. Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour. Technol. 2009, 100, 10–18. [Google Scholar] [CrossRef]
- Mothe, S.; Polisetty, V.R. Review on anaerobic digestion of rice straw for biogas production. Environ. Sci. Pollut. Res. 2020, 28, 24455–24469. [Google Scholar] [CrossRef]
- Fauzi, M.A.; Nguyen, M.; Malik, A. Knowledge sharing and theory of planned behavior: A bibliometric analysis. J. Knowl. Manag. 2023. ahead-of-print. [Google Scholar] [CrossRef]
- Ho, Y.-S. The top-cited research works in the Science Citation Index Expanded. Scientometrics 2013, 94, 1297–1312. [Google Scholar] [CrossRef]
- Mao, N.; Wang, M.-H.; Ho, Y.-S. A Bibliometric Study of the Trend in Articles Related to Risk Assessment Published inScience Citation Index. Hum. Ecol. Risk Assess. Int. J. 2010, 16, 801–824. [Google Scholar] [CrossRef]
- Current and Planned Joint Actions within UN-Energy. Available online: https://www.un.org/chinese/esa/energy/background.shtml (accessed on 16 March 2022).
- Notice of the State Council on the Issuance of the 12th Five-Year Plan for Energy Development. Available online: http://www.gov.cn/zwgk/2013-01/23/content_2318554.htm (accessed on 16 March 2022). (In Chinese)
- Notice on the Publication of the 13th Five-Year Plan for Ecological and Environmental Protection. Available online: http://www.gov.cn/zhengce/content/2016-12/05/content_5143290.htm (accessed on 16 March 2022). (In Chinese)
- Notice of the State Council on the Issuance of the 14th Five-Year Plan for Energy Conservation and Emission Reduction. Available online: http://www.gov.cn/zhengce/content/2022-01/24/content_5670202.htm (accessed on 16 March 2022). (In Chinese)
- Ye, N.; Kueh, T.-B.; Hou, L.; Liu, Y.; Yu, H. A bibliometric analysis of corporate social responsibility in sustainable development. J. Clean. Prod. 2020, 272, 122679. [Google Scholar] [CrossRef]
- Cirne, D.; Lehtomäki, A.; Björnsson, L.; Blackall, L. Hydrolysis and microbial community analyses in two-stage anaerobic digestion of energy crops. J. Appl. Microbiol. 2007, 103, 516–527. [Google Scholar] [CrossRef]
- Mshandete, A.; Björnsson, L.; Kivaisi, A.K.; Rubindamayugi, M.; Mattiasson, B. Effect of particle size on biogas yield from sisal fibre waste. Renew. Energy 2006, 31, 2385–2392. [Google Scholar] [CrossRef]
- Sapci, Z. The effect of microwave pretreatment on biogas production from agricultural straws. Bioresour. Technol. 2013, 128, 487–494. [Google Scholar] [CrossRef]
- Duff, S.J.; Murray, W.D. Bioconversion of forest products industry waste cellulosics to fuel ethanol: A review. Bioresour. Technol. 1996, 55, 1–33. [Google Scholar] [CrossRef]
- Behera, S.; Arora, R.; Nandhagopal, N.; Kumar, S. Importance of chemical pretreatment for bioconversion of lignocellulosic biomass. Renew. Sustain. Energy Rev. 2014, 36, 91–106. [Google Scholar] [CrossRef]
- Kaur, K.; Phutela, U.G. Enhancement of paddy straw digestibility and biogas production by sodium hydroxide-microwave pretreatment. Renew. Energy 2016, 92, 178–184. [Google Scholar] [CrossRef]
- Shrestha, S.; Fonoll, X.; Khanal, S.K.; Raskin, L. Biological strategies for enhanced hydrolysis of lignocellulosic biomass during anaerobic digestion: Current status and future perspectives. Bioresour. Technol. 2017, 245, 1245–1257. [Google Scholar] [CrossRef]
- Battista, F.; Bolzonella, D. Some critical aspects of the enzymatic hydrolysis at high dry-matter content: A review. Biofuels Bioprod. Biorefin. 2018, 12, 711–723. [Google Scholar] [CrossRef]
- Peng, J.; Abomohra, A.E.-F.; Elsayed, M.; Zhang, X.; Fan, Q.; Ai, P. Compositional changes of rice straw fibers after pretreatment with diluted acetic acid: Towards enhanced biomethane production. J. Clean. Prod. 2019, 230, 775–782. [Google Scholar] [CrossRef]
- Dai, X.; Hua, Y.; Dai, L.; Cai, C. Particle size reduction of rice straw enhances methane production under anaerobic digestion. Bioresour. Technol. 2019, 293, 122043. [Google Scholar] [CrossRef]
- Wahid, R.; Romero-Guiza, M.; Moset, V.; Møller, H.B.; Fernández, B. Improved anaerobic biodegradability of wheat straw, solid cattle manure and solid slaughterhouse by alkali, ultrasonic and alkali-ultrasonic pre-treatment. Environ. Technol. 2020, 41, 997–1006. [Google Scholar] [CrossRef] [PubMed]
- Kainthola, J.; Shariq, M.; Kalamdhad, A.S.; Goud, V.V. Enhanced methane potential of rice straw with microwave assisted pretreatment and its kinetic analysis. J. Environ. Manag. 2019, 232, 188–196. [Google Scholar] [CrossRef]
- Zhou, J.; Yan, B.H.; Wang, Y.; Yong, X.Y.; Yang, Z.H.; Jia, H.H.; Jiang, M.; Wei, P. Effect of steam explosion pretreatment on the anaerobic digestion of rice straw. RSC Adv. 2016, 6, 88417–88425. [Google Scholar] [CrossRef]
- Amnuaycheewa, P.; Hengaroonprasan, R.; Rattanaporn, K.; Kirdponpattara, S.; Cheenkachorn, K.; Sriariyanun, M. Enhancing enzymatic hydrolysis and biogas production from rice straw by pretreatment with organic acids. Ind. Crop. Prod. 2016, 87, 247–254. [Google Scholar] [CrossRef]
- Elalami, D.; Carrere, H.; Abdelouahdi, K.; Garcia-Bernet, D.; Peydecastaing, J.; Vaca-Medina, G.; Oukarroum, A.; Zeroual, Y.; Barakat, A. Mild microwaves, ultrasonic and alkaline pretreatments for improving methane production: Impact on biochemical and structural properties of olive pomace. Bioresour. Technol. 2020, 299, 122591. [Google Scholar] [CrossRef]
- Mirmohamadsadeghi, S.; Karimi, K.; Zamani, A.; Amiri, H.; Horváth, I.S. Enhanced Solid-State Biogas Production from Lignocellulosic Biomass by Organosolv Pretreatment. BioMed Res. Int. 2014, 2014, 350414. [Google Scholar] [CrossRef]
- Song, Z.; Yang, G.; Guo, Y.; Zhang, T. Comparison of two chemical pretreatments of rice straw for biogas production by anaerobic digestion. BioResources 2012, 7, 3223–3236. [Google Scholar] [CrossRef]
- Li, W.; Xu, G. Enhancement of anaerobic digestion of grass by pretreatment with imidazolium-based ionic liquids. Environ. Technol. 2016, 38, 1843–1851. [Google Scholar] [CrossRef] [PubMed]
- Kainthola, J.; Shariq, M.; Kalamdhad, A.S.; Goud, V.V. Electrohydrolysis pretreatment methods to enhance the methane production from anaerobic digestion of rice straw using graphite electrode. Renew. Energy 2019, 142, 1–10. [Google Scholar] [CrossRef]
- Zhou, S.; Zhang, Y.; Dong, Y. Pretreatment for biogas production by anaerobic fermentation of mixed corn stover and cow dung. Energy 2012, 46, 644–648. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, C.; Nges, I.A.; Liu, J. The effects of pre-aeration and inoculation on solid-state anaerobic digestion of rice straw. Bioresour. Technol. 2017, 224, 78–86. [Google Scholar] [CrossRef]
- Baba, Y.; Matsuki, Y.; Mori, Y.; Suyama, Y.; Tada, C.; Fukuda, Y.; Saito, M.; Nakai, Y. Pretreatment of lignocellulosic biomass by cattle rumen fluid for methane production: Bacterial flora and enzyme activity analysis. J. Biosci. Bioeng. 2017, 123, 489–496. [Google Scholar] [CrossRef]
- Amirta, R.; Tanabe, T.; Watanabe, T.; Honda, Y.; Kuwahara, M.; Watanabe, T. Methane fermentation of Japanese cedar wood pretreated with a white rot fungus, Ceriporiopsis subvermispora. J. Biotechnol. 2006, 123, 71–77. [Google Scholar] [CrossRef]
- Wang, S.; Li, F.; Wu, D.; Zhang, P.; Wang, H.; Tao, X.; Ye, J.; Nabi, M. Enzyme Pretreatment Enhancing Biogas Yield from Corn Stover: Feasibility, Optimization, and Mechanism Analysis. J. Agric. Food Chem. 2018, 66, 10026–10032. [Google Scholar] [CrossRef]
- Nowicka, A.; Zieliński, M.; Dębowski, M.; Dudek, M.; Rusanowska, P. Progress in the production of biogas from Virginia mallow after alkaline-heat pretreatment. Biomass-Bioenergy 2019, 126, 174–180. [Google Scholar] [CrossRef]
- Dong, C.; Chen, J.; Guan, R.; Li, X.; Xin, Y. Dual-frequency ultrasound combined with alkali pretreatment of corn stalk for enhanced biogas production. Renew. Energy 2018, 127, 444–451. [Google Scholar] [CrossRef]
- Xiong, J.; Hassan, M.; Wang, W.; Ding, W. Methane enhancement by the co-digestion of soybean straw and farm wastewater under different thermo-chemical pretreatments. Renew. Energy 2020, 145, 116–123. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, L.; Li, Y.; Fu, L.; Yuan, C.; Yao, L.; Luo, J. Reactor performance and economic evaluation of singular, binary, and ternary mixing of feedstocks for anaerobic digestion. Environ. Technol. 2021, 42, 318–328. [Google Scholar] [CrossRef] [PubMed]
- Kapoor, R.; Ghosh, P.; Kumar, M.; Sengupta, S.; Gupta, A.; Kumar, S.S.; Vijay, V.; Kumar, V.; Vijay, V.K.; Pant, D. Valorization of agricultural waste for biogas based circular economy in India: A research outlook. Bioresour. Technol. 2020, 304, 123036. [Google Scholar] [CrossRef]
- Henard, C.A.; Smith, H.K.; Guarnieri, M.T. Phosphoketolase overexpression increases biomass and lipid yield from methane in an obligate methanotrophic biocatalyst. Metab. Eng. 2017, 41, 152–158. [Google Scholar] [CrossRef]
- Ma, X.; Gao, M.; Liu, S.; Li, Y.; Sun, X.; Wang, Q. An innovative approach for reducing the water and alkali consumption in the lactic acid fermentation via the reuse of pretreated liquid. Bioresour. Technol. 2020, 352, 127108. [Google Scholar] [CrossRef]
- Zhang, S.; Guan, W.; Sun, H.; Zhao, P.; Wang, W.; Gao, M.; Sun, X.; Wang, Q. Intermittent energization improves microbial electrolysis cell-assisted thermophilic anaerobic co-digestion of food waste and spent mushroom substance. Bioresour. Technol. 2023, 370, 128577. [Google Scholar] [CrossRef]
- Zala, M.; Solanki, R.; Bhale, P.V.; Vaishak, S. Experimental investigation on anaerobic co-digestion of food waste and water hyacinth in batch type reactor under mesophilic condition. Biomass Convers. Biorefin. 2019, 10, 707–714. [Google Scholar] [CrossRef]
- Ma, X.; Gao, M.; Wang, N.; Liu, S.; Wang, Q.; Sun, X. Lactic acid production from co-fermentation of food waste and spent mushroom substance with Aspergillus niger cellulase. Bioresour. Technol. 2021, 337, 125365. [Google Scholar] [CrossRef]
- Kawai, M.; Nagao, N.; Tajima, N.; Niwa, C.; Matsuyama, T.; Toda, T. The effect of the labile organic fraction in food waste and the substrate/inoculum ratio on anaerobic digestion for a reliable methane yield. Bioresour. Technol. 2014, 157, 174–180. [Google Scholar] [CrossRef]
- Zhang, W.; Kong, T.; Xing, W.; Li, R.; Yang, T.; Yao, N.; Lv, D. Links between carbon/nitrogen ratio, synergy and microbial characteristics of long-term semi-continuous anaerobic co-digestion of food waste, cattle manure and corn straw. Bioresour. Technol. 2022, 343, 126094. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, X.; Xing, W.; Li, R.; Yang, T.; Yao, N.; Lv, D. Links between synergistic effects and microbial community characteristics of anaerobic co-digestion of food waste, cattle manure and corn straw. Bioresour. Technol. 2021, 329, 124919. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Liu, S.; Mi, L.; Li, Z.; Yuan, Y.; Yan, Z.; Liu, X. Effects of feedstock ratio and organic loading rate on the anaerobic mesophilic co-digestion of rice straw and pig manure. Bioresour. Technol. 2015, 187, 120–127. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Huang, R.; Wu, J.; Zhang, W.; Han, Y.; Xiao, B.; Wang, D.; Zhou, Y.; Liu, B.; Yu, G. Biohythane production and microbial characteristics of two alternating mesophilic and thermophilic two-stage anaerobic co-digesters fed with rice straw and pig manure. Bioresour. Technol. 2021, 320, 124303. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Chen, X.; Zhang, K.; Han, Y.; Tong, Y.; Wang, J.; Xiao, B.; Liu, J. Effect of mixing ratio and total solids content on temperature-phased anaerobic codigestion of rice straw and pig manure: Biohythane production and microbial structure. Bioresour. Technol. 2022, 344, 126173. [Google Scholar] [CrossRef]
- Silvestre, G.; Gómez, M.P.; Pascual, A.; Ruiz, B. Anaerobic co-digestion of cattle manure with rice straw: Economic & energy feasibility. Water Sci. Technol. 2013, 67, 745–755. [Google Scholar] [CrossRef]
- Elsayed, M.; Andres, Y.; Blel, W.; Gad, A.; Ahmed, A. Effect of VS organic loads and buckwheat husk on methane production by anaerobic co-digestion of primary sludge and wheat straw. Energy Convers. Manag. 2016, 117, 538–547. [Google Scholar] [CrossRef]
- Chu, X.; Wu, G.; Wang, J.; Hu, Z.-H. Dry co-digestion of sewage sludge and rice straw under mesophilic and thermophilic anaerobic conditions. Environ. Sci. Pollut. Res. 2015, 22, 20143–20153. [Google Scholar] [CrossRef]
- Prajapati, K.B.; Singh, R. Co-digestion of sewage sludge and wheat straw in presence of iron scraps in mesophilic and thermophilic conditions for generating methane. Biomass-Convers. Biorefin. 2022, 1–12. [Google Scholar] [CrossRef]
- Li, Y.; Han, Y.; Zhang, Y.; Luo, W.; Li, G. Anaerobic digestion of different agricultural wastes: A techno-economic assessment. Bioresour. Technol. 2020, 315, 123836. [Google Scholar] [CrossRef]
- Li, Y.; Xu, F.; Li, Y.; Lu, J.; Li, S.; Shah, A.; Zhang, X.; Zhang, H.; Gong, X.; Li, G. Reactor performance and energy analysis of solid state anaerobic co-digestion of dairy manure with corn stover and tomato residues. Waste Manag. 2018, 73, 130–139. [Google Scholar] [CrossRef]
- Siddique, N.I.; Wahid, Z.A. Achievements and perspectives of anaerobic co-digestion: A review. J. Clean. Prod. 2018, 194, 359–371. [Google Scholar] [CrossRef]
- Theuerl, S.; Klang, J.; Prochnow, A. Process Disturbances in Agricultural Biogas Production—Causes, Mechanisms and Effects on the Biogas Microbiome: A Review. Energies 2019, 12, 365. [Google Scholar] [CrossRef]
- Mata-Alvarez, J.; Dosta, J.; Romero-Güiza, M.; Fonoll, X.; Peces, M.; Astals, S. A critical review on anaerobic co-digestion achievements between 2010 and 2013. Renew. Sustain. Energy Rev. 2014, 36, 412–427. [Google Scholar] [CrossRef]
- Ma, G.; Chen, Y.; Ndegwa, P. Association between methane yield and microbiota abundance in the anaerobic digestion process: A meta-regression. Renew. Sustain. Energy Rev. 2021, 135, 110212. [Google Scholar] [CrossRef]
- Calabrò, P.S.; Fazzino, F.; Folino, A.; Scibetta, S.; Sidari, R. Improvement of semi-continuous anaerobic digestion of pre-treated orange peel waste by the combined use of zero valent iron and granular activated carbon. Biomass Bioenergy 2019, 129, 105337. [Google Scholar] [CrossRef]
- Schellenberger, S.; Kolb, S.; Drake, H.L. Metabolic responses of novel cellulolytic and saccharolytic agricultural soil Bacteria to oxygen. Environ. Microbiol. 2010, 12, 845–861. [Google Scholar] [CrossRef]
- Zou, H.; Jiang, Q.; Zhu, R.; Chen, Y.; Sun, T.; Li, M.; Zhai, J.; Shi, D.; Ai, H.; Gu, L.; et al. Enhanced hydrolysis of lignocellulose in corn cob by using food waste pretreatment to improve anaerobic digestion performance. J. Environ. Manag. 2020, 254, 109830. [Google Scholar] [CrossRef]
- Wang, L.; Liu, C.; Wei, B.; Song, C.; Cai, F.; Liu, G.; Chen, C. Effects of different microbial pretreatments on the anaerobic digestion of giant grass under anaerobic and microaerobic conditions. Bioresour. Technol. 2021, 337, 125456. [Google Scholar] [CrossRef]
- Zhang, J.; Qi, C.; Wang, Y.; Li, Y.; Han, T.; Gong, X.; Shan, M.; Li, G.; Luo, W. Enhancing biogas production from livestock manure in solid-state anaerobic digestion by sorghum-vinegar residues. Environ. Technol. Innov. 2022, 26, 102276. [Google Scholar] [CrossRef]
- Zhang, S.; Ma, X.; Xie, D.; Guan, W.; Yang, M.; Zhao, P.; Gao, M.; Wang, Q.; Wu, C. Adding activated carbon to the system with added zero-valent iron further improves anaerobic digestion performance by alleviating ammonia inhibition and promoting DIET. J. Environ. Chem. Eng. 2021, 9, 106616. [Google Scholar] [CrossRef]
- Li, L.; Qin, Y.; Kong, Z.; Wu, J.; Kubota, K.; Li, Y.-Y. Characterization of microbial community and main functional groups of prokaryotes in thermophilic anaerobic co-digestion of food waste and paper waste. Sci. Total. Environ. 2019, 652, 709–717. [Google Scholar] [CrossRef] [PubMed]
- Zhu, A.; Qin, Y.; Wu, J.; Ye, M.; Li, Y.-Y. Characterization of biogas production and microbial community in thermophilic anaerobic co-digestion of sewage sludge and paper waste. Bioresour. Technol. 2021, 337, 125371. [Google Scholar] [CrossRef] [PubMed]
- Ma, S.; Wang, H.; Wang, B.; Gu, X.; Zhu, W. Biomethane enhancement from corn straw using anaerobic digestion by-products as pretreatment agents: A highly effective and green strategy. Bioresour. Technol. 2022, 344, 126177. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Meng, S.; Chen, G.; Yan, B.; Zhang, Y.; Tao, J.; Li, Y.; Li, J. Co-digestion of garden waste, food waste, and tofu residue: Effects of mixing ratio on methane production and microbial community structure. J. Environ. Chem. Eng. 2021, 9, 105901. [Google Scholar] [CrossRef]
- Wang, Y.; Li, G.; Chi, M.; Sun, Y.; Zhang, J.; Jiang, S.; Cui, Z. Effects of co-digestion of cucumber residues to corn stover and pig manure ratio on methane production in solid state anaerobic digestion. Bioresour. Technol. 2018, 250, 328–336. [Google Scholar] [CrossRef]
- Liu, C.; Wachemo, A.C.; Tong, H.; Shi, S.; Zhang, L.; Yuan, H.; Li, X. Biogas production and microbial community properties during anaerobic digestion of corn stover at different temperatures. Bioresour. Technol. 2018, 261, 93–103. [Google Scholar] [CrossRef]
- Usman, M.; Shi, Z.; Ji, M.; Ren, S.; Luo, G.; Zhang, S. Microbial insights towards understanding the role of hydrochar in alleviating ammonia inhibition during anaerobic digestion. Chem. Eng. J. 2021, 419, 129541. [Google Scholar] [CrossRef]
- Zhang, S.; Ren, Y.; Ma, X.; Guan, W.; Gao, M.; Li, Y.-Y.; Wang, Q.; Wu, C. Effect of zero-valent iron addition on the biogas fermentation of food waste after anaerobic preservation. J. Environ. Chem. Eng. 2021, 9, 106013. [Google Scholar] [CrossRef]
- Wei, Y.; Li, Z.; Ran, W.; Yuan, H.; Li, X. Performance and microbial community dynamics in anaerobic co-digestion of chicken manure and corn stover with different modification methods and trace element supplementation strategy. Bioresour. Technol. 2021, 325, 124713. [Google Scholar] [CrossRef]
- Ren, Y.; Yu, M.; Wu, C.; Wang, Q.; Gao, M.; Huang, Q.; Liu, Y. A comprehensive review on food waste anaerobic digestion: Research updates and tendencies. Bioresour. Technol. 2018, 247, 1069–1076. [Google Scholar] [CrossRef]
- Aziz, N.I.H.A.; Hanafiah, M.M.; Gheewala, S.H. A review on life cycle assessment of biogas production: Challenges and future perspectives in Malaysia. Biomass Bioenergy 2019, 122, 361–374. [Google Scholar] [CrossRef]
- Khoshnevisan, B.; Shafiei, M.; Rajaeifar, M.A.; Tabatabaei, M. Biogas and bioethanol production from pinewood pre-treated with steam explosion and N-methylmorpholine-N-oxide (NMMO): A comparative life cycle assessment approach. Energy 2016, 114, 935–950. [Google Scholar] [CrossRef]
- Khoshnevisan, B.; Rafiee, S.; Omid, M.; Mousazadeh, H.; Clark, S. Environmental impact assessment of tomato and cucumber cultivation in greenhouses using life cycle assessment and adaptive neuro-fuzzy inference system. J. Clean. Prod. 2014, 73, 183–192. [Google Scholar] [CrossRef]
- Wang, L.; Templer, R.; Murphy, R.J. A Life Cycle Assessment (LCA) comparison of three management options for waste papers: Bioethanol production, recycling and incineration with energy recovery. Bioresour. Technol. 2012, 120, 89–98. [Google Scholar] [CrossRef] [PubMed]
- De Vries, J.; Vinken, T.; Hamelin, L.; De Boer, I. Comparing environmental consequences of anaerobic mono- and co-digestion of pig manure to produce bio-energy—A life cycle perspective. Bioresour. Technol. 2012, 125, 239–248. [Google Scholar] [CrossRef]
- Pehme, S.; Veromann, E.; Hamelin, L. Environmental performance of manure co-digestion with natural and cultivated grass—A consequential life cycle assessment. J. Clean. Prod. 2017, 162, 1135–1143. [Google Scholar] [CrossRef]
- Fei, X.; Jia, W.; Chen, T.; Ling, Y. Life-cycle assessment of two food waste disposal processes based on anaerobic digestion in China. J. Clean. Prod. 2021, 293, 126113. [Google Scholar] [CrossRef]
- Wenke, L.; Lianfeng, D.; Qichang, Y. Biogas slurry added amino acids decreased nitrate concentrations of lettuce in sand culture. Acta Agric. Scand. Sect. B Soil Plant Sci. 2009, 59, 260–264. [Google Scholar] [CrossRef]
- Möller, K.; Müller, T. Effects of anaerobic digestion on digestate nutrient availability and crop growth: A review. Eng. Life Sci. 2012, 12, 242–257. [Google Scholar] [CrossRef]
- Alburquerque, J.A.; de la Fuente, C.; Ferrer-Costa, A.; Carrasco, L.; Cegarra, J.; Abad, M.; Bernal, M.P. Assessment of the fertiliser potential of digestates from farm and agroindustrial residues. Biomass Bioenergy 2012, 40, 181–189. [Google Scholar] [CrossRef]
- Coban, H.; Miltner, A.; Elling, F.; Hinrichs, K.-U.; Kästner, M. The contribution of biogas residues to soil organic matter formation and CO2 emissions in an arable soil. Soil Biol. Biochem. 2015, 86, 108–115. [Google Scholar] [CrossRef]
- Abubaker, J.; Risberg, K.; Pell, M. Biogas residues as fertilisers—Effects on wheat growth and soil microbial activities. Appl. Energy 2012, 99, 126–134. [Google Scholar] [CrossRef]
- Ronga, D.; Setti, L.; Salvarani, C.; De Leo, R.; Bedin, E.; Pulvirenti, A.; Milc, J.; Pecchioni, N.; Francia, E. Effects of solid and liquid digestate for hydroponic baby leaf lettuce (Lactuca sativa L.) cultivation. Sci. Hortic. 2019, 244, 172–181. [Google Scholar] [CrossRef]
- Cheong, J.C.; Lee, J.T.; Lim, J.W.; Song, S.; Tan, J.K.; Chiam, Z.Y.; Yap, K.Y.; Lim, E.Y.; Zhang, J.; Tan, H.T.; et al. Closing the food waste loop: Food waste anaerobic digestate as fertilizer for the cultivation of the leafy vegetable, xiao bai cai (Brassica rapa). Sci. Total. Environ. 2020, 715, 136789. [Google Scholar] [CrossRef] [PubMed]
- Iocoli, G.A.; Zabaloy, M.C.; Pasdevicelli, G.; Gómez, M.A. Use of biogas digestates obtained by anaerobic digestion and co-digestion as fertilizers: Characterization, soil biological activity and growth dynamic of Lactuca sativa L. Sci. Total. Environ. 2019, 647, 11–19. [Google Scholar] [CrossRef]
- Bauer, L.; Ranglová, K.; Masojídek, J.; Drosg, B.; Meixner, K. Digestate as Sustainable Nutrient Source for Microalgae—Challenges and Prospects. Appl. Sci. 2021, 11, 1056. [Google Scholar] [CrossRef]
- Ghimire, A.; Kumar, G.; Sivagurunathan, P.; Shobana, S.; Saratale, G.D.; Kim, H.W.; Luongo, V.; Esposito, G.; Munoz, R. Bio-hythane production from microalgae biomass: Key challenges and potential opportunities for algal bio-refineries. Bioresour. Technol. 2017, 241, 525–536. [Google Scholar] [CrossRef] [PubMed]
- Saratale, R.G.; Kuppam, C.; Mudhoo, A.; Saratale, G.D.; Periyasamy, S.; Zhen, G.; Koók, L.; Bakonyi, P.; Nemestóthy, N.; Kumar, G. Bioelectrochemical systems using microalgae—A concise research update. Chemosphere 2017, 177, 35–43. [Google Scholar] [CrossRef]
- Seelam, J.S.; de Souza, M.F.; Chaerle, P.; Willems, B.; Michels, E.; Vyverman, W.; Meers, E. Maximizing nutrient recycling from digestate for production of protein-rich microalgae for animal feed application. Chemosphere 2022, 290, 133180. [Google Scholar] [CrossRef]
- Kumar, A.; Singh, E.; Mishra, R.; Kumar, S. Biochar as environmental armour and its diverse role towards protecting soil, water and air. Sci. Total. Environ. 2022, 806, 150444. [Google Scholar] [CrossRef]
- Belete, Y.Z.; Mau, V.; Spitzer, R.Y.; Posmanik, R.; Jassby, D.; Iddya, A.; Kassem, N.; Tester, J.W.; Gross, A. Hydrothermal carbonization of anaerobic digestate and manure from a dairy farm on energy recovery and the fate of nutrients. Bioresour. Technol. 2021, 333, 125164. [Google Scholar] [CrossRef] [PubMed]
- Sheng, X.; Wang, J.; Cui, Q.; Zhang, W.; Zhu, X. A feasible biochar derived from biogas residue and its application in the efficient adsorption of tetracycline from an aqueous solution. Environ. Res. 2022, 207, 112175. [Google Scholar] [CrossRef] [PubMed]
- Dicke, C.; Lanza, G.; Mumme, J.; Ellerbrock, R.; Kern, J. Effect of Hydrothermally Carbonized Char Application on Trace Gas Emissions from Two Sandy Soil Horizons. J. Environ. Qual. 2014, 43, 1790–1798. [Google Scholar] [CrossRef]
- Feng, H.; Qu, G.-F.; Ning, P.; Xiong, X.-F.; Jia, L.-J.; Shi, Y.-K.; Zhang, J. The Resource Utilization of Anaerobic Fermentation Residue. Procedia Environ. Sci. 2011, 11, 1092–1099. [Google Scholar] [CrossRef]
- Tao, X.; Shang, B.; Dong, H.; Chen, Y.; Xin, H. Effects of Digestate from Swine Manure Digester on in Vitro Growth of Crop Fungal Pathogens: A Laboratory Study. Trans. ASABE 2014, 57, 1803–1810. [Google Scholar] [CrossRef]
- Pan, Z.; Qi, G.; Andriamanohiarisoamanana, F.J.; Yamashiro, T.; Iwasaki, M.; Nishida, T.; Tangtaweewipat, S.; Umetsu, K. Potential of anaerobic digestate of dairy manure in suppressing soil-borne plant disease. Anim. Sci. J. 2018, 89, 1512–1518. [Google Scholar] [CrossRef]
- Min, Y.Y.; Toyota, K.; Sato, E.; Takada, A. Effects of Anaerobically Digested Slurry on Meloidogyne incognita and Pratylenchus penetrans in Tomato and Radish Production. Appl. Environ. Soil Sci. 2011, 2011, 528712. [Google Scholar] [CrossRef]
- Xu, M.; Sun, H.; Yang, M.; Xie, D.; Sun, X.; Meng, J.; Wang, Q.; Wu, C. Biodrying of biogas residue through a thermophilic bacterial agent inoculation: Insights into dewatering contribution and microbial mechanism. Bioresour. Technol. 2022, 355, 127256. [Google Scholar] [CrossRef]
Journal | TP | H-Index | IF2022 |
---|---|---|---|
Bioresource Technology | 946 | 92 | 11.89 |
Water Science and Technology | 596 | 57 | 2.43 |
Waste Management | 459 | 66 | 8.82 |
Journal of Cleaner Production | 316 | 46 | 11.07 |
International Journal of Hydrogen Energy | 299 | 52 | 7.14 |
Biomass and Bioenergy | 209 | 42 | 5.77 |
Renewable Energy | 204 | 43 | 8.63 |
Science of The Total Environment | 165 | 34 | 10.75 |
Energies | 160 | 21 | 3.25 |
Waste and Biomass Valorization | 157 | 21 | 3.45 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, P.; Zhang, S.; Wang, X.; Sun, H.; Guo, Y.; Wang, Q.; Sun, X. Research Progress on Anaerobic Digestion of Cellulose Waste Based on Bibliometric Analysis. Sustainability 2023, 15, 16060. https://doi.org/10.3390/su152216060
Zhao P, Zhang S, Wang X, Sun H, Guo Y, Wang Q, Sun X. Research Progress on Anaerobic Digestion of Cellulose Waste Based on Bibliometric Analysis. Sustainability. 2023; 15(22):16060. https://doi.org/10.3390/su152216060
Chicago/Turabian StyleZhao, Pan, Shuang Zhang, Xiaona Wang, Haishu Sun, Yan Guo, Qunhui Wang, and Xiaohong Sun. 2023. "Research Progress on Anaerobic Digestion of Cellulose Waste Based on Bibliometric Analysis" Sustainability 15, no. 22: 16060. https://doi.org/10.3390/su152216060
APA StyleZhao, P., Zhang, S., Wang, X., Sun, H., Guo, Y., Wang, Q., & Sun, X. (2023). Research Progress on Anaerobic Digestion of Cellulose Waste Based on Bibliometric Analysis. Sustainability, 15(22), 16060. https://doi.org/10.3390/su152216060